Lemma 13.1.

Let \(X \) be a set and let \(\mathcal{B} \) be a basis for a topology \(\mathcal{T} \) on \(X \).

Then \(\mathcal{T} \) equals the collection of all unions of elements of \(\mathcal{B} \). Hence \(\mathcal{T} \cap \mathcal{B} \), the topology \(\mathcal{B} \) generated by \(\mathcal{B} \), is also a topology on \(X \). Since \(\mathcal{B} \in \mathcal{T} \), then \(\mathcal{B} \) is a basis for \(\mathcal{B} \) generated by \(\mathcal{B} \).

Proof. By the definition of \(\mathcal{T} \), every \(U \in \mathcal{T} \) can be written as a union of elements of \(\mathcal{B} \). For each \(U \in \mathcal{T} \), choose \(B \in \mathcal{B} \) such that \(U = \bigcup B \).

Theorem 13.4. Let \(\mathcal{B} \) be a basis for a topology \(\mathcal{T} \) on \(X \).

Define \(\mathcal{T} = \{ \cap \mathcal{B} \mid \mathcal{B} \subseteq \mathcal{T} \} \) where \(\mathcal{B} \subseteq \mathcal{T} \) for some \(\mathcal{B} \in \mathcal{B} \). Then \(\mathcal{T} \) is a topology on \(X \).

Proof. We consider the definition of \(\mathcal{T} \).

The \(\mathcal{T} \) generated by \(\mathcal{B} \). Then \(\mathcal{T} \) is a topology on \(X \).

Since \(\mathcal{B} \subseteq \mathcal{T} \), then \(\mathcal{T} \) is a topology on \(X \).

Therefore, \(\mathcal{T} \) is a topology on \(X \).
Theorem 13.2 (contd).

Lemma 13.3

Definition of topology (B part (3)). By part (3) of the definition of topology, the collection of open sets of x is a basis for topology on X, where $x \in X$.

Proof. First we show that \mathcal{C} is a basis. For the first part of the definition of topology, let $x, y \in X$. Then there is a collection of open sets of x that contains open set \mathcal{C} and a collection of open sets of y that contains open set \mathcal{C}. Therefore, X is a topological space. Suppose that x is a

Lemma 13.4

Therefore, X is a topological space.

Proof. Let $x, y \in X$. Then there is a collection of open sets of x that contains open set \mathcal{C} and a collection of open sets of y that contains open set \mathcal{C}. Therefore, X is a topological space.
Let \(L \) be the set of all finite intersections of elements of \(S \). Then \(L \) is a topology on the set \(X \). Therefore, \(L \) is a basis for a topology on \(X \). By Lemma 13.1, the topology generated by \(L \) is the topology \(\tau \) on \(X \), consisting of all unions of elements of \(L \). This is precisely the collection of sets in \(L \). So \(L \) is a topology on \(X \). The topology \(\tau \) for which \(L \) is a basis is the topology defined as follows. For any \(S \subseteq \mathcal{S} \), where \(\mathcal{S} \) is a basis for the topology on \(X \), let \(\{ S \in \mathcal{S} \mid \bigcup S \subseteq \bigcup S' \} = L \).

Proof. Let \(L \) be the set of all finite intersections of elements of \(S \). Then \(L \) is a topology on \(X \). Let \(S \) be a basis for a topology on \(X \). Define \(L \) to be