Theorem 29.1 (continued I)

If X and Y are two spaces satisfying the following conditions:

1. X is a subspace of a single point.
2. The set $X \setminus \{p\}$ consists of a single point.
3. Y is a compact Hausdorff space.

Then X is a locally compact Hausdorff space.

Proof. We follow Munkres’ three-step proof (which, oddly enough, does not concern the numbered conditions of Λ).

Step 1. We first verify the homeomorphism claim. Let Λ and Y be spaces.

Corollary. For any $\lambda \in \Lambda$, $\Lambda \cap \{\lambda\}$ is open.

Proof follows from Theorem 29.1.

Section 29. Local Compactness and Compactness

Chapter 3. Connectedness and Compactness

Introduction to Topology
Theorem 2.9.2

Condition (3) holds.

Theorem 2.9.1 (continued 3)

Let \(A \subseteq Y \subseteq X \) and \(Y \) open in \(X \).

Theorem 2.9.1 (continued 4)

Let \(\mathcal{U} \) be a finite open cover of \(A \) by \(\mathcal{U} \) and \(Y \) is open in \(X \).

Proof (continued). Similarly, we have closure under unions.
Corollary 29.4

A space X is locally compact and Hausdorff if and only if X is open in compact Hausdorff space Y.

Since $\emptyset = Y \setminus X$, and thus is a closed set by Theorem 17.8, then X is open in Y.

Proof. By Theorem 29.1, X is locally compact and Hausdorff if and only if X is open in compact Hausdorff space Y.

Corollary 29.4.

X is locally compact if and only if X is open in compact Hausdorff space Y.

Proof. Suppose A is open in X. Let $x \in A$. Then $A = \Delta \cup C$.

Theorem 29.2 (continued). Then Δ is compact (again, by Theorem 29.2) and Λ, which can be done by compactness.

Corollary 29.3. Let X be locally compact and Hausdorff. Let A be a compact subspace of X. Then A is locally compact.

Theorem 29.2 (continued).

If A is compact and contains the neighborhood $V \cup A$ of x, then A is locally compact.

Proof. Suppose A is closed in X. Given $x \in A$, let C be a compact subspace of X. Then A is locally compact.

are points of closure of A. So $\Lambda \supseteq \Delta \cup C$ and thus is the desired set. Set Λ and $\Delta \subseteq \Lambda \cup C$, and thus $\Lambda \setminus \Delta \subseteq \Lambda \setminus C$.

Corollary 29.4. A space X is Hausdorff if and only if X is a subspace of a compact Hausdorff space Y.