Theorem 22.1

Similarly, saturated closed sets of \(\mathcal{A} \) to closed sets of \(\mathcal{A} \) and \(\lambda \) is continuous and maps saturated open sets to open sets of \(\mathcal{A} \).

Proof. Suppose \(d \) is a quotient map. Then \(d \) is continuous (since the

Lemma 22.2.4

Lemma 22.4 (continued)

\[d^{-1}(d^{-1}(n)) = (d^{-1}(n))^{-1} = n \]

Lemma 22.4

Chapter 2. Topological Spaces and Continuous Functions

Section 22. The Quotient Topology—Proofs of Theorems

Introduction to Topology
Theorem 2.2 (continued)

Proof. For each $y \in Y$, the set $\mathcal{A}_d = \{(x, y) \in X \times Y \mid d(x, y) \leq \epsilon\}$ is a one-point set in Z. Since Z is a quotient map, the composition is continuous.

If f is continuous, then the composition $d \circ f = g$ is continuous, by Definition.

Suppose g is continuous, then the composition $f = d \circ g$ is continuous, since d is continuous.

If f is continuous and only if g is continuous, then f is continuous if and only if g is continuous, since Z is open and hence f is continuous.

Thus f is continuous if and only if g is continuous.

Proof. Let d be a quotient map. Let $Z \leftarrow X \times Y$ be a map that is constant on each set \mathcal{A}_d.

Theorem 2.2. Let d be a quotient map. Let $Z \leftarrow X \times Y$ be a map that is constant on each set \mathcal{A}_d.

The proof of this theorem follows similar steps and reasoning as in the previous theorem.
The two given points of X. Hence X is Hausdorff. Suppose Z is Hausdorff. For distinct elements of X, their images under f are disjoint. Since f is continuous, f is a quotient map. Therefore, f is a quotient map. Since f is open, so f is a quotient map. Now f is a quotient map by definition (see the definition of "quotient topology". So the composition $g = f \circ d$ is a quotient map by definition of Y. Since f is open and Z is open, f maps open sets to open sets and since f is continuous, inverse images of open sets are open sets. Thus f is a homeomorphism. Therefore, X is Hausdorff.

Corollary 2.2.3 (continued)

X is Hausdorff, so $f(X)$ is Hausdorff. Let $Z : X \rightarrow f(X)$ be the projection map that carries each point in X to the element of $f(X)$. By Theorem 2.2.2, since f is a quotient map, Z is continuous.

Corollary 2.2.3

Let $\mathcal{T} \subseteq \mathcal{P}(Z)$ be the following collection of subsets of X: $\{Z \subseteq X \mid \{z\}_{T} = \emptyset \}$. Let $\mathcal{Y} = \{Z \subseteq X \mid \{z\}_{T} \neq \emptyset \}$.

Proof (continued) Suppose that f is a quotient map. Then, by the definition of quotient topology, f is a quotient map. Therefore, f is a quotient map. Since f is open, so f is a quotient map. Now f is a quotient map by definition (see the definition of "quotient topology". So the composition $g = f \circ d$ is a quotient map by definition of Y. Since f is open and Z is open, f maps open sets to open sets and since f is continuous, inverse images of open sets are open sets. Thus f is a homeomorphism. Therefore, X is Hausdorff.

Theorem 2.2.2 (continued)

Let $\mathcal{T} \subseteq \mathcal{P}(Z)$ be the following collection of subsets of X: $\{Z \subseteq X \mid \{z\}_{T} = \emptyset \}$. Let $\mathcal{Y} = \{Z \subseteq X \mid \{z\}_{T} \neq \emptyset \}$.

Proof (continued) Suppose that f is a quotient map. Then, by the definition of quotient topology, f is a quotient map. Therefore, f is a quotient map. Since f is open, so f is a quotient map. Now f is a quotient map by definition (see the definition of "quotient topology". So the composition $g = f \circ d$ is a quotient map by definition of Y. Since f is open and Z is open, f maps open sets to open sets and since f is continuous, inverse images of open sets are open sets. Thus f is a homeomorphism. Therefore, X is Hausdorff.