Chapter 6. Residues and Poles Study Guide

The following is a brief list of topics covered in Chapter 6 of Brown and Churchill's *Complex Variables and Applications*, 8th edition. This list is not meant to be comprehensive, but only gives a list of several important topics. You should also carefully study the examples and proofs given in class and in the homework problems.

Section 6.68. Isolated Singular Points.

Isolated singularity, examples.

Section 6.69. Residues.

Residue, the relationship of a residue to an integral (Note 6.69.A), examples.

Section 6.70. Cauchy's Residue Theorem.

Cauchy's Residue Theorem, example.

Section 6.71. Residues at Infinity.

Isolated singular point at ∞ , residue at infinity, integrals related to residues at ∞ (Theorem 6.71.1), example.

Section 6.72. The Three Types of Isolated Singular Points.

Pole of order m, simple pole, removable singular point, "removing" a removable singularity (Note 6.72.A), essential singular point, examples, Picard's Theorem.

Section 6.73. Residues at Poles.

Classification of functions with poles of order m (Theorem 6.73.1).

Section 6.74. Examples.

Examples illustrating Theorem 6.73.1.

Section 6.75. Zeros of Analytic Functions.

Zero of order m, factoring functions with zeros of order m (Theorem 6.75.1), zeros of analytic functions are isolated (Theorem 6.75.2), analytic function identically equal to 0 (Theorem 6.75.3).

Section 6.76. Zeros and Poles.

Poles of quotients of analytic functions (Theorem 6.76.1), residues of quotients of analytic functions, examples.

Section 6.77. Behavior of Functions Near Isolated Singular Points.

Limits at a pole (Theorem 6.77.1), behavior in a deleted neighborhood of a removable singular point, Riemann's Theorem (Lemma 6.77.1), Casorati-Weierstrass Theorem (Theorem 6.77.3).

Revised: 1/2/2020