Chapter 2. Topological Spaces and Continuous Functions
Section 22. The Quotient Topology—Proofs of Theorems
Table of contents

1 Lemma 22.A
2 Theorem 22.1
3 Theorem 22.2
4 Corollary 22.3
Lemma 22.A. Let X and Y be topological spaces. Then $p : X \rightarrow Y$ is a quotient map if and only if p is continuous and maps saturated open sets of X to open sets of Y.

Proof. Suppose p is a quotient map. Then p is continuous (since the inverse image of every open set in Y has an open inverse image in X, by definition of quotient map). Also, for any open saturated set $U \subset X$, there is open $A \subset Y$ with $p^{-1}(A) = U$.
Lemma 22.A. Let X and Y be topological spaces. Then $p : X \to Y$ is a quotient map if and only if p is continuous and maps saturated open sets of X to open sets of Y.

Proof. Suppose p is a quotient map. Then p is continuous (since the inverse image of every open set in Y has an open inverse image in X, by definition of quotient map). Also, for any open saturated set $U \subset X$, there is open $A \subset Y$ with $p^{-1}(A) = U$. Since $U = p(A)$ is open in Y then (by definition of quotient map) A is open in X. So if p is a quotient map then p is continuous and maps saturated open sets of X to open sets of Y (and similarly, saturated closed sets of X to closed sets of Y).
Lemma 22.A. Let X and Y be topological spaces. Then $p : X \to Y$ is a quotient map if and only if p is continuous and maps saturated open sets of X to open sets of Y.

Proof. Suppose p is a quotient map. Then p is continuous (since the inverse image of every open set in Y has an open inverse image in X, by definition of quotient map). Also, for any open saturated set $U \subset X$, there is open $A \subset Y$ with $p^{-1}(A) = U$. Since $U = p(A)$ is open in Y then (by definition of quotient map) A is open in X. So if p is a quotient map then p is continuous and maps saturated open sets of X to open sets of Y (and similarly, saturated closed sets of X to closed sets of Y).
Lemma 22.A (continued)

Lemma 22.A. Let X and Y be topological spaces. Then $p : X \to Y$ is a quotient map if and only if p is continuous and maps saturated open sets of X to open sets of Y.

Proof (continued). Now suppose p is continuous and maps saturated open sets of X to open sets of Y. Since p is continuous, then for any open $U \subset Y$ we have $p^{-1}(U)$ open in X. Now suppose $p^{-1}(U)$ is open in X. Then, by the not above, $p^{-1}(U)$ is saturated since it is the inverse image of some set in Y (namely, U). Since $p^{-1}(U)$ is a saturated open set, we have hypothesized that $p(p^{-1}(U)) = U$ is open in Y.
Lemma 22.A (continued)

Lemma 22.A. Let X and Y be topological spaces. Then $p : X \to Y$ is a quotient map if and only if p is continuous and maps saturated open sets of X to open sets of Y.

Proof (continued). Now suppose p is continuous and maps saturated open sets of X to open sets of Y. Since p is continuous, then for any open $U \subset Y$ we have $p^{-1}(U)$ open in X. Now suppose $p^{-1}(U)$ is open in X. Then, by the not above, $p^{-1}(U)$ is saturated since it is the inverse image of some set in Y (namely, U). Since $p^{-1}(U)$ is a saturated open set, we have hypothesized that $p(p^{-1}(U)) = U$ is open in Y. So U is open in X if and only if $p^{-1}(U)$ is open in X. That is, p is a quotient map. □
Lemma 22.A. Let X and Y be topological spaces. Then $p : X \to Y$ is a quotient map if and only if p is continuous and maps saturated open sets of X to open sets of Y.

Proof (continued). Now suppose p is continuous and maps saturated open sets of X to open sets of Y. Since p is continuous, then for any open $U \subset Y$ we have $p^{-1}(U)$ open in X. Now suppose $p^{-1}(U)$ is open in X. Then, by the not above, $p^{-1}(U)$ is saturated since it is the inverse image of some set in Y (namely, U). Since $p^{-1}(U)$ is a saturated open set, we have hypothesized that $p(p^{-1}(U)) = U$ is open in Y. So U is open in X if and only if $p^{-1}(U)$ is open in X. That is, p is a quotient map. \qed
Theorem 22.1

Theorem 22.1. Let $p : X \rightarrow Y$ be a quotient map. Let A be a subspace of X that is saturated with respect to p. Let $q : A \rightarrow p(A)$ be the map obtained by restricting p to S, $q = p|_A$.

1. If A is either open or closed in X, then a is a quotient map.
2. If p is either an open or a closed map, then q is a quotient map.

Proof. **STEP 1.** Let $V \subset p(A)$. Then for each $v \in V$ there must be $a \in A$ such that $p(a) = v$. So $p^{-1}(\{v\}) \cap A$ includes a and so is nonempty.
Theorem 22.1

Theorem 22.1. Let \(p : X \to Y \) be a quotient map. Let \(A \) be a subspace of \(X \) that is saturated with respect to \(p \). Let \(q : A \to p(A) \) be the map obtained by restricting \(p \) to \(S \), \(q = p|_A \).

1. If \(A \) is either open or closed in \(X \), then \(a \) is a quotient map.
2. If \(p \) is either an open or a closed map, then \(q \) is a quotient map.

Proof. STEP 1. Let \(V \subset p(A) \). Then for each \(v \in V \) there must be \(a \in A \) such that \(p(a) = v \). So \(p^{-1}(\{v\}) \cap A \) includes \(a \) and so is nonempty. Since \(A \) is saturated with respect to \(p \), then \(p^{-1}(V) \subset A \). Since \(q = p|_A \) then \(q^{-1}(V) \) is all the points of \(A \) mapped by \(p \) into \(V \). That is,

\[
\text{if } V \subset p(A) \text{ then } q^{-1}(V) = p^{-1}(V).
\]
Theorem 22.1

Theorem 22.1. Let \(p : X \rightarrow Y \) be a quotient map. Let \(A \) be a subspace of \(X \) that is saturated with respect to \(p \). Let \(q : A \rightarrow p(A) \) be the map obtained by restricting \(p \) to \(S \), \(q = p|_A \).

1. If \(A \) is either open or closed in \(X \), then \(q \) is a quotient map.
2. If \(p \) is either an open or a closed map, then \(q \) is a quotient map.

Proof. **STEP 1.** Let \(V \subset p(A) \). Then for each \(v \in V \) there must be \(a \in A \) such that \(p(a) = v \). So \(p^{-1}(\{v\}) \cap A \) includes \(a \) and so is nonempty. Since \(A \) is saturated with respect to \(p \), then \(p^{-1}(V) \subset A \). Since \(q = p|_A \) then \(q^{-1}(V) \) is all the points of \(A \) mapped by \(p \) into \(V \). That is,

\[
\text{if } V \subset p(A) \text{ then } q^{-1}(V) = p^{-1}(V).
\]

For any subsets \(U \subset X \) and \(A \subset X \) we have \(p(U \cap A) \subset p(U) \cap p(A) \) since \(U \cap A \subset U \) and \(U \cap A \subset A \). Suppose \(y = p(u) = p(a) \in p(U) \cap p(A) \) for \(u \in U \) and \(a \in A \). Since \(A \) is saturated with respect to \(p \) and \(p^{-1}(p(a)) \) includes \(a \in A \) (and so \(p^{-1}(p(a)) \cap A \neq \emptyset \)), then \(p^{-1}(V) \subset A \).
Theorem 22.1

Theorem 22.1. Let \(p : X \to Y \) be a quotient map. Let \(A \) be a subspace of \(X \) that is saturated with respect to \(p \). Let \(q : A \to p(A) \) be the map obtained by restricting \(p \) to \(S, q = p|_A \).

1. If \(A \) is either open or closed in \(X \), then \(a \) is a quotient map.
2. If \(p \) is either an open or a closed map, then \(q \) is a quotient map.

Proof. **STEP 1.** Let \(V \subset p(A) \). Then for each \(v \in V \) there must be \(a \in A \) such that \(p(a) = v \). So \(p^{-1}(\{v\}) \cap A \) includes \(a \) and so is nonempty.

Since \(A \) is saturated with respect to \(p \), then \(p^{-1}(V) \subset A \). Since \(q = p|_A \) then \(q^{-1}(V) \) is all the points of \(A \) mapped by \(p \) into \(V \). That is,

\[
\text{if } V \subset p(A) \text{ then } q^{-1}(V) = p^{-1}(V).
\]

For any subsets \(U \subset X \) and \(A \subset X \) we have \(p(U \cap A) \subset p(U) \cap p(A) \) since \(U \cap A \subset U \) and \(U \cap A \subset A \). Suppose \(y = p(u) = p(a) \in p(U) \cap p(A) \) for \(u \in U \) and \(a \in A \). Since \(A \) is saturated with respect to \(p \) and \(p^{-1}(p(a)) \) includes \(a \in A \) (and so \(p^{-1}(p(a)) \cap A \neq \emptyset \)), then \(p^{-1}p(a) \subset A \).
Theorem 22.1 (continued 1)

Proof (continued). Since \(u \in p^{-1}(p(a)) \subset A \) then \(x \in U \cap A \). So \(y = p(u) \in p(U \cap A) \). So \(p(U) \cap p(A) \subset p(U \cap A) \). Therefore

\[
\text{if } U \subset X \text{ then } p(U \cap A) = p(U) \cap p(A).
\]
Theorem 22.1 (continued 1)

Proof (continued). Since $u \in p^{-1}(p(a)) \subset A$ then $x \in U \cap A$. So $y = p(u) \in p(U \cap A)$. So $p(U) \cap p(A) \subset p(U \cap A)$. Therefore

$$\text{if } U \subset X \text{ then } p(U \cap A) = p(U) \cap p(A).$$

STEP 2. Suppose set A is open in X. Let $V \subset p(A)$ where $q^{-1}(V)$ is open in A. Since $q^{-1}(V)$ is open in A and A is open in X, then $q^{-1}(V)$ is open in X. Since $q^{-1}(V) = p^{-1}(V)$ by Step 1, then $p^{-1}(V)$ is open in X. Since p is a quotient map then (by definition) V is open in Y. So V is open in $p(A)$.
Proof (continued). Since $u \in p^{-1}(p(a)) \subset A$ then $x \in U \cap A$. So $y = p(u) \in p(U \cap A)$. So $p(U) \cap p(A) \subset p(U \cap A)$. Therefore

$$\text{if } U \subset X \text{ then } p(U \cap A) = p(U) \cap p(A).$$

STEP 2. Suppose set A is open in X. Let $V \subset p(A)$ where $q^{-1}(V)$ is open in A. Since $q^{-1}(V)$ is open in A and A is open in X, then $q^{-1}(V)$ is open in X. Since $q^{-1}(V) = p^{-1}(V)$ by Step 1, then $p^{-1}(V)$ is open in X. Since p is a quotient map then (by definition) V is open in Y. So V is open in $p(A)$. So if $q^{-1}(V)$ is open in A then V is open in $p(A)$ (recall $q : A \rightarrow p(A)$). Since p is a quotient map, then it is continuous (inverse images of open sets are open) and q is a restriction of p, then q is continuous (restrictions of continuous functions are continuous by Theorem 18.2(d)). So inverse images of open sets are open under q. Therefore, $q : A \rightarrow p(A)$ and V is open in $p(A)$ if and only if $q^{-1}(V)$ is open in A.
Theorem 22.1 (continued 1)

Proof (continued). Since \(u \in p^{-1}(p(a)) \subset A \) then \(x \in U \cap A \). So \(y = p(u) \in p(U \cap A) \). So \(p(U) \cap p(A) \subset p(U \cap A) \). Therefore

\[
\text{if } U \subset X \text{ then } p(U \cap A) = p(U) \cap p(A).
\]

STEP 2. Suppose set \(A \) is open in \(X \). Let \(V \subset p(A) \) where \(q^{-1}(V) \) is open in \(A \). Since \(q^{-1}(V) \) is open in \(A \) and \(A \) is open in \(X \), then \(q^{-1}(V) \) is open in \(X \). Since \(q^{-1}(V) = p^{-1}(V) \) by Step 1, then \(p^{-1}(V) \) is open in \(X \). Since \(p \) is a quotient map then (by definition) \(V \) is open in \(Y \). So \(V \) is open in \(p(A) \). So if \(q^{-1}(V) \) is open in \(A \) then \(V \) is open in \(p(A) \) (recall \(q : A \rightarrow p(A) \)). Since \(p \) is a quotient map, then it is continuous (inverse images of open sets are open) and \(q \) is a restriction of \(p \), then \(q \) is continuous (restrictions of continuous functions are continuous by Theorem 18.2(d)). So inverse images of open sets are open under \(q \). Therefore, \(q : A \rightarrow p(A) \) and \(V \) is open in \(p(A) \) if and only if \(q^{-1}(V) \) is open in \(A \).
Theorem 22.1 (continued 2)

Proof (continued). Since $p : X \to Y$ is surjective (onto) and $q = p|_A$, then $q : A \to p(A)$ is surjective. That is, q is a quotient map, and (1) follows for A open.

Suppose map p is open. Let $A \subset p(A)$ where $q^{-1}(V)$ is open in A. Since $p^{-1}(V) = q^{-1}(V)$ by Step 1, then $p^{-1}(V)$ is open in A. That is, $p^{-1}(V) = A \cap U$ for some open set U in X.
Theorem 22.1 (continued 2)

Proof (continued). Since $p : X \to Y$ is surjective (onto) and $q = p|_A$, then $q : A \to p(A)$ is surjective. That is, q is a quotient map, and (1) follows for A open.

Suppose map p is open. Let $A \subset p(A)$ where $q^{-1}(V)$ is open in A. Since $p^{-1}(V) = q^{-1}(V)$ by Step 1, then $p^{-1}(V)$ is open in A. That is, $p^{-1}(V) = A \cap U$ for some open set U in X. Now $p(p^{-1}(V)) = V$ because p is onto (surjective). Then $V = p(p^{-1}(V)) = p(U \cap A) = p(U) \cap p(A)$ by Step 1. Since p is a quotient map and U is open in X then $p(U)$ is open in Y. Hence V is open in $p(A)$. As in the previous paragraph, this is sufficient to show that q is a quotient map and (2) follows for p an open map.
Theorem 22.1 (continued 2)

Proof (continued). Since $p : X \to Y$ is surjective (onto) and $q = p|_A$, then $q : A \to p(A)$ is surjective. That is, q is a quotient map, and (1) follows for A open.

Suppose map p is open. Let $A \subset p(A)$ where $q^{-1}(V)$ is open in A. Since $p^{-1}(V) = q^{-1}(V)$ by Step 1, then $p^{-1}(V)$ is open in A. That is, $p^{-1}(V) = A \cap U$ for some open set U in X. Now $p(p^{-1}(V)) = V$ because p is onto (surjective). Then $V = p(p^{-1}(V)) = p(U \cap A) = p(U) \cap p(A)$ by Step 1. Since p is a quotient map and U is open in X then $p(U)$ is open in Y. Hence V is open in $p(A)$. As in the previous paragraph, this is sufficient to show that q is a quotient map and (2) follows for p an open map.

STEP 3. The arguments in Step 2 follow through with “open” replace with “closed.” Therefore, (1) follows for set A closed and (2) follows for map p closed.
Theorem 22.1 (continued 2)

Proof (continued). Since \(p : X \to Y \) is surjective (onto) and \(q = p|_A \), then \(q : A \to p(A) \) is surjective. That is, \(q \) is a quotient map, and (1) follows for \(A \) open.

Suppose map \(p \) is open. Let \(A \subset p(A) \) where \(q^{-1}(V) \) is open in \(A \). Since \(p^{-1}(V) = q^{-1}(V) \) by Step 1, then \(p^{-1}(V) \) is open in \(A \). That is, \(p^{-1}(V) = A \cap U \) for some open set \(U \) in \(X \). Now \(p(p^{-1}(V)) = V \) because \(p \) is onto (surjective). Then \(V = p(p^{-1}(V)) = p(U \cap A) = p(U) \cap p(A) \) by Step 1. Since \(p \) is a quotient map and \(U \) is open in \(X \) then \(p(U) \) is open in \(Y \). Hence \(V \) is open in \(p(A) \). As in the previous paragraph, this is sufficient to show that \(q \) is a quotient map and (2) follows for \(p \) an open map.

STEP 3. The arguments in Step 2 follow through with “open” replace with “closed.” Therefore, (1) follows for set \(A \) closed and (2) follows for map \(p \) closed.
Theorem 22.2. Let $p : X \to Y$ be a quotient map. Let Z be a space and let $g : X \to Z$ be a map that is constant on each set $p^{-1}\{y\}$, for $y \in Y$. Then g induces a map $f : Y \to Z$ such that $f \circ p = g$. The induced map f is continuous if and only if g is continuous. f is a quotient map if and only if g is a quotient map.
Theorem 22.2 (continued 1)

Proof. For each $y \in Y$, the set $g(p^{-1}\{y\})$ is a one-point set in Z since g is constant on $p^{-1}\{y\}$. Define $f(y)$ to be this one point. Then $f : Y \to Z$ and for each $x \in W$ we have $f(p(x)) = g(x)$. So function f exists as claimed.
Theorem 22.2 (continued 1)

Proof. For each \(y \in Y \), the set \(g(p^{-1}(\{y\})) \) is a one-point set in \(Z \) since \(g \) is constant on \(p^{-1}(\{y\}) \). Define \(f(y) \) to be this one point. Then \(f : Y \to Z \) and for each \(x \in W \) we have \(f(p(x)) = g(x) \). So function \(f \) exists as claimed.

If \(f \) is continuous, then the composition \(g = f \circ p \) is continuous (since \(p \) is a quotient map and so by definition is continuous).
Theorem 22.2 (continued 1)

Proof. For each \(y \in Y \), the set \(g(p^{-1}(\{y\})) \) is a one-point set in \(Z \) since \(g \) is constant on \(p^{-1}(\{y\}) \). Define \(f(y) \) to be this one point. Then \(f : Y \to Z \) and for each \(x \in W \) we have \(f(p(x)) = g(x) \). So function \(f \) exists as claimed.

If \(f \) is continuous, then the composition \(g = f \circ p \) is continuous (since \(p \) is a quotient map and so by definition is continuous).

Suppose \(g \) is continuous. Let \(V \) be an open set in \(Z \). Then \(g^{-1}(V) \) is open in \(X \). But \(g^{-1}(V) = p^{-1}(f^{-1}(V)) \) by above.
Proof. For each \(y \in Y \), the set \(g(p^{-1}(\{y\})) \) is a one-point set in \(Z \) since \(g \) is constant on \(p^{-1}(\{y\}) \). Define \(f(y) \) to be this one point. Then \(f : Y \to Z \) and for each \(x \in W \) we have \(f(p(x)) = g(x) \). So function \(f \) exists as claimed.

If \(f \) is continuous, then the composition \(g = f \circ p \) is continuous (since \(p \) is a quotient map and so by definition is continuous).

Suppose \(g \) is continuous. Let \(V \) be an open set in \(Z \). Then \(g^{-1}(V) \) is open in \(X \). But \(g^{-1}(V) = p^{-1}(f^{-1}(V)) \) by above. Since \(p \) is a quotient map, \(p^{-1}(f^{-1}(V)) \) is open if and only if \(f^{-1}(V) \) is open and hence, since \(p^{-1}(f^{-1}(V)) \) is open, then \(f^{-1}(V) \) is open and so \(f \) is continuous. So \(f \) is continuous if and only if \(g \) is continuous.
Theorem 22.2 (continued 1)

Proof. For each \(y \in Y \), the set \(g(p^{-1}({y})) \) is a one-point set in \(Z \) since \(g \) is constant on \(p^{-1}({y}) \). Define \(f(y) \) to be this one point. Then \(f : Y \to Z \) and for each \(x \in W \) we have \(f(p(x)) = g(x) \). So function \(f \) exists as claimed.

If \(f \) is continuous, then the composition \(g = f \circ p \) is continuous (since \(p \) is a quotient map and so by definition is continuous).

Suppose \(g \) is continuous. Let \(V \) be an open set in \(Z \). Then \(g^{-1}(V) \) is open in \(X \). But \(g^{-1}(V) = p^{-1}(f^{-1}(V)) \) by above. Since \(p \) is a quotient map, \(p^{-1}(f^{-1}(V)) \) is open if and only if \(f^{-1}(V) \) is open and hence, since \(p^{-1}(f^{-1}(V)) \) is open, then \(f^{-1}(V) \) is open and so \(f \) is continuous. So \(f \) is continuous if and only if \(g \) is continuous.

Suppose \(f \) is a quotient map. Then \(g \) is the composite of two quotient maps and hence is a quotient map (see page 141 for details).
Proof. For each $y \in Y$, the set $g(p^{-1}(\{y\}))$ is a one-point set in Z since g is constant on $p^{-1}(\{y\})$. Define $f(y)$ to be this one point. Then $f : Y \to Z$ and for each $x \in W$ we have $f(p(x)) = g(x)$. So function f exists as claimed.

If f is continuous, then the composition $g = f \circ p$ is continuous (since p is a quotient map and so by definition is continuous).

Suppose g is continuous. Let V be an open set in Z. Then $g^{-1}(V)$ is open in X. But $g^{-1}(V) = p^{-1}(f^{-1}(V))$ by above. Since p is a quotient map, $p^{-1}(f^{-1}(V))$ is open if and only if $f^{-1}(V)$ is open and hence, since $p^{-1}(f^{-1}(V))$ is open, then $f^{-1}(V)$ is open and so f is continuous. So f is continuous if and only if g is continuous.

Suppose f is a quotient map. Then g is the composite of two quotient maps and hence is a quotient map (see page 141 for details).
Proof (continued). Suppose that g is a quotient map. Then, by the definition of quotient map, g is onto (surjective). Therefore f is surjective.

Let $V \subseteq Z$ and suppose $f^{-1}(V)$ is open in Y. Then $p^{-1}(f^{-1}(V))$ is open in X because p is continuous. Since $g^{-1}(V) = p^{-1}(f^{-1}(V))$, then $g^{-1}(V)$ is open. Since g is a quotient map, then V is open in Z.
Proof (continued). Suppose that g is a quotient map. Then, by the definition of quotient map, g is onto (surjective). Therefore f is surjective. Let $V \subset Z$ and suppose $f^{-1}(V)$ is open in Y. Then $p^{-1}(f^{-1}(V))$ is open in X because p is continuous. Since $g^{-1}(V) = p^{-1}(f^{-1}(V))$, then $g^{-1}(V)$ is open. Since g is a quotient map, then V is open in Z. So if $f^{-1}(V)$ is open then V is open. We have assumed that f is a quotient map, so g is continuous and by above, f is continuous. So if V is open in Z then $f^{-1}(V)$ is open in Y. Therefore, f is a quotient map. \[\Box\]
Theorem 22.2 (continued 2)

Proof (continued). Suppose that \(g \) is a quotient map. Then, by the definition of quotient map, \(g \) is onto (surjective). Therefore \(f \) is surjective. Let \(V \subset Z \) and suppose \(f^{-1}(V) \) is open in \(Y \). Then \(p^{-1}(f^{-1}(V)) \) is open in \(X \) because \(p \) is continuous. Since \(g^{-1}(V) = p^{-1}(f^{-1}(V)) \), then \(g^{-1}(V) \) is open. Since \(g \) is a quotient map, then \(V \) is open in \(Z \). So if \(f^{-1}(V) \) is open then \(V \) is open. We have assumed that \(f \) is a quotient map, so \(g \) is continuous and by above, \(f \) is continuous. So if \(V \) is open in \(Z \) then \(f^{-1}(V) \) is open in \(Y \). Therefore, \(f \) is a quotient map. \(\square \)
Corollary 22.3. Let \(g : X \to Z \) be a surjective continuous map. Let \(X^* \) be the following collection of subsets of \(X \): \(X^* = \{ g^{-1}\{z\} \mid z \in Z \} \). Let \(X^* \) have the quotient topology.

(a) The map \(g \) induces a bijective continuous map \(f : X^* \to Z \), which is a homeomorphism if and only if \(g \) is a quotient map.

(b) If \(Z \) is Hausdorff, so is \(X^* \).
Corollary 22.3 (continued 1)

Proof. Let \(p : X \to X^* \) be the projection map that carries each point in \(X \) to the element of \(X^* \) containing it. By Theorem 22.2, since \(g \) is hypothesized to be continuous, \(g \) induces a continuous map \(f : X^* \to Z \). As argued in the proof of Theorem 22.2, since \(f \circ p = g \) and \(g \) is surjective, then \(f \) is surjective. Suppose \(g^{-1}(\{z_1\}) = g^{-1}(\{z_2\}) \). Let \(x_1, x_2 \in X \) such that \(p(x_1) = g^{-1}(\{z_1\}) \) and \(p(x_2) = g^{-1}(\{z_2\}) \) (notice that projection \(p \) is onto \(X^* \)). So \(x_1 \in g^{-1}(\{z_1\}) \) and \(g^{-1}(\{z_2\}) \) must be disjoint (the \(g^{-1}(\{z\}) \)'s partition \(X \)). Hence \(z_1 \neq z_2 \) and \(x_1 \neq x_2 \) and so \(g(x_1) = z_1 \neq z_2 = g(x_2) \).
Proof. Let $p : X \rightarrow X^*$ be the projection map that carries each point in X to the element of X^* containing it. By Theorem 22.2, since g is hypothesized to be continuous, g induces a continuous map $f : X^* \rightarrow Z$. As argued in the proof of Theorem 22.2, since $f \circ p = g$ and g is surjective, then f is surjective. Suppose $g^{-1}(\{z_1\}) = g^{-1}(\{z_2\})$. Let $x_1, x_2 \in X$ such that $p(x_1) = g^{-1}(\{z_1\})$ and $p(x_2) = g^{-1}(\{z_2\})$ (notice that projection p is onto X^*). So $x_1 \in g^{-1}(\{z_1\})$ and $g^{-1}(\{z_2\})$ must be disjoint (the $g^{-1}(\{z\})$’s partition X). Hence $z_1 \neq z_2$ and $x_1 \neq x_2$ and so $g(x_1) = z_1 \neq z_2 = g(x_2)$. So $(f \circ p)(x_1) = f(g^{-1}(\{z_1\})) = g(x_1) = z_1$ and $(f \circ p)(x_2) = f(g^{-1}(\{z_2\})) = g(x_2) = z_2$. That is, $f(g^{-1}(\{z_1\})) \neq f(g^{-1}(\{z_2\}))$, and so f is one to one. So f is a bijection.
Proof. Let \(p : X \to X^* \) be the projection map that carries each point in \(X \) to the element of \(X^* \) containing it. By Theorem 22.2, since \(g \) is hypothesized to be continuous, \(g \) induces a continuous map \(f : X^* \to Z \). As argued in the proof of Theorem 22.2, since \(f \circ p = g \) and \(g \) is surjective, then \(f \) is surjective. Suppose \(g^{-1}(\{z_1\}) = g^{-1}(\{z_2\}) \). Let \(x_1, x_2 \in X \) such that \(p(x_1) = g^{-1}(\{z_1\}) \) and \(p(x_2) = g^{-1}(\{z_2\}) \) (notice that projection \(p \) is onto \(X^* \)). So \(x_1 \in g^{-1}(\{z_1\}) \) and \(g^{-1}(\{z_2\}) \) must be disjoint (the \(g^{-1}(\{z\}) \)'s partition \(X \)). Hence \(z_1 \neq z_2 \) and \(x_1 \neq x_2 \) and so \(g(x_1) = z_1 \neq z_2 = g(x_2) \). So \((f \circ p)(x_1) = f(g^{-1}(\{z_1\})) = g(x_1) = z_1 \) and \((f \circ p)(x_2) = f(g^{-1}(\{z_2\})) = g(x_2) = z_2 \). That is, \(f(g^{-1}(\{z_1\})) \neq f(g^{-1}(\{z_2\})) \), and so \(f \) is one to one. So \(f \) is a bijection.
Proof (continued). Suppose f is a homeomorphism. Then f maps open sets to open sets and since f is continuous, inverse images of open sets are open. So f is a quotient map. Now p is a quotient map by definition (see the definition of “quotient topology”). So the composition $g = f \circ p$ is a quotient map. Then by Theorem 22.2, f is a quotient map. Since f is bijective as argued above, then f is a homeomorphism. So (a) follows.
Corollary 22.3 (continued 2)

Proof (continued). Suppose f is a homeomorphism. Then f maps open sets to open sets and since f is continuous, inverse images of open sets are open. So f is a quotient map. Now p is a quotient map by definition (see the definition of “quotient topology”). So the composition $g = f \circ p$ is a quotient map. Then by Theorem 22.2, f is a quotient map. Since f is bijective as argued above, then f is a homeomorphism. So (a) follows.

Suppose Z is Hausdorff. For distinct elements of X^*, their images under f are distinct since f is one to one by (a). So in Z these images have disjoint neighborhoods U and V.
Corollary 22.3 (continued 2)

Proof (continued). Suppose f is a homeomorphism. Then f maps open sets to open sets and since f is continuous, inverse images of open sets are open. So f is a quotient map. Now p is a quotient map by definition (see the definition of “quotient topology”). So the composition $g = f \circ p$ is a quotient map. Then by Theorem 22.2, f is a quotient map. Since f is bijective as argued above, then f is a homeomorphism. So (a) follows.

Suppose Z is Hausdorff. For distinct elements of X^*, their images under f are distinct since f is one to one by (a). So in Z these images have disjoint neighborhoods U and V. Then $f^{-1}(U)$ and $f^{-1}(V)$ are disjoint (f is a bijection) and open (f is continuous by (a)) and are neighborhoods of the two given points of X^*. Hence X^* is Hausdorff. □
Corollary 22.3 (continued 2)

Proof (continued). Suppose f is a homeomorphism. Then f maps open sets to open sets and since f is continuous, inverse images of open sets are open. So f is a quotient map. Now p is a quotient map by definition (see the definition of “quotient topology”). So the composition $g = f \circ p$ is a quotient map. Then by Theorem 22.2, f is a quotient map. Since f is bijective as argued above, then f is a homeomorphism. So (a) follows.

Suppose Z is Hausdorff. For distinct elements of X^*, their images under f are distinct since f is one to one by (a). So in Z these images have disjoint neighborhoods U and V. Then $f^{-1}(U)$ and $f^{-1}(V)$ are disjoint (f is a bijection) and open (f is continuous by (a)) and are neighborhoods of the two given points of X^*. Hence X^* is Hausdorff.