Introduction to Topology

Chapter 2. Topological Spaces and Continuous Functions
Section 18. Continuous Functions—Proofs of Theorems
Table of contents

1 Lemma 18.A

2 Theorem 18.1

3 Theorem 18.2(a,b,c)

4 Theorem 18.2(d,e,f)

5 Theorem 18.3

6 Theorem 18.4
Lemma 18.A

Lemma 18.A. Let $f : X \to Y$, let \mathcal{B} be a basis for the topology on Y, and let \mathcal{S} be a subbasis for the topology on Y.

1. f is continuous if $f^{-1}(B)$ is open in X for each $B \in \mathcal{B}$.
2. f is continuous if $f^{-1}(S)$ is open in X for each $X \in \mathcal{S}$.

Proof. (1) Let $V \subset Y$ be open. Then (by definition of basis) there are $B_\alpha \in \mathcal{B}$ for $\alpha \in J$ such that $V = \bigcup_{\alpha \in J} B_\alpha$.

Lemma 18.A. Let \(f : X \to Y \), let \(\mathcal{B} \) be a basis for the topology on \(Y \), and let \(\mathcal{S} \) be a subbasis for the topology on \(Y \).

(1) \(f \) is continuous if \(f^{-1}(B) \) is open in \(X \) for each \(B \in \mathcal{B} \).

(2) \(f \) is continuous if \(f^{-1}(S) \) is open in \(X \) for each \(X \in \mathcal{S} \).

Proof. (1) Let \(V \subset Y \) be open. Then (by definition of basis) there are \(B_\alpha \in \mathcal{B} \) for \(\alpha \in J \) such that \(V = \bigcup_{\alpha \in J} B_\alpha \). Then \(f^{-1}(V) = f^{-1}(\bigcup_{\alpha \in J} B_\alpha) = \bigcup_{\alpha \in J} f^{-1}(B_\alpha) \) is an open set in \(X \) by hypothesis. So each \(f^{-1}(B_\alpha) \) is open in \(X \) and \(f^{-1}(V) \) is open in \(X \). Hence \(f \) is continuous.
Lemma 18.A. Let $f : X \to Y$, let \mathcal{B} be a basis for the topology on Y, and let \mathcal{S} be a subbasis for the topology on Y.

1) f is continuous if $f^{-1}(B)$ is open in X for each $B \in \mathcal{B}$.

2) f is continuous if $f^{-1}(S)$ is open in X for each $X \in \mathcal{S}$.

Proof. (1) Let $V \subset Y$ be open. Then (by definition of basis) there are $B_\alpha \in \mathcal{B}$ for $\alpha \in J$ such that $V = \bigcup_{\alpha \in J} B_\alpha$. Then $f^{-1}(V) = f^{-1}(\bigcup_{\alpha \in J} B_\alpha) = \bigcup_{\alpha \in J} f^{-1}(B_\alpha)$ is an open set in X by hypothesis. So each $f^{-1}(B_\alpha)$ is open in X and $f^{-1}(V)$ is open in X. Hence f is continuous.
Lemma 18.A. Let $f : X \to Y$, let B be a basis for the topology on Y, and let S be a subbasis for the topology on Y.

(1) f is continuous if $f^{-1}(B)$ is open in X for each $B \in B$.

(2) f is continuous if $f^{-1}(S)$ is open in X for each $X \in S$.

Proof (continued). (2) Let $V \subset Y$ be open. Then (by the definition of subbasis) there are S^i_α for $\alpha \in J$, $i \in \mathbb{N}$ such that $V = \bigcup_{\alpha \in J} (S^1_\alpha \cap S^2_\alpha \cap \cdots \cap S^{n_\alpha}_\alpha)$.

Lemma 18.A. Let \(f : X \to Y \), let \(\mathcal{B} \) be a basis for the topology on \(Y \), and let \(\mathcal{S} \) be a subbasis for the topology on \(Y \).

1. \(f \) is continuous if \(f^{-1}(B) \) is open in \(X \) for each \(B \in \mathcal{B} \).
2. \(f \) is continuous if \(f^{-1}(S) \) is open in \(X \) for each \(S \in \mathcal{S} \).

Proof (continued). (2) Let \(V \subset Y \) be open. Then (by the definition of subbasis) there are \(S^i_\alpha \) for \(\alpha \in J \), \(i \in \mathbb{N} \) such that \(V = \bigcup_{\alpha \in J} (S^1_\alpha \cap S^2_\alpha \cap \cdots \cap S^{n_\alpha}_\alpha) \). Then

\[
 f^{-1}(V) = f^{-1}(\bigcup_{\alpha \in J} (S^1_\alpha \cap S^2_\alpha \cap \cdots \cap S^{n_\alpha}_\alpha)) = \bigcup_{\alpha \in J} f^{-1}(S^1_\alpha \cap S^2_\alpha \cap \cdots \cap S^{n_\alpha}_\alpha)
\]

\[
 = \bigcup_{\alpha \in J} (f^{-1}(S^1_\alpha) \cap f^{-1}(S^2_\alpha) \cap \cdots \cap f^{-1}(S^{n_\alpha}_\alpha))
\]

is open in \(X \) since each \(f^{-1}(S^i_\alpha) \) is open in \(X \) by hypothesis and so \(f^{-1}(S^1_\alpha) \cap f^{-1}(S^2_\alpha) \cap \cdots \cap f^{-1}(S^{n_\alpha}_\alpha) \) is open for each \(\alpha \in J \), and hence the union is open. So \(f^{-1}(V) \) is open and \(f \) is continuous.
Lemma 18.A (continued)

Lemma 18.A. Let \(f : X \to Y \), let \(B \) be a basis for the topology on \(Y \), and let \(S \) be a subbasis for the topology on \(Y \).

1. \(f \) is continuous if \(f^{-1}(B) \) is open in \(X \) for each \(B \in B \).
2. \(f \) is continuous if \(f^{-1}(S) \) is open in \(X \) for each \(X \in S \).

Proof (continued). (2) Let \(V \subset Y \) be open. Then (by the definition of subbasis) there are \(S_i^\alpha \) for \(\alpha \in J, \ i \in \mathbb{N} \) such that

\[
V = \bigcup_{\alpha \in J} (S_\alpha^1 \cap S_\alpha^2 \cap \cdots \cap S_\alpha^n).
\]

Then

\[
f^{-1}(V) = f^{-1}\left(\bigcup_{\alpha \in J} (S_\alpha^1 \cap S_\alpha^2 \cap \cdots \cap S_\alpha^n)\right) = \bigcup_{\alpha \in J} f^{-1}(S_\alpha^1 \cap S_\alpha^2 \cap \cdots \cap S_\alpha^n)
\]

\[
= \bigcup_{\alpha \in J} (f^{-1}(S_\alpha^1) \cap f^{-1}(S_\alpha^2) \cap \cdots \cap f^{-1}(S_\alpha^n))
\]

is open in \(X \) since each \(f^{-1}(S_\alpha^i) \) is open in \(X \) by hypothesis and so

\[
f^{-1}(S_\alpha^1) \cap f^{-1}(S_\alpha^2) \cap \cdots \cap f^{-1}(S_\alpha^n) \]

is open for each \(\alpha \in J \), and hence the union is open. So \(f^{-1}(V) \) is open and \(f \) is continuous. \(\square \)
Theorem 18.1. Let X and Y be topological spaces. let $f : X \to Y$. Then the following are equivalent:

1. f is continuous.
2. For every subset Z of X, one has $f(A) \subseteq f(A)$.
3. For every closed subset B of Y, the set $f^{-1}(B)$ is closed in X.
4. For each $x \in X$ and each neighborhood V of $f(x)$, there is a neighborhood U of x such that $f(U) \subseteq V$.

Proof. (1)\Rightarrow(2) Suppose f is continuous. Let $A \subseteq X$ and $x \in \overline{A}$. If $x \in A$ then $f(x) \in f(A) \subseteq f(A)$.

Theorem 18.1

Theorem 18.1. Let X and Y be topological spaces. let $f : X \to Y$. Then the following are equivalent:

1. f is continuous.
2. For every subset Z of X, one has $f(\overline{A}) \subset \overline{f(A)}$.
3. For every closed subset B of Y, the set $f^{-1}(B)$ is closed in X.
4. For each $x \in X$ and each neighborhood V of $f(x)$, there is a neighborhood U of x such that $f(U) \subset V$.

Proof. (1)\Rightarrow(2) Suppose f is continuous. Let $A \subset X$ and $x \in \overline{A}$. If $x \in A$ then $f(x) \in f(A) \subset \overline{f(A)}$. If $x \notin A$ then let V be a neighborhood of $f(x)$. Then $f^{-1}(V)$ is open in X and $x \in f^{-1}(V)$. By definition of \overline{A}, $f^{-1}(V)$ intersects A at some point $y \neq x$.

Theorem 18.1. Let X and Y be topological spaces. Let $f : X \to Y$. Then the following are equivalent:

1. f is continuous.
2. For every subset Z of X, one has $f(\overline{A}) \subset \overline{f(A)}$.
3. For every closed subset B of Y, the set $f^{-1}(B)$ is closed in X.
4. For each $x \in X$ and each neighborhood V of $f(x)$, there is a neighborhood U of x such that $f(U) \subset V$.

Proof. (1)\Rightarrow(2) Suppose f is continuous. Let $A \subset X$ and $x \in \overline{A}$. If $x \in A$ then $f(x) \in f(A) \subset \overline{f(A)}$. If $x \notin A$ then let V be a neighborhood of $f(x)$. Then $f^{-1}(V)$ is open in X and $x \in f^{-1}(V)$. By definition of \overline{A}, $f^{-1}(V)$ intersects A at some point $y \neq x$. So $f(y) \in V \cap f(A)$ (notice that $f(y) \neq f(x)$ since $f(x) \notin f(A))$. So $f(x) \in \overline{f(A)}$. So $f(x) \in \overline{f(A)}$ for any $x \in \overline{A}$ and hence $f(\overline{A}) \subset \overline{f(A)}$.

Theorem 18.1

Theorem 18.1. Let X and Y be topological spaces. let $f : X \to Y$. Then the following are equivalent:

1. f is continuous.
2. For every subset Z of X, one has $f(A) \subset f(\overline{A})$.
3. For every closed subset B of Y, the set $f^{-1}(B)$ is closed in X.
4. For each $x \in X$ and each neighborhood V of $f(x)$, there is a neighborhood U of x such that $f(U) \subset V$.

Proof. (1) \Rightarrow (2) Suppose f is continuous. Let $A \subset X$ and $x \in \overline{A}$. If $x \in A$ then $f(x) \in f(A) \subset f(\overline{A})$. If $x \notin A$ then let V be a neighborhood of $f(x)$. Then $f^{-1}(V)$ is open in X and $x \in f^{-1}(V)$. By definition of \overline{A}, $f^{-1}(V)$ intersects A at some point $y \neq x$. So $f(y) \in V \cap f(A)$ (notice that $f(y) \neq f(x)$ since $f(x) \notin f(A)$). So $f(x) \in f(\overline{A})$. So $f(x) \in f(\overline{A})$ for any $x \in \overline{A}$ and hence $f(\overline{A}) \subset f(\overline{A})$.

Theorem 18.1 (continued 1)

Theorem 18.1. Let X and Y be topological spaces. let $f : X \rightarrow Y$. Then the following are equivalent:

1. f is continuous.
2. For every subset Z of X, one has $f(A) \subset f(A)$.
3. For every closed subset B of Y, the set $f^{-1}(B)$ is closed in X.
4. For each $x \in X$ and each neighborhood V of $f(x)$, there is a neighborhood U of x such that $f(U) \subset V$.

Proof (continued). (2)\Rightarrow(3) Let B be closed in Y and let $A = f^{-1}(B)$. Then $f(A) \subset B$ (f may not be onto B and so we may not have $f(A) = B$). So if $x \in \overline{A}$ then $f(x) \in f(A) \subset f(A)$ by hypothesis (2) and $f(A) \subset B = B$ since $f(A) \subset B$ and B is closed.
Theorem 18.1 (continued 1)

Theorem 18.1. Let X and Y be topological spaces. Let $f : X \to Y$. Then the following are equivalent:

1. f is continuous.
2. For every subset Z of X, one has $f(A) \subset f(A)$.
3. For every closed subset B of Y, the set $f^{-1}(B)$ is closed in X.
4. For each $x \in X$ and each neighborhood V of $f(x)$, there is a neighborhood U of x such that $f(U) \subset V$.

Proof (continued). $(2) \Rightarrow (3)$ Let B be closed in Y and let $A = f^{-1}(B)$. Then $f(A) \subset B$ (f may not be onto B and so we may not have $f(A) = B$). So if $x \in A$ then $f(x) \in f(A) \subset f(A)$ by hypothesis (2) and $f(A) \subset B = B$ since $f(A) \subset B$ and B is closed. Hence $f(x) \in B$ and $x \in f^{-1}(B) = A$. So $A \subset A$ and (since $A \subset A$) we have $A = \overline{A}$ so that $A = f^{-1}(B)$ is closed (by Lemma 17.A), as claimed.
Theorem 18.1. Let X and Y be topological spaces. let $f : X \to Y$. Then the following are equivalent:

1. f is continuous.
2. For every subset Z of X, one has $f(A) \subseteq f(A)$.
3. For every closed subset B of Y, the set $f^{-1}(B)$ is closed in X.
4. For each $x \in X$ and each neighborhood V of $f(x)$, there is a neighborhood U of x such that $f(U) \subseteq V$.

Proof (continued). (2) \Rightarrow (3) Let B be closed in Y and let $A = f^{-1}(B)$. Then $f(A) \subseteq B$ (f may not be onto B and so we may not have $f(A) = B$). So if $x \in \overline{A}$ then $f(x) \in f(A) \subseteq \overline{f(A)}$ by hypothesis (2) and $f(A) \subseteq B$ since $f(A) \subseteq B$ and B is closed. Hence $f(x) \in B$ and $x \in f^{-1}(B) = A$. So $\overline{A} \subseteq A$ and (since $A \subseteq \overline{A}$) we have $A = \overline{A}$ so that $A = f^{-1}(B)$ is closed (by Lemma 17.A), as claimed.
Theorem 18.1 (continued 2)

Theorem 18.1. Let X and Y be topological spaces. Let $f : X \rightarrow Y$. Then the following are equivalent:

1. f is continuous.
2. For every closed subset B of Y, the set $f^{-1}(B)$ is closed in X.

Proof (continued). $(3) \Rightarrow (1)$ Let V be an open set in Y. Set $B = Y \setminus V$. Then

\[
f^{-1}(B) = f^{-1}(Y \setminus V) = f^{-1} \setminus f^{-1}(V) \text{ by Exercise 2.2(d)} = X \setminus f^{-1}(V) \text{ since } X \text{ is the domain of } f.
\]
Theorem 18.1 (continued 2)

Theorem 18.1. Let X and Y be topological spaces. Let $f : X \to Y$. Then the following are equivalent:

1. f is continuous.
2. For every closed subset B of Y, the set $f^{-1}(B)$ is closed in X.

Proof (continued). $(3) \Rightarrow (1)$ Let V be an open set in Y. Set $B = Y \setminus V$. Then

$$f^{-1}(B) = f^{-1}(Y \setminus V) = f^{-1} \setminus f^{-1}(V) \text{ by Exercise 2.2(d)} = X \setminus f^{-1}(V) \text{ since } X \text{ is the domain of } f.$$

Since V is open, B is closed in Y and so by hypothesis (3), $f^{-1}(B) = X \setminus f^{-1}(V)$ is closed in X and so $f^{-1}(V)$ is open. Therefore, by the definition of continuous function, f is continuous.
Theorem 18.1. Let X and Y be topological spaces. Let $f : X \to Y$. Then the following are equivalent:

1. f is continuous.
2. For every closed subset B of Y, the set $f^{-1}(B)$ is closed in X.

Proof (continued). $(3) \Rightarrow (1)$ Let V be an open set in Y. Set $B = Y \setminus V$. Then

$$f^{-1}(B) = f^{-1}(Y \setminus V) = f^{-1} \setminus f^{-1}(V) \text{ by Exercise 2.2(d)}$$

$$= X \setminus f^{-1}(V) \text{ since } X \text{ is the domain of } f.$$

Since V is open, B is closed in Y and so by hypothesis (3), $f^{-1}(B) = X \setminus f^{-1}(V)$ is closed in X and so $f^{-1}(V)$ is open. Therefore, by the definition of continuous function, f is continuous.
Theorem 18.1 (continued 3)

Theorem 18.1. Let X and Y be topological spaces. let $f : X \to Y$. Then the following are equivalent:

(1) f is continuous.

(4) For each $x \in X$ and each neighborhood V of $f(x)$, there is a neighborhood U of x such that $f(U) \subset V$.

Proof (continued). $(1) \Rightarrow (4)$ Let $x \in X$ and let V be a neighborhood of $f(x)$. Then $U = f^{-1}(V)$ is open since f is continuous and $x \in U$. That is, $f(U) \subset V$, as claimed.
Theorem 18.1 (continued 3)

Theorem 18.1. Let X and Y be topological spaces. Let $f : X \to Y$. Then the following are equivalent:

1. f is continuous.

4. For each $x \in X$ and each neighborhood V of $f(x)$, there is a neighborhood U of x such that $f(U) \subseteq V$.

Proof (continued). $(1) \Rightarrow (4)$ Let $x \in X$ and let V be a neighborhood of $f(x)$. Then $U = f^{-1}(V)$ is open since f is continuous and $x \in U$. That is, $f(U) \subseteq V$, as claimed.

$(4) \Rightarrow (1)$ Let V be an open set of Y. Let $x \in f^{-1}(V)$. Then $f(x) \in V$ and so by hypothesis (4) there is open U_x in X with $x \in U_x$ and $f(U_x) \subseteq V$. Then $U_x \subseteq f^{-1}(V)$.
Theorem 18.1 (continued 3)

Theorem 18.1. Let X and Y be topological spaces. let $f : X \to Y$. Then the following are equivalent:

1. f is continuous.

4. For each $x \in X$ and each neighborhood V of $f(x)$, there is a neighborhood U of x such that $f(U) \subset V$.

Proof (continued). (1) \Rightarrow (4) Let $x \in X$ and let V be a neighborhood of $f(x)$. Then $U = f^{-1}(V)$ is open since f is continuous and $x \in U$. That is, $f(U) \subset V$, as claimed.

(4) \Rightarrow (1) Let V be an open set of Y. Let $x \in f^{-1}(V)$. Then $f(x) \in V$ and so by hypothesis (4) there is open U_x in X with $x \in U_x$ and $f(U_x) \subset V$. Then $U_x \subset f^{-1}(V)$. Then with such open U_x chosen for each $x \in f^{-1}(V)$ we have $f^{-1}(V) = \bigcup_{x \in f^{-1}(V)} U_x$ and hence $f^{-1}(V)$ is open. Therefore, by the definition of continuous function, f is continuous and (1) follows.
Theorem 18.1 (continued 3)

Theorem 18.1. Let X and Y be topological spaces. let $f : X \to Y$. Then the following are equivalent:

1. f is continuous.
2. For each $x \in X$ and each neighborhood V of $f(x)$, there is a neighborhood U of x such that $f(U) \subset V$.

Proof (continued). (1)⇒(4) Let $x \in X$ and let V be a neighborhood of $f(x)$. Then $U = f^{-1}(V)$ is open since f is continuous and $x \in U$. That is, $f(U) \subset V$, as claimed.

(4)⇒(1) Let V be an open set of Y. Let $x \in f^{-1}(V)$. Then $f(x) \in V$ and so by hypothesis (4) there is open U_x in X with $x \in U_x$ and $f(U_x) \subset V$. Then $U_x \subset f^{-1}(V)$. Then with such open U_x chosen for each $x \in f^{-1}(V)$ we have $f^{-1}(V) = \bigcup_{x \in f^{-1}(V)} U_x$ and hence $f^{-1}(V)$ is open. Therefore, by the definition of continuous function, f is continuous and (1) follows. □
Theorem 18.2. Rules for Constructing Continuous Functions.

Let X, Y, and Z be topological spaces.

(a) (Constant Function) If $f : X \to Y$ maps all of X into a single point $y_0 \in Y$, then f is continuous.

(b) (Inclusion) if A is a subspace of X, the inclusion function $j : A \to X$ is continuous.

(c) (Composites) If $f : X \to Y$ and $g : Y \to Z$ are continuous, then the map $g \circ f : X \to Z$ is continuous.

Proof. (a) Let $f(x) = y_0$ for every $x \in X$. Let V be open in Y. Then $f^{-1}(V) = X$ if $y_0 \in V$ and $f^{-1}(V) = \emptyset$ if $y_0 \notin V$. In either case, $f^{-1}(V)$ is open and so f is continuous.
Theorem 18.2(a,b,c)

Theorem 18.2. Rules for Constructing Continuous Functions.
Let X, Y, and Z be topological spaces.

(a) (Constant Function) If $f : X \rightarrow Y$ maps all of X into a single point $y_0 \in Y$, then f is continuous.

(b) (Inclusion) If A is a subspace of X, the inclusion function $j : A \rightarrow X$ is continuous.

(c) (Composites) If $f : X \rightarrow Y$ and $g : Y \rightarrow Z$ are continuous, then the map $g \circ f : X \rightarrow Z$ is continuous.

Proof. (a) Let $f(x) = y_0$ for every $x \in X$. Let V be open in Y. Then $f^{-1}(V) = X$ if $y_0 \in V$ and $f^{-1}(V) = \emptyset$ if $y_0 \notin V$. In either case, $f^{-1}(V)$ is open and so f is continuous. (b) If U is open in X, then $j^{-1}(U) = U \cap A$ which is open in A (by definition of the subspace topology).
Theorem 18.2(a,b,c)

Theorem 18.2. Rules for Constructing Continuous Functions.
Let X, Y, and Z be topological spaces.

(a) (Constant Function) If $f : X \rightarrow Y$ maps all of X into a single point $y_0 \in Y$, then f is continuous.

(b) (Inclusion) if A is a subspace of X, the inclusion function $j : A \rightarrow X$ is continuous.

(c) (Composites) If $f : X \rightarrow Y$ and $g : Y \rightarrow Z$ are continuous, then the map $g \circ f : X \rightarrow Z$ is continuous.

Proof. (a) Let $f(x) = y_0$ for every $x \in X$. Let V be open in Y. Then $f^{-1}(V) = X$ if $y_0 \in V$ and $f^{-1}(V) = \emptyset$ if $y_0 \notin V$. In either case, $f^{-1}(V)$ is open and so f is continuous. (b) If U is open in X, then $j^{-1}(U) = U \cap A$ which is open in A (by definition of the subspace topology). (c) If U is open in Z then $g^{-1}(U)$ is open in Y since g is continuous and $f^{-1}(g^{-1}(U))$ is open in X since f is continuous. Now $(g \circ f)^{-1}(U) = f^{-1} \circ g^{-1}(U) = f^{-1}(g^{-1}(U))$ and so $g \circ f$ is continuous.
Theorem 18.2(a,b,c)

Theorem 18.2. Rules for Constructing Continuous Functions.
Let X, Y, and Z be topological spaces.

(a) (Constant Function) If $f : X \to Y$ maps all of X into a single point $y_0 \in Y$, then f is continuous.

(b) (Inclusion) if A is a subspace of X, the inclusion function $j : A \to X$ is continuous.

(c) (Composites) If $f : X \to Y$ and $g : Y \to Z$ are continuous, then the map $g \circ f : X \to Z$ is continuous.

Proof. (a) Let $f(x) = y_0$ for every $x \in X$. Let V be open in Y. Then $f^{-1}(V) = X$ if $y_0 \in V$ and $f^{-1}(V) = \emptyset$ if $y_0 \notin V$. In either case, $f^{-1}(V)$ is open and so f is continuous. (b) If U is open in X, then $j^{-1}(U) = U \cap A$ which is open in A (by definition of the subspace topology). (c) If U is open in Z then $g^{-1}(U)$ is open in Y since g is continuous and $f^{-1}(g^{-1}(U))$ is open in X since f is continuous. Now $(g \circ f)^{-1}(U) = f^{-1} \circ g^{-1}(U) = f^{-1}(g^{-1}(U))$ and so $g \circ f$ is continuous.
Theorem 18.2

Theorem 18.2. Rules for Constructing Continuous Functions.
Let X, Y, and Z be topological spaces.

(d) (Restricting the Domain) If $f : X \to Y$ is continuous and if A is a subspace of X, then the restricted function $f|_A : A \to Y$ is continuous.

(e) (Restricting or Expanding the Range) let $f : X \to Y$ be continuous. If X is a subspace of Y containing the image set $f(X)$, then the function $g : X \to Z$ obtained by restricting the range of f is continuous. If Z is a space having Y as a subspace, then the functions $h : X \to Z$ obtained by expanding the range of f is continuous.

(e) (Local Formulation of Continuity) The map $f : X \to Y$ is continuous if X can be written as the union of open sets U_α such that $f|_{U_\alpha}$ is continuous for each α.
Theorem 18.2(d, e, f) (continued 1)

Proof. (d) The function $f|_A$ equals the composition of the inclusion map $j : A \to Y$ (which is continuous by part (b)) and $f : X \to Y$ (which is continuous by hypothesis). So by part (c), $f|_A$ is continuous.

(e) Let $f : X \to Y$ be continuous and $f(X) \subset Z \subset Y$. Let B be open in Z. Then (by definition) $B = Z \cap U$ for some open U in Y.
Theorem 18.2(d, e, f) (continued 1)

Proof. (d) The function $f|_A$ equals the composition of the inclusion map $j : A \to Y$ (which is continuous by part (b)) and $f : X \to Y$ (which is continuous by hypothesis). So by part (c), $f|_A$ is continuous.

(e) Let $f : X \to Y$ be continuous and $f(X) \subset Z \subset Y$. Let B be open in Z. Then (by definition) $B = Z \cap U$ for some open U in Y. Then

$$g^{-1}(B) = g^{-1}(Z \cap U) = g^{-1}(Z) \cap g^{-1}(U)$$

$$= X \cap g^{-1}(U)$$

since $f(X) = g(X) \subset Z$

$$= g^{-1}(U)$$

$$= f^{-1}(U)$$

since $f(x) \in Y$ for some $x \in X$ implies $g(x) = f(x) \in U$.

Since f is continuous, $f^{-1}(U)$ is open in X and so $g^{-1}(U)$ is open in X. Therefore, g is continuous.
Theorem 18.2(d, e, f) (continued 1)

Proof. (d) The function $f|_A$ equals the composition of the inclusion map $j : A \rightarrow Y$ (which is continuous by part (b)) and $f : X \rightarrow Y$ (which is continuous by hypothesis). So by part (c), $f|_A$ is continuous.

(e) Let $f : X \rightarrow Y$ be continuous and $f(X) \subset Z \subset Y$. Let B be open in Z. Then (by definition) $B = Z \cap U$ for some open U in Y. Then

$$g^{-1}(B) = g^{-1}(Z \cap U) = g^{-1}(Z) \cap g^{-1}(U)$$

$$= X \cap g^{-1}(U) \text{ since } f(X) = g(X) \subset Z$$

$$= g^{-1}(U)$$

$$= f^{-1}(U) \text{ since } f(x) \in Y \text{ for some } x \in X \text{ implies } g(x) = f(x) \in$$

Since f is continuous, $f^{-1}(U)$ is open in X and so $g^{-1}(U)$ is open in X. Therefore, g is continuous.

Now let $h : X \rightarrow Z \supset Y$ be as described. Then h is the composition of $f : X \times Y$ (which is continuous by hypothesis) and the inclusion map $j : Y \rightarrow Z$ (which is continuous by part (b)). So, by part (c), h is continuous.
Theorem 18.2(d, e, f) (continued 1)

Proof. (d) The function $f|_A$ equals the composition of the inclusion map $j : A \to Y$ (which is continuous by part (b)) and $f : X \to Y$ (which is continuous by hypothesis). So by part (c), $f|_A$ is continuous.

(e) Let $f : X \to Y$ be continuous and $f(X) \subset Z \subset Y$. Let B be open in Z. Then (by definition) $B = Z \cap U$ for some open U in Y. Then

$$g^{-1}(B) = \quad g^{-1}(Z \cap U) = g^{-1}(Z) \cap g^{-1}(U)$$

$$= \quad X \cap g^{-1}(U) \text{since } f(X) = g(X) \subset Z$$

$$= \quad g^{-1}(U)$$

$$= \quad f^{-1}(U) \text{ since } f(x) \in Y \text{ for some } x \in X \text{ implies } g(x) = f(x) \in U.$$

Since f is continuous, $f^{-1}(U)$ is open in X and so $g^{-1}(U)$ is open in X. Therefore, g is continuous.

Now let $h : X \to Z \supset Y$ be as described. Then h is the composition of $f : X \times Y$ (which is continuous by hypothesis) and the inclusion map $j : Y \to Z$ (which is continuous by part (b)). So, by part (c), h is continuous.
Theorem 18.2(d, e, f) (continued 2)

Proof. (f) Suppose \(X = \bigcup_{\alpha \in J} U_\alpha \) for open \(U_\alpha \) in \(X \) where \(f|_{U_\alpha} \) is continuous for each \(\alpha \in J \). Let \(V \) be an open set in \(Y \). Since \(f^{-1}(V) \cap U_\alpha \) consists of \(x \in X \cap U_\alpha = U_\alpha \) such that \(f(x) \in V \) and \((f|_{U_\alpha})^{-1}(V) \) consists of \(x \in U_\alpha \) such that \(f(x) \in U_\alpha \), then \(f^{-1}(V) \cap U_\alpha = (f|_{U_\alpha})^{-1}(V) \) for all \(\alpha \in J \). Since \(f|_{U_\alpha} \) is continuous by hypothesis, then this set is open in \(U_\alpha \) and since \(U_\alpha \) is open then (by Lemma 16.2) this set is open in \(X \).
Theorem 18.2(d, e, f) (continued 2)

Proof. (f) Suppose $X = \bigcup_{\alpha \in J} U_\alpha$ for open U_α in X where $f|_{U_\alpha}$ is continuous for each $\alpha \in J$. Let V be an open set in Y. Since $f^{-1}(V) \cap U_\alpha$ consists of $x \in X \cap U_\alpha = U_\alpha$ such that $f(x) \in V$ and $(f|_{U_\alpha})^{-1}(V)$ consists of $x \in U_\alpha$ such that $f(x) \in U_\alpha$, then $f^{-1}(V) \cap U_\alpha = (f|_{U_\alpha})^{-1}(V)$ for all $\alpha \in J$. Since $f|_{U_\alpha}$ is continuous by hypothesis, then this set is open in U_α and since U_α is open then (by Lemma 16.2) this set is open in X. Since $X = \bigcup_{\alpha \in J} U_\alpha$ then

$$f^{-1}(V) = f^{-1}(V) \cap X = f^{-1}(V) \cap (\bigcup_{\alpha \in J} U_\alpha) = \bigcup_{\alpha \in J}(f^{-1}(V) \cap U_\alpha)$$

is open in X since each set in the union is open. Therefore (by definition) f is continuous. \qed
Theorem 18.2(d, e, f) (continued 2)

Proof. (f) Suppose \(X = \bigcup_{\alpha \in J} U_{\alpha} \) for open \(U_{\alpha} \) in \(X \) where \(f|_{U_{\alpha}} \) is continuous for each \(\alpha \in J \). Let \(V \) be an open set in \(Y \). Since \(f^{-1}(V) \cap U_{\alpha} \) consists of \(x \in X \cap U_{\alpha} = U_{\alpha} \) such that \(f(x) \in V \) and \((f|_{U_{\alpha}})^{-1}(V)\) consists of \(x \in U_{\alpha} \) such that \(f(x) \in U_{\alpha} \), then \(f^{-1}(V) \cap U_{\alpha} = (f|_{U_{\alpha}})^{-1}(V) \) for all \(\alpha \in J \). Since \(f|_{U_{\alpha}} \) is continuous by hypothesis, then this set is open in \(U_{\alpha} \) and since \(U_{\alpha} \) is open then (by Lemma 16.2) this set is open in \(X \). Since \(X = \bigcup_{\alpha \in J} U_{\alpha} \) then

\[
f^{-1}(V) = f^{-1}(V) \cap X = f^{-1}(V) \cap (\bigcup_{\alpha \in J} U_{\alpha}) = \bigcup_{\alpha \in J} (f^{-1}(V) \cap U_{\alpha})
\]

is open in \(X \) since each set in the union is open. Therefore (by definition) \(f \) is continuous. \(\square \)
Theorem 18.3. The Pasting Lemma for Closed Sets.
Let \(X = A \cup B \) where \(A \) and \(B \) are closed in \(X \). Let \(f : A \rightarrow Y \) and \(g : B \rightarrow Y \) be continuous. If \(f(x) = g(x) \) for all \(x \in A \cup B \), then \(f \) and \(g \) combine (or “paste”) to give a continuous function \(h : X \rightarrow Y \) defined by setting \(h(x) = f(x) \) if \(x \in A \) and \(h(x) = g(x) \) if \(x \in B \).

Proof. Let \(C \) be closed in \(Y \). Then \(h^{-1}(C) = f^{-1}(C) \cup g^{-1}(C) \).
Theorem 18.3. The Pasting Lemma for Closed Sets.

Let \(X = A \cup B \) where \(A \) and \(B \) are closed in \(X \). Let \(f : A \to Y \) and \(g : B \to Y \) be continuous. If \(f(x) = g(x) \) for all \(x \in A \cup B \), then \(f \) and \(g \) combine (or “paste”) to give a continuous function \(h : X \to Y \) defined by setting \(h(x) = f(x) \) if \(x \in A \) and \(h(x) = g(x) \) if \(x \in B \).

Proof. Let \(C \) be closed in \(Y \). Then \(h^{-1}(C) = f^{-1}(C) \cup g^{-1}(C) \). Since \(f \) is continuous by hypothesis then \(f^{-1}(C) \) is closed in \(A \), by Theorem 18.1 (the (1) \(\Rightarrow \) (3) part), and so \(f^{-1}(C) \) is closed in \(X \) since \(A \) is closed (that is, \(f^{-1}(C) = A \cap D \) for closed \(D \) in \(X \), so \(f^{-1}(C) \) is closed in \(X \)). Similarly, \(g^{-1}(C) \) is closed in \(B \) and in \(X \).
Theorem 18.3. The Pasting Lemma for Closed Sets.
Let $X = A \cup B$ where A and B are closed in X. Let $f : A \to Y$ and $g : B \to Y$ be continuous. If $f(x) = g(x)$ for all $x \in A \cup B$, then f and g combine (or “paste”) to give a continuous function $h : X \to Y$ defined by setting $h(x) = f(x)$ if $x \in A$ and $h(x) = g(x)$ if $x \in B$.

Proof. Let C be closed in Y. Then $h^{-1}(C) = f^{-1}(C) \cup g^{-1}(C)$. Since f is continuous by hypothesis then $f^{-1}(C)$ is closed in A, by Theorem 18.1 (the $(1) \Rightarrow (3)$ part), and so $f^{-1}(C)$ is closed in X since A is closed (that is, $f^{-1}(C) = A \cap D$ for closed D in X, so $f^{-1}(C)$ is closed in X).

Similarly, $g^{-1}(C)$ is closed in B and in X. Therefore $h^{-1}(C)$ is closed in X and so by Theorem 18.2 (the $(3) \Rightarrow (1)$ part) h is continuous.

\[\Box \]
Theorem 18.3. The Pasting Lemma for Closed Sets.

Let $X = A \cup B$ where A and B are closed in X. Let $f : A \to Y$ and $g : B \to Y$ be continuous. If $f(x) = g(x)$ for all $x \in A \cup B$, then f and g combine (or “paste”) to give a continuous function $h : X \to Y$ defined by setting $h(x) = f(x)$ if $x \in A$ and $h(x) = g(x)$ if $x \in B$.

Proof. Let C be closed in Y. Then $h^{-1}(C) = f^{-1}(C) \cup g^{-1}(C)$. Since f is continuous by hypothesis then $f^{-1}(C)$ is closed in A, by Theorem 18.1 (the $(1) \Rightarrow (3)$ part), and so $f^{-1}(C)$ is closed in X since A is closed (that is, $f^{-1}(C) = A \cap D$ for closed D in X, so $f^{-1}(C)$ is closed in X). Similarly, $g^{-1}(C)$ is closed in B and in X. Therefore $h^{-1}(C)$ is closed in X and so by Theorem 18.2 (the $(3) \Rightarrow (1)$ part) h is continuous. \qed
Theorem 18.4. Maps into Products.

Let \(f : A \to X \times Y \) be given by the equation \(f(a) = (f_1(a), f_2(a)) \) where \(f_1 : A \to X \) and \(f_2 : Y \to B \). Then \(f \) is continuous if and only if the functions \(f_1 \) and \(f_2 \) are continuous.

Proof. Let \(\pi_1 : X \times Y \to X \) and \(\pi_2 : X \times Y \to Y \). Then for \(U \) open in \(X \) and \(V \) open in \(Y \), we have \(\pi_1^{-1}(U) = U \times T \) and \(\pi_2^{-1}(V) = X \times V \) open in \(X \times Y \) (by the definition of product topology; these are basis elements for the product topology on \(X \times Y \)). So \(\pi_1 \) and \(\pi_2 \) are continuous.
Theorem 18.4. Maps into Products.

Let $f : A \rightarrow X \times Y$ be given by the equation $f(a) = (f_1(a), f_2(a))$ where $f_1 : A \rightarrow X$ and $f_2 : Y \rightarrow B$. Then f is continuous if and only if the functions f_1 and f_2 are continuous.

Proof. Let $\pi_1 : X \times Y \rightarrow X$ and $\pi_2 : X \times Y \rightarrow Y$. Then for U open in X and V open in Y, we have $\pi_1^{-1}(U) = U \times T$ and $\pi_2^{-1}(V) = X \times V$ open in $X \times Y$ (by the definition of product topology; these are basis elements for the product topology on $X \times Y$). So π_1 and π_2 are continuous. Note that for each $a \in A$, $\pi_1(f(a)) = \pi_1((f_1(a), f_2(a))) = f_1(a)$ and $\pi_2(f(a)) = \pi_2((f_1(a), f_2(a))) = f_2(a)$. So $f_1 = \pi_1 \circ f$ and $f_2 = \pi_2 \circ f$.
Theorem 18.4. Maps into Products.

Let \(f : A \to X \times Y \) be given by the equation \(f(a) = (f_1(a), f_2(a)) \) where \(f_1 : A \to X \) and \(f_2 : Y \to B \). Then \(f \) is continuous if and only if the functions \(f_1 \) and \(f_2 \) are continuous.

Proof. Let \(\pi_1 : X \times Y \to X \) and \(\pi_2 : X \times Y \to Y \). Then for \(U \) open in \(X \) and \(V \) open in \(Y \), we have \(\pi_1^{-1}(U) = U \times T \) and \(\pi_2^{-1}(V) = X \times V \) open in \(X \times Y \) (by the definition of product topology; these are basis elements for the product topology on \(X \times Y \)). So \(\pi_1 \) and \(\pi_2 \) are continuous. Note that for each \(a \in A \), \(\pi_1(f(a)) = \pi_1((f_1(a), f_2(a)) = f_1(a) \) and \(\pi_2(f(a)) = \pi_2((f_1(a), f_2(a)) = f_2(a) \). So \(f_1 = \pi_1 \circ f \) and \(f_2 = \pi_2 \circ f \).

Suppose \(f \) is continuous. Then, by Theorem 18.2 part (c), \(f_1 \) and \(f_2 \) are continuous.
Theorem 18.4. Maps into Products.
Let \(f : A \rightarrow X \times Y \) be given by the equation \(f(a) = (f_1(a), f_2(a)) \) where \(f_1 : A \rightarrow X \) and \(f_2 : Y \rightarrow B \). Then \(f \) is continuous if and only if the functions \(f_1 \) and \(f_2 \) are continuous.

Proof. Let \(\pi_1 : X \times Y \rightarrow X \) and \(\pi_2 : X \times Y \rightarrow Y \). Then for \(U \) open in \(X \) and \(V \) open in \(Y \), we have \(\pi_1^{-1}(U) = U \times T \) and \(\pi_2^{-1}(V) = X \times V \) open in \(X \times Y \) (by the definition of product topology; these are basis elements for the product topology on \(X \times Y \)). So \(\pi_1 \) and \(\pi_2 \) are continuous. Note that for each \(a \in A \), \(\pi_1(f(a)) = \pi_1((f_1(a), f_2(a)) = f_1(a) \) and \(\pi_2(f(a)) = \pi_2((f_1(a), f_2(a)) = f_2(a) \). So \(f_1 = \pi_1 \circ f \) and \(f_2 = \pi_2 \circ f \).

Suppose \(f \) is continuous. Then, by Theorem 18.2 part (c), \(f_1 \) and \(f_2 \) are continuous.
Theorem 18.4 (continued)

Theorem 18.4. Maps into Products.
Let \(f : A \to X \times Y \) be given by the equation \(f(a) = (f_1(a), f_2(a)) \) where \(f_1 : A \to X \) and \(f_2 : Y \to B \). Then \(f \) is continuous if and only if the functions \(f_1 \) and \(f_2 \) are continuous.

Proof (continued). Suppose \(f_1 \) and \(f_2 \) are continuous. Let \(U \times V \) be a basis element for the product topology of \(X \times Y \) (so \(U \) is open in \(X \) and \(V \) is open in \(Y \)).
Theorem 18.4 (continued)

Theorem 18.4. Maps into Products. Let \(f : A \to X \times Y \) be given by the equation \(f(a) = (f_1(a), f_2(a)) \) where \(f_1 : A \to X \) and \(f_2 : Y \to B \). Then \(f \) is continuous if and only if the functions \(f_1 \) and \(f_2 \) are continuous.

Proof (continued). Suppose \(f_1 \) and \(f_2 \) are continuous. Let \(U \times V \) be a basis element for the product topology of \(X \times Y \) (so \(U \) is open in \(X \) and \(V \) is open in \(Y \)). Now \(a \in f^{-1}(U \times V) \) if and only if \(f(a) \in U \times V \), or if and only if \(f_1(a) \in U \) and \(f_2(a) \in V \), or if and only if \(a \in f_1^{-1}(U) \cap f_2^{-1}(V) \). That is, \(f^{-1}(U \times V) = f_1^{-1}(U) \cap f_2^{-1}(V) \). Since \(f_1 \) and \(f_2 \) are continuous then \(f_1^{-1}(U) \) and \(f_2^{-1}(V) \) are open in \(X \) and so \(f^{-1}(U \times V) \) is open in \(X \).
Theorem 18.4. Maps into Products.
Let \(f : A \to X \times Y \) be given by the equation \(f(a) = (f_1(a), f_2(a)) \) where \(f_1 : A \to X \) and \(f_2 : Y \to B \). Then \(f \) is continuous if and only if the functions \(f_1 \) and \(f_2 \) are continuous.

Proof (continued). Suppose \(f_1 \) and \(f_2 \) are continuous. Let \(U \times V \) be a basis element for the product topology of \(X \times Y \) (so \(U \) is open in \(X \) and \(V \) is open in \(Y \)). Now \(a \in f^{-1}(U \times V) \) if and only if \(f(a) \in U \times V \), or if and only if \(f_1(a) \in U \) and \(f_2(a) \in V \), or if and only if \(a \in f_1^{-1}(U) \cap f_2^{-1}(V) \). That is, \(f^{-1}(U \times V) = f_1(U) \cap f_2^{-1}(V) \). Since \(f_1 \) and \(f_2 \) are continuous then \(f_1^{-1}(U) \) and \(f_2^{-1}(V) \) are open in \(X \) and so \(f^{-1}(U \times V) \) is open in \(X \). Since every open set in \(X \times Y \) can be written as a union of basis elements by Lemma 13.1, say \(\bigcup_{\alpha \in J} U_\alpha \times V_\alpha \), and \(f^{-1}(\bigcup_{\alpha \in J} U_\alpha \times V_\alpha) = \bigcup_{\alpha \in J} f^{-1}(U_\alpha \times V_\alpha) \), then the inverse image of any open set in \(X \times Y \) is open in \(A \). That is, \(f \) is continuous.
Theorem 18.4 (continued)

Theorem 18.4. Maps into Products. Let \(f : A \to X \times Y \) be given by the equation \(f(a) = (f_1(a), f_2(a)) \) where \(f_1 : A \to X \) and \(f_2 : Y \to B \). Then \(f \) is continuous if and only if the functions \(f_1 \) and \(f_2 \) are continuous.

Proof (continued). Suppose \(f_1 \) and \(f_2 \) are continuous. Let \(U \times V \) be a basis element for the product topology of \(X \times Y \) (so \(U \) is open in \(X \) and \(V \) is open in \(Y \)). Now \(a \in f^{-1}(U \times V) \) if and only if \(f(a) \in U \times V \), or if and only if \(f_1(a) \in U \) and \(f_2(a) \in V \), or if and only if \(a \in f_1^{-1}(U) \cap f_2^{-1}(V) \). That is, \(f^{-1}(U \times V) = f_1(U) \cap f_2^{-1}(V) \). Since \(f_1 \) and \(f_2 \) are continuous then \(f_1^{-1}(U) \) and \(f_2^{-1}(V) \) are open in \(X \) and so \(f^{-1}(U \times V) \) is open in \(A \). Since every open set in \(X \times Y \) can be written as a union of basis elements by Lemma 13.1, say \(\bigcup_{\alpha \in J} U_\alpha \times V_\alpha \), and \(f^{-1}(\bigcup_{\alpha \in J} U_\alpha \times V_\alpha) = \bigcup_{\alpha \in J} f^{-1}(U_\alpha \times V_\alpha) \), then the inverse image of any open set in \(X \times Y \) is open in \(A \). That is, \(f \) is continuous.