Chapter 2. Topological Spaces and Continuous Functions
Section 21. The Metric Topology (Continued)—Proofs of Theorems
Theorem 21.1

Theorem 21.1. Let $f : X \to Y$. Let X and Y be metrizable with metrics d_X and d_Y, respectively. Then continuity of f is equivalent to the requirement that given $x \in X$ and given $\varepsilon > 0$, there exists $\delta > 0$ such that

$$d_X(x, y) < \delta \implies d_Y(f(x), f(y)) < \varepsilon.$$

Proof. Suppose f is continuous. Let $x \in X$ and $\varepsilon > 0$ be given. Consider the set $f^{-1}(B(f(x), \varepsilon))$.

Theorem 21.1. Let $f : X \rightarrow Y$. Let X and Y be metrizable with metrics d_X and d_Y, respectively. Then continuity of f is equivalent to the requirement that given $x \in X$ and given $\varepsilon > 0$, there exists $\delta > 0$ such that

$$d_X(x, y) < \delta \implies d_Y(f(x), f(y)) < \varepsilon.$$

Proof. Suppose f is continuous. Let $x \in X$ and $\varepsilon > 0$ be given. Consider the set $f^{-1}(B(f(x), \varepsilon))$. Since f is continuous then by definition of continuity, $f^{-1}(B(f(x), \varepsilon))$ is open in X since $B(f(x), \varepsilon)$ is open and $dx \in f^{-1}(B(f(x), \varepsilon))$ then by Lemma 20.A there is $\delta > 0$ such that $B(x, \delta) \subset f^{-1}(B(f(x), \varepsilon))$.

Theorem 21.1. Let $f : X \rightarrow Y$. let X and Y be metrizable with metrics d_X and d_Y, respectively. Then continuity of f is equivalent to the requirement that given $x \in X$ and given $\varepsilon > 0$, there exists $\delta > 0$ such that

$$d_X(x, y) < \delta \implies d_Y(f(x), f(y)) < \varepsilon.$$

Proof. Suppose f is continuous. Let $x \in X$ and $\varepsilon > 0$ be given. Consider the set $f^{-1}(B(f(x), \varepsilon))$. Since f is continuous then by definition of continuity, $f^{-1}(B(f(x), \varepsilon))$ is open in X since $B(f(x), \varepsilon)$ is open and $x \in f^{-1}(B(f(x), \varepsilon))$ then by Lemma 20.A there is $\delta > 0$ such that $B(x, \delta) \subset f^{-1}(B(f(x), \varepsilon))$. Then $d_X(x, y) < \delta$ implies $y \in B(f(x), \delta)$, so $f(y) \in B(f(x), \varepsilon)$ and $d_Y(f(x), f(y)) < \varepsilon$.
Theorem 21.1. Let $f : X \to Y$. Let X and Y be metrizable with metrics d_X and d_Y, respectively. Then continuity of f is equivalent to the requirement that given $x \in X$ and given $\varepsilon > 0$, there exists $\delta > 0$ such that

$$d_X(x, y) < \delta \implies d_Y(f(x), f(y)) < \varepsilon.$$

Proof. Suppose f is continuous. Let $x \in X$ and $\varepsilon > 0$ be given. Consider the set $f^{-1}(B(f(x), \varepsilon))$. Since f is continuous then by definition of continuity, $f^{-1}(B(f(x), \varepsilon))$ is open in X since $B(f(x), \varepsilon)$ is open and $x \in f^{-1}(B(f(x), \varepsilon))$ then by Lemma 20.A there is $\delta > 0$ such that $B(x, \delta) \subset f^{-1}(B(f(x), \varepsilon))$. Then $d_X(x, y) < \delta$ implies $y \in B(f(x), \delta)$, so $f(y) \in B(f(x), \varepsilon)$ and $d_Y(f(x), f(y)) < \varepsilon$.

Theorem 21.1. Let $f : X \rightarrow Y$. Let X and Y be metrizable with metrics d_X and d_Y, respectively. Then continuity of f is equivalent to the requirement that given $x \in X$ and given $\varepsilon > 0$, there exists $\delta > 0$ such that

$$d_X(x, y) < \delta \Rightarrow d_Y(f(x), f(y)) < \varepsilon.$$

Proof (continued). Conversely suppose that the ε/δ condition is satisfied. Let V be an open set in Y. Let $x \in f^{-1}(V)$. Then $f(x) \in V$.

Theorem 21.1. Let \(f : X \rightarrow Y \). let \(X \) and \(Y \) be metrizable with metrics \(d_X \) and \(d_Y \), respectively. Then continuity of \(f \) is equivalent to the requirement that given \(x \in X \) and given \(\varepsilon > 0 \), there exists \(\delta > 0 \) such that

\[
d_X(x, y) < \delta \Rightarrow d_Y(f(x), f(y)) < \varepsilon.
\]

Proof (continued). Conversely suppose that the \(\varepsilon/\delta \) condition is satisfied. Let \(V \) be an open set in \(Y \). Let \(x \in f^{-1}(V) \). Then \(f(x) \in V \). Since \(V \) is open and \(df(x) \in V \) then by Lemma 20.B there is \(\varepsilon > 0 \) such that \(B(f(x), \varepsilon) \subset V \). By the \(\varepsilon/\delta \) hypothesis, there is \(\delta > 0 \) such that \(d_X(x, y) < \delta \) implies \(d_Y(f(x), f(y)) < \varepsilon \) (i.e., \(f(y) \in B(f(x), \varepsilon) \)).
Theorem 21.1 (continued)

Theorem 21.1. Let $f : X \to Y$. Let X and Y be metrizable with metrics d_X and d_Y, respectively. Then continuity of f is equivalent to the requirement that given $x \in X$ and given $\varepsilon > 0$, there exists $\delta > 0$ such that

$$d_X(x, y) < \delta \implies d_Y(f(x), f(y)) < \varepsilon.$$

Proof (continued). Conversely suppose that the ε/δ condition is satisfied. Let V be an open set in Y. Let $x \in f^{-1}(V)$. Then $f(x) \in V$. Since V is open and $df(x) \in V$ then by Lemma 20.B there is $\varepsilon > 0$ such that $B(f(x), \varepsilon) \subset V$. By the ε/δ hypothesis, there is $\delta > 0$ such that $d_X(x, y) < \delta$ implies $d_Y(f(x), f(y)) < \varepsilon$ (i.e., $f(y) \in B(f(x), \varepsilon)$). So $f(B(x, \delta)) \subset B(f(x), \varepsilon)$. So $x \in B(x, \delta) \subset f^{-1}(B(f(x), \varepsilon)) \subset V$. Therefore, by Lemma 20.B, $f^{-1}(V)$ is open and so f is continuous. \qed
Theorem 21.1. Let $f : X \to Y$. Let X and Y be metrizable with metrics d_X and d_Y, respectively. Then continuity of f is equivalent to the requirement that given $x \in X$ and given $\varepsilon > 0$, there exists $\delta > 0$ such that

$$d_X(x, y) < \delta \implies d_Y(f(x), f(y)) < \varepsilon.$$

Proof (continued). Conversely suppose that the ε/δ condition is satisfied. Let V be an open set in Y. Let $x \in f^{-1}(V)$. Then $f(x) \in V$. Since V is open and $df(x) \in V$ then by Lemma 20.B there is $\varepsilon > 0$ such that $B(f(x), \varepsilon) \subset V$. By the ε/δ hypothesis, there is $\delta > 0$ such that $d_X(x, y) < \delta$ implies $d_Y(f(x), f(y)) < \varepsilon$ (i.e., $f(y) \in B(f(x), \varepsilon)$). So $f(B(x, \delta)) \subset B(f(x), \varepsilon)$. So $x \in B(x, \delta) \subset f^{-1}(B(f(x), \varepsilon)) \subset V$. Therefore, by Lemma 20.B, $f^{-1}(V)$ is open and so f is continuous.
Lemma 21.2. The Sequence Lemma.
Let X be a topological space. Let $A \subset X$. If there is a sequence of points of A converging to x, then $x \in \overline{A}$. If X is metrizable and $x \in \overline{A}$ then there is a sequence $\{x_n\} \subset A$ such that $\{x_n\} \rightarrow x$.

Proof. Suppose that $\{x_n\} \rightarrow x$ where $\{x_n\} \subset A$. Then any given neighborhood U of x, there is, by the definition of limit of a sequence (see Section 17) $N \in \mathbb{N}$ such that $x_n \in U$ for all $n \geq N$.
Lemma 21.2. The Sequence Lemma.
Let X be a topological space. Let $A \subset X$. If there is a sequence of points of A converging to x, then $x \in \overline{A}$. If X is metrizable and $x \in \overline{A}$ then there is a sequence $\{x_n\} \subset A$ such that $\{x_n\} \to x$.

Proof. Suppose that $\{x_n\} \to x$ where $\{x_n\} \subset A$. Then any given neighborhood U of x, there is, by the definition of limit of a sequence (see Section 17) $N \in \mathbb{N}$ such that $x_n \in U$ for all $n \geq N$. So every neighborhood of x contains an element of the sequence and hence an element of set A. Then by Theorem 17.5 (part (a)), $x \in \overline{A}$.

Lemma 21.2. The Sequence Lemma.
Let X be a topological space. Let $A \subset X$. If there is a sequence of points of A converging to x, then $x \in \overline{A}$. If X is metrizable and $x \in \overline{A}$ then there is a sequence $\{x_n\} \subset A$ such that $\{x_n\} \to x$.

Proof. Suppose that $\{x_n\} \to x$ where $\{x_n\} \subset A$. Then any given neighborhood U of x, there is, by the definition of limit of a sequence (see Section 17) $N \in \mathbb{N}$ such that $x_n \in U$ for all $n \geq N$. So every neighborhood of x contains an element of the sequence and hence an element of set A. Then by Theorem 17.5 (part (a)), $x \in \overline{A}$.
Lemma 21.2. The Sequence Lemma.

Let X be a topological space. Let $A \subset X$. If there is a sequence of points of A converging to x, then $x \in \overline{A}$. If X is metrizable and $x \in \overline{A}$ then there is a sequence $\{x_n\} \subset A$ such that $\{x_n\} \to x$.

Proof (continued). Conversely, suppose that X is metrizable and $x \in \overline{A}$. Let d be a metric for the topology of X. For each $n \in \mathbb{N}$, consider $B_d(x, 1/n)$. This is an open set containing x and so by Theorem 17.5 (part (a)), $B(x, 1/n)$ contains an element of A, say x_n. Then consider the resulting sequence $\{x_n\}$.
Lemma 21.2. The Sequence Lemma.

Let X be a topological space. Let $A \subset X$. If there is a sequence of points of A converging to x, then $x \in \overline{A}$. If X is metrizable and $x \in \overline{A}$ then there is a sequence $\{x_n\} \subset A$ such that $\{x_n\} \to x$.

Proof (continued). Conversely, suppose that X is metrizable and $x \in \overline{A}$. Let d be a metric for the topology of X. For each $n \in \mathbb{N}$, consider $B_d(x, 1/n)$. This is an open set containing x and so by Theorem 17.5 (part (a)), $B(x, 1/n)$ contains an element of A, say x_n. Then consider the resulting sequence $\{x_n\}$. Any open set U which contains x contains, for some $\varepsilon > 0$, $B_d(x, \varepsilon)$, $B_d(x, \varepsilon) \subset U$, by Lemma 20.B. Since $\varepsilon > 0$, then for some $N \in \mathbb{N}$ we have $1/N < \varepsilon$.
Lemma 21.2. The Sequence Lemma.
Let X be a topological space. Let $A \subset X$. If there is a sequence of points of A converging to x, then $x \in \overline{A}$. If X is metrizable and $x \in \overline{A}$ then there is a sequence $\{x_n\} \subset A$ such that $\{x_n\} \to x$.

Proof (continued). Conversely, suppose that X is metrizable and $x \in \overline{A}$. Let d be a metric for the topology of X. For each $n \in \mathbb{N}$, consider $B_d(x, 1/n)$. This is an open set containing x and so by Theorem 17.5 (part (a)), $B(x, 1/n)$ contains an element of A, say x_n. Then consider the resulting sequence $\{x_n\}$. Any open set U which contains x contains, for some $\varepsilon > 0$, $B_d(x, \varepsilon)$, $B_d(x, \varepsilon) \subset U$, by Lemma 20.B. Since $\varepsilon > 0$, then for some $N \in \mathbb{N}$ we have $1/N < \varepsilon$. So by construction of the sequence, for all $n \geq N$ we have $s_n \in B(x, 1/n) \subset B(x, 1/N) \subset B(x, \varepsilon) \subset U$. So $\{x_n\} \to x$ by the definition of convergent sequence.
Lemma 21.2 (continued)

Lemma 21.2. The Sequence Lemma.
Let X be a topological space. Let $A \subset X$. If there is a sequence of points of A converging to x, then $x \in \overline{A}$. If X is metrizable and $x \in \overline{A}$ then there is a sequence $\{x_n\} \subset A$ such that $\{x_n\} \rightarrow x$.

Proof (continued). Conversely, suppose that X is metrizable and $x \in \overline{A}$. Let d be a metric for the topology of X. For each $n \in \mathbb{N}$, consider $B_d(x, 1/n)$. This is an open set containing x and so by Theorem 17.5 (part (a)), $B(x, 1/n)$ contains an element of A, say x_n. Then consider the resulting sequence $\{x_n\}$. Any open set U which contains x contains, for some $\varepsilon > 0$, $B_d(x, \varepsilon), B_d(x, \varepsilon) \subset U$, by Lemma 20.B. Since $\varepsilon > 0$, then for some $N \in \mathbb{N}$ we have $1/N < \varepsilon$. So by construction of the sequence, for all $n \geq N$ we have $s_n \in B(x, 1/n) \subset B(x, 1/N) \subset B(x, \varepsilon) \subset U$. So $\{x_n\} \rightarrow x$ by the definition of convergent sequence.
Theorem 21.3. Let $f : X \to Y$. If f is continuous then for every convergent sequence $\{x_n\} \to x$ in X, the sequence $\{f(x_n)\} \to f(x)$ in Y. If X is metrizable and for any sequence $\{x_n\} \to x$ in X we have $\{f(x_n)\} \to f(x)$ in Y, then f is continuous.

Proof. Suppose f is continuous and let $\{x_n\} \to x$ in X. Let V be a neighborhood of $f(x)$. Then $f^{-1}(V)$ is open and contains x.
Theorem 21.3. Let $f : X \to Y$. If f is continuous then for every convergent sequence $\{x_n\} \to x$ in X, the sequence $\{f(x_n)\} \to f(x)$ in Y. If X is metrizable and for any sequence $\{x_n\} \to x$ in X we have $\{f(x_n)\} \to f(x)$ in Y, then f is continuous.

Proof. Suppose f is continuous and let $\{x_n\} \to x$ in X. Let V be a neighborhood of $f(x)$. Then $f^{-1}(V)$ is open and contains x. Since $\{x_n\} \to x$, by the definition of convergent sequence (see Section 17), there is $N \in \mathbb{N}$ such that for all $n \geq N$ we have $x_n \in f^{-1}(V)$. Then $f(x_n) \in V$ for all $n \geq N$ and so (by definition again) $\{f(x_n)\} \to f(x)$.
Theorem 21.3. Let \(f : X \to Y \). If \(f \) is continuous then for every convergent sequence \(\{x_n\} \to x \) in \(X \), the sequence \(\{f(x_n)\} \to f(x) \) in \(Y \). If \(X \) is metrizable and for any sequence \(\{x_n\} \to x \) in \(X \) we have \(\{f(x_n)\} \to f(x) \) in \(Y \), then \(f \) is continuous.

Proof. Suppose \(f \) is continuous and let \(\{x_n\} \to x \) in \(X \). Let \(V \) be a neighborhood of \(f(x) \). Then \(f^{-1}(V) \) is open and contains \(x \). Since \(\{x_n\} \to x \), by the definition of convergent sequence (see Section 17), there is \(N \in \mathbb{N} \) such that for all \(n \geq N \) we have \(x_n \in f^{-1}(V) \). Then \(f(x_n) \in V \) for all \(n \geq N \) and so (by definition again) \(\{f(x_n)\} \to f(x) \).
Theorem 21.3 (continued)

Theorem 21.3. Let \(f : X \rightarrow Y \). If \(f \) is continuous then for every convergent sequence \(\{x_n\} \rightarrow x \) in \(X \), the sequence \(\{f(x_n)\} \rightarrow f(x) \) in \(Y \). If \(X \) is metrizable and for any sequence \(\{x_n\} \rightarrow x \) in \(X \) we have \(\{f(x_n)\} \rightarrow f(x) \) in \(Y \), then \(f \) is continuous.

Proof (continued). Conversely, suppose \(X \) is metrizable and suppose for any \(x \in X \) and any sequence \(\{x_n\} \rightarrow x \) in \(X \) we have \(\{f(x_n)\} \rightarrow f(x) \). Let \(A \subset X \). If \(x \in \overline{A} \) then there is a sequence \(\{x_n\} \subset A \) such that \(\{x_n\} \rightarrow x \) by Lemma 21.2 (part 2). By hypothesis, \(\{f(x_n)\} \rightarrow f(x) \). Since \(\{x_n\} \subset A \) then \(f(x_n) \in f(A) \) by Lemma 21.2 (part 1; notice that this does not require the metrizability of \(Y \)).
Theorem 21.3. Let \(f : X \rightarrow Y \). If \(f \) is continuous then for every convergent sequence \(\{x_n\} \rightarrow x \) in \(X \), the sequence \(\{f(x_n)\} \rightarrow f(x) \) in \(Y \). If \(X \) is metrizable and for any sequence \(\{x_n\} \rightarrow x \) in \(X \) we have \(\{f(x_n)\} \rightarrow f(x) \) in \(Y \), then \(f \) is continuous.

Proof (continued). Conversely, suppose \(X \) is metrizable and suppose for any \(x \in X \) and any sequence \(\{x_n\} \rightarrow x \) in \(X \) we have \(\{f(x_n)\} \rightarrow f(x) \). Let \(A \subset X \). If \(x \in \overline{A} \) then there is a sequence \(\{x_n\} \subset A \) such that \(\{x_n\} \rightarrow x \) by Lemma 21.2 (part 2). By hypothesis, \(\{f(x_n)\} \rightarrow f(x) \). Since \(\{x_n\} \subset A \) then \(f(x_n) \in \overline{f(A)} \) by Lemma 21.2 (part 1; notice that this does not require the metrizability of \(Y \)). Since \(x \in \overline{A} \) is arbitrary, then \(f(\overline{A}) \subset \overline{f(A)} \). Hence, by Theorem 18.1 (the \((2) \Rightarrow (1) \) part), \(f \) is continuous.
Theorem 21.3. Let $f : X \to Y$. If f is continuous then for every convergent sequence $\{x_n\} \to x$ in X, the sequence $\{f(x_n)\} \to f(x)$ in Y. If X is metrizable and for any sequence $\{x_n\} \to x$ in X we have $\{f(x_n)\} \to f(x)$ in Y, then f is continuous.

Proof (continued). Conversely, suppose X is metrizable and suppose for any $x \in X$ and any sequence $\{x_n\} \to x$ in X we have $\{f(x_n)\} \to f(x)$. Let $A \subset X$. If $x \in \overline{A}$ then there is a sequence $\{x_n\} \subset A$ such that $\{x_n\} \to x$ by Lemma 21.2 (part 2). By hypothesis, $\{f(x_n)\} \to f(x)$. Since $\{x_n\} \subset A$ then $f(x_n) \in \overline{f(A)}$ by Lemma 21.2 (part 1; notice that this does not require the metrizability of Y). Since $x \in \overline{A}$ is arbitrary, then $f(\overline{A}) \subset \overline{f(A)}$. Hence, by Theorem 18.1 (the $(2) \Rightarrow (1)$ part), f is continuous.
Theorem 21.5

Theorem 21.5. If X is a topological space and if $f, g : X \to \mathbb{R}$ are continuous, then $f + g$, $f - g$, and $f \cdot g$ are continuous. If $g(x) \neq 0$ for all $x \in X$ then f/g is continuous.

Proof. The map $h : X \to \mathbb{R} \times \mathbb{R}$ defined by $h(x) = (f(x), g(x))$ is continuous by Theorem 18.4 ("Maps Into Products"). The function $f + g$ equals the composition of h and the addition operation $+ : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$. Therefore $f + g$ is continuous by Theorem 18.2 part (c).
Theorem 21.5. If X is a topological space and if $f, g : X \to \mathbb{R}$ are continuous, then $f + g$, $f - g$, and $f \cdot g$ are continuous. If $g(x) \neq 0$ for all $x \in X$ then f/g is continuous.

Proof. The map $h : X \to \mathbb{R} \times \mathbb{R}$ defined by $h(x) = (f(x), g(x))$ is continuous by Theorem 18.4 (“Maps Into Products”). The function $f + g$ equals the composition of h and the addition operation $+: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$. Therefore $f + g$ is continuous by Theorem 18.2 part (c).

Similarly, $f - g$ is the composition of h and the subtraction operation $-: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$, $f \cdot g$ is the composition of h and the multiplication operation $\cdot: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$, and f/g is the composition of h and the division operation $\div: \mathbb{R} \times (\mathbb{R} \setminus \{0\}) \to \mathbb{R}$. So each of these is also continuous. □
Theorem 21.5

Theorem 21.5. If X is a topological space and if $f, g : X \to \mathbb{R}$ are continuous, then $f + g$, $f - g$, and $f \cdot g$ are continuous. If $g(x) \neq 0$ for all $x \in X$ then f/g is continuous.

Proof. The map $h : X \to \mathbb{R} \times \mathbb{R}$ defined by $h(x) = (f(x), g(x))$ is continuous by Theorem 18.4 (“Maps Into Products”). The function $f + g$ equals the composition of h and the addition operation $+ : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$. Therefore $f + g$ is continuous by Theorem 18.2 part (c).

Similarly, $f - g$ is the composition of h and the subtraction operation $- : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$, $f \cdot g$ is the composition of h and the multiplication operation $\cdot : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$, and f/g is the composition of h and the division operation $\div : \mathbb{R} \times (\mathbb{R} \setminus \{0\}) \to \mathbb{R}$. So each of these is also continuous. □
Theorem 21.6

Let $f_n : X \to Y$ be a sequence of continuous functions from the topological space X to the metric space Y. If $\{f_n\}$ converges uniformly to f, then f is continuous.

Proof. Let V be open in Y and let $x_0 \in f^{-1}(V)$.

Theorem 21.6.

Uniform Limit Theorem.

Let \(f_n : X \to Y \) be a sequence of continuous functions from the topological space \(X \) to the metric space \(Y \). If \(\{f_n\} \) converges uniformly to \(f \), then \(f \) is continuous.

Proof. Let \(V \) be open in \(Y \) and let \(x_0 \in f^{-1}(V) \). Let \(y_0 = f(x_0) \in V \) and choose \(\varepsilon > 0 \) such that \(B(y_0, \varepsilon) \subset V \) (by Lemma 20.B). Since \(\{f_n\} \) converges uniformly to \(f \) on \(X \) then there is \(N \in \mathbb{N} \) such that for all \(n \geq N \) and for all \(x \in X \) we have

\[
(f_n(x), f(x)) < \varepsilon/3. \tag{*}
\]

Let $f_n : X \to Y$ be a sequence of continuous functions from the topological space X to the metric space Y. If $\{f_n\}$ converges uniformly to f, then f is continuous.

Proof. Let V be open in Y and let $x_0 \in f^{-1}(V)$. Let $y_0 = f(x_0) \in V$ and choose $\varepsilon > 0$ such that $B(y_0, \varepsilon) \subset V$ (by Lemma 20.B). Since $\{f_n\}$ converges uniformly to f on X then there is $N \in \mathbb{N}$ such that for all $n \geq N$ and for all $x \in X$ we have

$$(f_n(x), f(x)) < \varepsilon/3. \tag{\ast}$$

Since f_N is continuous, there is a neighborhood U of x_0 such that

$$f_N(U) \subset B(f_N(x_0), \varepsilon/3) \tag{\ast\ast}$$

by Theorem 18.1 (the $(1) \implies (4)$ part where $B(f_N(x_0), \varepsilon/3)$ is treated as a neighborhood of $f(x_0)$).

Let $f_n : X \rightarrow Y$ be a sequence of continuous functions from the topological space X to the metric space Y. If $\{f_n\}$ converges uniformly to f, then f is continuous.

Proof. Let V be open in Y and let $x_0 \in f^{-1}(V)$. Let $y_0 = f(x_0) \in V$ and choose $\varepsilon > 0$ such that $B(y_0, \varepsilon) \subset V$ (by Lemma 20.B). Since $\{f_n\}$ converges uniformly to f on X then there is $N \in \mathbb{N}$ such that for all $n \geq N$ and for all $x \in X$ we have

$$ (f_n(x), f(x)) < \varepsilon/3. \quad (*) $$

Since f_N is continuous, there is a neighborhood U of x_0 such that

$$ f_N(U) \subset B(f_N(x_0), \varepsilon/3) \quad (**), $$

by Theorem 18.1 (the (1)\Rightarrow(4) part where $B(f_N(x_0), \varepsilon/3)$ is treated as a neighborhood of $f(x_0)$).
Proof (continued). Next, if \(x \in U \) then

\[
d(f(x), f_N(x)) < \varepsilon/3 \quad \text{by (\(\star \)) with } n = N
\]

\[
d(f_N(x), f_N(x_0)) < \varepsilon/3 \quad \text{by (\(\star\star \)) since } x \in U
\]

\[
d(f_N(x_0), f(x_0)) < \varepsilon/3 \quad \text{by (\(\star \)) with } n = N \text{ and } x = x_0.
\]

Then by the Triangle Inequality,

\[
d(f(x), f(x_0)) \leq d(f(x), f_N(x)) + d(f_N(x), f_N(x_0)) + d(f_N(x_0), f(x_0))
\]

\[
< \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon
\]

for all \(x \in U \).
Theorem 21.6 (continued)

Proof (continued). Next, if \(x \in U \) then

\[
d(f(x), f_N(x)) < \varepsilon/3 \text{ by } \ast \text{ with } n = N
\]

\[
d(f_N(x), f_N(x_0)) < \varepsilon/3 \text{ by } \ast \ast \text{ since } x \in U
\]

\[
d(f_N(x_0), f(x_0)) < \varepsilon/3 \text{ by } \ast \text{ with } n = N \text{ and } x = x_0.
\]

Then by the Triangle Inequality,

\[
d(f(x), f(x_0)) \leq d(f(x), f_N(x)) + d(f_N(x), f_N(x_0)) + d(f_N(x_0), f(x_0))
\]

\[
< \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon
\]

for all \(x \in U \). So \(U \) is a neighborhood of \(x_0 \) with \(f(U) \subset B(f(x_0), \varepsilon) \subset V \). So by Theorem 18.1 (the (4)⇒(1) part), \(f \) is continuous. \(\square \)
Theorem 21.6 (continued)

Proof (continued). Next, if \(x \in U \) then

\[
d(f(x), f_N(x)) < \frac{\varepsilon}{3} \text{ by (\ast) with } n = N
\]

\[
d(f_N(x), f_N(x_0)) < \frac{\varepsilon}{3} \text{ by (\ast\ast) since } x \in U
\]

\[
d(f_N(x_0), f(x_0)) < \frac{\varepsilon}{3} \text{ by (\ast) with } n = N \text{ and } x = x_0.
\]

Then by the Triangle Inequality,

\[
d(f(x), f(x_0)) \leq d(f(x), f_N(x)) + d(f_N(x), f_N(x_0)) + d(f_N(x_0), f(x_0))
\]

\[
< \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon
\]

for all \(x \in U \). So \(U \) is a neighborhood of \(x_0 \) with \(f(U) \subset B(f(x_0), \varepsilon) \subset V \). So by Theorem 18.1 (the (4)\(\Rightarrow \)(1) part), \(f \) is continuous. \(\square \)