Notice that intervals and rays are convex sets and so are connected. We have shown that if \(Y \) is a convex subset of \(\mathbb{R} \) then \(Y \) is connected.

Fact: If \(c \in (a, b) \) there is \(\delta > 0 \) such that \(c \in (a, c + \delta) \) and \(c \in (c - \delta, b) \). Therefore, \(\delta \) is an upper bound of \((a, b) \), \(c \in (a, b) \) is connected.

Proof: (continued)

Theorem 2.4.1. If \(L \) is a linear continuum in the order topology, then \(L \) is connected and so are intervals and rays in \(L \).

Theorem 2.4.1 (continued I)

Theorem 2.4.1 (continued II)

Proof: (continued)
Theorem 2.3. Intermediate Value Theorem

Let $f : X \rightarrow Y$ be a continuous map, where X is a connected space and Y is a
connected space from A and B is chosen from Y. But since X is
connected and f is continuous, then $f(A)$ is connected by Theorem 2.2.

Lemma 2.4. If spaces X is path connected, then it is connected.

PROOF. Let x be any path in X. Since f is continuous and $[x, y]$ is a continuous set in X, so by theorem 2.3, $f([x, y])$ is connected in X. So by Lemma 2.4, $f(A)$ is connected in X. Hence $f(A) = f([x, y])$ is connected in X. But since X is
connected, $f(A)$ is also connected.

Theorem 2.4. A space X is path connected if and only if for every $x \in X$ and $y \in X$, there exists a path $f : [x, y] \rightarrow X$.

Proof. Suppose X and Y are as hypothesized. The sets

$$f(x) \cup (x, y) = f(A) \cup (x, y)$$