Chapter 3. Connectedness and Compactness
Section 29. Local Compactness—Proofs of Theorems
Table of contents

1. Theorem 29.1
2. Theorem 29.2
3. Corollary 29.3
4. Corollary 29.4
Theorem 29.1. Let X be a topological space. Then X is a locally compact Hausdorff space if and only if there is a topological space Y satisfying the following conditions:

1. X is a subspace of Y.
2. The set $Y \setminus X$ consists of a single point.
3. Y is a compact Hausdorff space.

If Y and Y' are two spaces satisfying these conditions, then there is a homeomorphism of Y with Y' that equals the identity map on X.

Proof. We follow Munkres’ three-step proof (which oddly enough does not correspond to the numbered conditions of Y).
Theorem 29.1. Let X be a topological space. Then X is a locally compact Hausdorff space if and only if there is a topological space Y satisfying the following conditions:

1. X is a subspace of Y.
2. The set $Y \setminus X$ consists of a single point.
3. Y is a compact Hausdorff space.

If Y and Y' are two spaces satisfying these conditions, then there is a homeomorphism of Y with Y' that equals the identity map on X.

Proof. We follow Munkres’ three-step proof (which oddly enough does not correspond to the numbered conditions of Y).

Step 1. We first verify the homeomorphism claim. Let Y and Y' be spaces satisfying the three conditions. Define $Y \rightarrow Y'$ by letting h map the “single point” $p \in Y \setminus X$ to the “single point” $q \in Y' \setminus X$, and letting h equal the identity on X. Then h is a bijection (one to one and onto).
Theorem 29.1. Let X be a topological space. Then X is a locally compact Hausdorff space if and only if there is a topological space Y satisfying the following conditions:

1. X is a subspace of Y.
2. The set $Y \setminus X$ consists of a single point.
3. Y is a compact Hausdorff space.

If Y and Y' are two spaces satisfying these conditions, then there is a homeomorphism of Y with Y' that equals the identity map on X.

Proof. We follow Munkres’ three-step proof (which oddly enough does not correspond to the numbered conditions of Y).

Step 1. We first verify the homeomorphism claim. Let Y and Y' be spaces satisfying the three conditions. Define $Y \to Y'$ by letting h map the “single point” $p \in Y \setminus X$ to the “single point” $q \in Y' \setminus X$, and letting h equal the identity on X. Then h is a bijection (one to one and onto).
Proof (continued). Let U be an open set in Y. First, suppose $p \notin U$. Then $h(U) = U$ is open in X (under the subspace topology). Now X is open in Y' since $Y \setminus X$ is closed ($Y' \setminus X$ is a singleton, which forms a closed set, by Theorem 17.8, because Y is compact by (3)) and so U is open in Y'. Second, suppose $p \in U$. Since $C = Y \setminus U$ is closed in Y, then C is a compact subspace of Y, by Theorem 26.2, since Y is compact by (3). Since $C \subset X$, C is also compact in X. Since $X \subset Y'$, the space C is also a compact subspace of Y' (every open covering of C with sets open in Y' yields an open covering of C with sets open in X under the subspace topology—and hence finite subcovers). Since Y' is Hausdorff by (3), Theorem 26.3 implies that C is closed in Y', and so $Y' \setminus C$ is open. But $h(U) = U \cup \{q\} = (Y \setminus C) \cup \{q\} = Y' \setminus C$ and so $h(U)$ is open. In both cases, for any open U we have that $h(U)$ is open and so h^{-1} is continuous. Interchanging Y and Y' shows that h is continuous and therefore h is a homeomorphism.
Theorem 29.1 (continued 1)

Proof (continued). Let U be an open set in Y. First, suppose $p \notin U$. Then $h(U) = U$ is open in X (under the subspace topology). Now X is open in Y' since $Y \setminus X$ is closed ($Y' \setminus X$ is a singleton, which forms a closed set, by Theorem 17.8, because Y is compact by (3)) and so U is open in Y'. Second, suppose $p \in U$. Since $C = Y \setminus U$ is closed in Y, then C is a compact subspace of Y, by Theorem 26.2, since Y is compact by (3). Since $C \subset X$, C is also compact in X. Since $X \subset Y'$, the space C is also a compact subspace of Y' (every open covering of C with sets open in Y' yields an open covering of C with sets open in X under the subspace topology—and hence finite subcovers).
Theorem 29.1 (continued 1)

Proof (continued). Let U be an open set in Y. First, suppose $p \notin U$. Then $h(U) = U$ is open in X (under the subspace topology). Now X is open in Y' since $Y \setminus X$ is closed ($Y' \setminus X$ is a singleton, which forms a closed set, by Theorem 17.8, because Y is compact by (3)) and so U is open in Y'. Second, suppose $p \in U$. Since $C = Y \setminus U$ is closed in Y, then C is a compact subspace of Y, by Theorem 26.2, since Y is compact by (3). Since $C \subset X$, C is also compact in X. Since $X \subset Y'$, the space C is also a compact subspace of Y' (every open covering of C with sets open in Y' yields an open covering of C with sets open in X under the subspace topology—and hence finite subcovers). Since Y' is Hausdorff by (3), Theorem 26.3 implies that C is closed in Y', and so $Y' \setminus C$ is open. But $h(U) = U \cup \{q\} = (Y \setminus C) \cup \{q\} = Y' \setminus C$ and so $h(U)$ is open. In both cases, for any open U we have that $h(U)$ is open and so h^{-1} is continuous. Interchanging Y and Y' shows that h is continuous and therefore h is a homeomorphism.
Proof (continued). Let U be an open set in Y. First, suppose $p \notin U$. Then $h(U) = U$ is open in X (under the subspace topology). Now X is open in Y' since $Y \setminus X$ is closed ($Y' \setminus X$ is a singleton, which forms a closed set, by Theorem 17.8, because Y is compact by (3)) and so U is open in Y'. Second, suppose $p \in U$. Since $C = Y \setminus U$ is closed in Y, then C is a compact subspace of Y, by Theorem 26.2, since Y is compact by (3). Since $C \subset X$, C is also compact in X. Since $X \subset Y'$, the space C is also a compact subspace of Y' (every open covering of C with sets open in Y' yields an open covering of C with sets open in X under the subspace topology—and hence finite subcovers). Since Y' is Hausdorff by (3), Theorem 26.3 implies that C is closed in Y', and so $Y' \setminus C$ is open. But $h(U) = U \cup \{q\} = (Y \setminus C) \cup \{q\} = Y' \setminus C$ and so $h(U)$ is open. In both cases, for any open U we have that $h(U)$ is open and so h^{-1} is continuous. Interchanging Y and Y' shows that h is continuous and therefore h is a homeomorphism.
Proof (continued).

Step 2. Suppose X is locally compact and Hausdorff. We construct set Y by adding a single element to X, say $Y = X \cup \{\infty\}$. This gives condition (2). Define the collection of subsets of Y, $\mathcal{T} = \mathcal{T}_1 \cup \mathcal{T}_2$ where $\mathcal{T}_1 = \{U \subset X \mid U \text{ is open in } X\}$ and $\mathcal{T}_2 = \{Y \setminus C \mid C \subset X \text{ is compact in } X\}$.
Proof (continued).
Step 2. Suppose X is locally compact and Hausdorff. We construct set Y by adding a single element to X, say $Y = X \cup \{\infty\}$. This gives condition (2). Define the collection of subsets of Y, $\mathcal{T} = \mathcal{T}_1 \cup \mathcal{T}_2$ where $\mathcal{T}_1 = \{U \subset X \mid U \text{ is open in } X\}$ and $\mathcal{T}_2 = \{Y \setminus C \mid C \subset X \text{ is compact in } X\}$. We now show that \mathcal{T} is a topology on Y. Since \emptyset is open and compact in X, then $\emptyset, Y \in \mathcal{T}$. For closure of \mathcal{T} under intersections we consider three cases:

\begin{align*}
U_1 \cap U_2 & \in \mathcal{T}_1 \\
(Y \setminus C_1) \cap (Y \setminus C_2) = Y \setminus (C_1 \cup C_2) & \in \mathcal{T}_2 \\
U_1 \cap (Y \setminus C_1) = U_1 \cap (X \setminus C_1) & \in \mathcal{T}_1.
\end{align*}
Theorem 29.1 (continued 2)

Proof (continued).
Step 2. Suppose X is locally compact and Hausdorff. We construct set Y by adding a single element to X, say $Y = X \cup \{\infty\}$. This gives condition (2). Define the collection of subsets of Y, $\mathcal{T} = T_1 \cup T_2$ where

$T_1 = \{U \subset X \mid U \text{ is open in } X\}$ and

$T_2 = \{Y \setminus C \mid C \subset X \text{ is compact in } X\}$. We now show that \mathcal{T} is a topology on Y. Since \emptyset is open and compact in X, then $\emptyset, Y \in \mathcal{T}$. For closure of \mathcal{T} under intersections we consider three cases:

\[
U_1 \cap U_2 \in T_1
\]

\[
(Y \setminus C_1) \cap (Y \setminus C_2) = Y \setminus (C_1 \cup C_2) \in T_2
\]

\[
U_1 \cap (Y \setminus C_1) = U_1 \cap (X \setminus C_1) \in T_1.
\]
Theorem 29.1 (continued 3)

Proof (continued). Similarly, we have closure under unions:

\[\bigcup U_\alpha = U \in T_1 \]
\[\bigcup (Y \setminus C_\beta) = Y \setminus (\cap C_\beta) = V \setminus C \in T_2 \]
\[(\bigcup U_\alpha) \cup (\bigcup Y \setminus C_\beta) = U \cup (Y \setminus C) = T \setminus (C \setminus U) \in T_2. \]

Now we show that \(X \) is a subspace of \(Y \) (confirming condition (1)). Given any open set \(U \) of \(Y \), we need to show that \(X \cap U \) is open in \(X \). If \(U \in T_1 \) then \(U \cap X = U \); if \(U = Y \setminus C \in T_2 \) then \((Y \setminus C) \cap X = X \setminus C \in T_2 \).
Theorem 29.1 (continued 3)

Proof (continued). Similarly, we have closure under unions:

\[
\bigcup U_\alpha = U \in T_1
\]

\[
\bigcup (Y \setminus C_\beta) = Y \setminus \bigcap C_\beta = V \setminus C \in T_2
\]

\[
(\bigcup U_\alpha) \cup (\bigcup Y \setminus C_\beta) = U \cup (Y \setminus C) = T \setminus (C \setminus U) \in T_2.
\]

Now we show that X is a subspace of Y (confirming condition (1)). Given any open set U of Y, we need to show that $X \cap U$ is open in X. If $U \in T_1$ then $U \cap X = U$; if $U = Y \setminus C \in T_2$ then $(Y \setminus C) \cap X = X \setminus C \in T_2$.

Conversely, any open set in X is in T_1 and therefore is open in Y. So the topology on X is the same as the subspace topology on X as a subspace of Y. That is, X is a subspace of Y and condition (1) holds.
Proof (continued). Similarly, we have closure under unions:

\[\bigcup U_\alpha = U \in T_1 \]

\[\bigcup (Y \setminus C_\beta) = Y \setminus (\bigcap C_\beta) = V \setminus C \in T_2 \]

\[(\bigcup U_\alpha) \cup (\bigcup Y \setminus C_\beta) = U \cup (Y \setminus C) = T \setminus (C \setminus U) \in T_2. \]

Now we show that \(X \) is a subspace of \(Y \) (confirming condition (1)). Given any open set \(U \) of \(Y \), we need to show that \(X \cap U \) is open in \(X \). If \(U \in T_1 \) then \(U \cap X = U \); if \(U = Y \setminus C \in T_2 \) then \((Y \setminus C) \cap X = X \setminus C \in T_2 \).

Conversely, any open set in \(X \) is in \(T_1 \) and therefore is open in \(Y \). So the topology on \(X \) is the same as the subspace topology on \(X \) as a subspace of \(Y \). That is, \(X \) is a subspace of \(Y \) and condition (1) holds.
Theorem 29.1 (continued 4)

Proof (continued). Now we show that \(Y \) is compact. Let \(\mathcal{A} \) be an open covering of \(Y \). Since \(\infty \) must be in some element of \(\mathcal{A} \), then there is compact \(C \subset X \) such that \(Y \setminus C \in T_2 \) is in \(\mathcal{A} \). Since \(C \) is compact and \(\mathcal{A} \) is a covering of \(C \) then there is a finite subcover \(\mathcal{A}' \) of \(\mathcal{A} \) which covers \(C \).
Theorem 29.1 (continued 4)

Proof (continued). Now we show that Y is compact. Let A be an open covering of Y. Since ∞ must be in some element of A, then there is compact $C \subset X$ such that $Y \setminus C \in T_2$ is in A. Since C is compact and A is a covering of C then there is a finite subcover A' of A which covers C. Then $A' \cup \{Y \setminus C\}$ is a finite cover of C. Then $A' \cup \{Y \setminus C\}$ is a finite cover of Y. Hence Y is compact.
Proof (continued). Now we show that Y is compact. Let A be an open covering of Y. Since ∞ must be in some element of A, then there is compact $C \subset X$ such that $Y \setminus C \in T_2$ is in A. Since C is compact and A is a covering of C then there is a finite subcover A' of A which covers C. Then $A' \cup \{Y \setminus C\}$ is a finite cover of C. Then $A' \cup \{Y \setminus C\}$ is a finite cover of Y. Hence Y is compact.

Next, we show that Y is Hausdorff. Let $x, y \in Y$ with $x \neq y$.
Theorem 29.1 (continued 4)

Proof (continued). Now we show that \(Y \) is compact. Let \(\mathcal{A} \) be an open covering of \(Y \). Since \(\infty \) must be in some element of \(\mathcal{A} \), then there is compact \(C \subset X \) such that \(Y \setminus C \in T_2 \) is in \(\mathcal{A} \). Since \(C \) is compact and \(\mathcal{A} \) is a covering of \(C \) then there is a finite subcover \(\mathcal{A}' \) of \(\mathcal{A} \) which covers \(C \). Then \(\mathcal{A}' \cup \{ Y \setminus C \} \) is a finite cover of \(C \). Then \(\mathcal{A}' \cup \{ Y \setminus C \} \) is a finite cover of \(Y \). Hence \(Y \) is compact.

Next, we show that \(Y \) is Hausdorff. Let \(x, y \in Y \) with \(x \neq y \). If \(x \) and \(y \) are both in \(X \), then there are disjoint open sets \(U \) and \(V \) in \(X \) containing \(x \) and \(y \), respectively, since \(X \) is Hausdorff. If \(x \in X \) and \(y = \infty \) then, since \(X \) is hypothesized to be locally compact, there is compact \(C \) in \(X \) containing neighborhood \(U \) of \(x \).
Theorem 29.1 (continued 4)

Proof (continued). Now we show that Y is compact. Let \mathcal{A} be an open covering of Y. Since ∞ must be in some element of \mathcal{A}, then there is compact $C \subset X$ such that $Y \setminus C \in T_2$ is in \mathcal{A}. Since C is compact and \mathcal{A} is a covering of C then there is a finite subcover \mathcal{A}' of \mathcal{A} which covers C. Then $\mathcal{A}' \cup \{Y \setminus C\}$ is a finite cover of C. Then $\mathcal{A}' \cup \{Y \setminus C\}$ is a finite cover of Y. Hence Y is compact.

Next, we show that Y is Hausdorff. Let $x, y \in Y$ with $x \neq y$. If x and y are both in X, then there are disjoint open sets U and V in X containing x and y, respectively, since X is Hausdorff. If $x \in X$ and $y = \infty$ then, since X is hypothesized to be locally compact, there is compact C in X containing neighborhood U of x. Then U and $Y \setminus C$ are disjoint open sets containing x and $y = \infty$, respectively. So Y is Hausdorff. Hence, condition (3) holds.
Theorem 29.1 (continued 4)

Proof (continued). Now we show that Y is compact. Let \mathcal{A} be an open covering of Y. Since ∞ must be in some element of \mathcal{A}, then there is compact $C \subset X$ such that $Y \setminus C \in T_2$ is in \mathcal{A}. Since C is compact and \mathcal{A} is a covering of C then there is a finite subcover \mathcal{A}' of \mathcal{A} which covers C. Then $\mathcal{A}' \cup \{Y \setminus C\}$ is a finite cover of C. Then $\mathcal{A}' \cup \{Y \setminus C\}$ is a finite cover of Y. Hence Y is compact.

Next, we show that Y is Hausdorff. Let $x, y \in Y$ with $x \neq y$. If x and y are both in X, then there are disjoint open sets U and V in X containing x and y, respectively, since X is Hausdorff. If $x \in X$ and $y = \infty$ then, since X is hypothesized to be locally compact, there is compact C in X containing neighborhood U of x. Then U and $Y \setminus C$ are disjoint open sets containing x and $y = \infty$, respectively. So Y is Hausdorff. Hence, condition (3) holds.
Theorem 29.1 (continued 5)

Proof (continued).
Step 3. We now show the converse. Suppose Y satisfies conditions (1), (2), and (3). Then X is Hausdorff because it is a subspace of Y (and it has the subspace topology). Let $x \in X$ be given. Since Y is Hausdorff, there are disjoint open sets U and V in Y containing ∞ and the single point of $Y \setminus X = \{\infty\}$, respectively.
Proof (continued).

Step 3. We now show the converse. Suppose Y satisfies conditions (1), (2), and (3). Then X is Hausdorff because it is a subspace of Y (and it has the subspace topology). Let $x \in X$ be given. Since Y is Hausdorff, there are disjoint open sets U and V in Y containing ∞ and the single point of $Y \setminus X = \{\infty\}$, respectively. The set $C = Y \setminus V$ is closed in Y and so is compact since Y is compact (by Theorem 26.2). Since $\infty \in V$ then $\infty \notin C = Y \setminus V$ and so $C \subset X$ is also compact in X (since X has the subspace topology by (1)). Also, C contains neighborhood U of x, and so X is locally compact.
Theorem 29.1 (continued 5)

Proof (continued).

Step 3. We now show the converse. Suppose Y satisfies conditions (1), (2), and (3). Then X is Hausdorff because it is a subspace of Y (and it has the subspace topology). Let $x \in X$ be given. Since Y is Hausdorff, there are disjoint open sets U and V in Y containing ∞ and the single point of $Y \setminus X = \{\infty\}$, respectively. The set $C = Y \setminus V$ is closed in Y and so is compact since Y is compact (by Theorem 26.2). Since $\infty \in V$ then $\infty \notin C = Y \setminus V$ and so $C \subset X$ is also compact in X (since X has the subspace topology by (1). Also, C contains neighborhood U of x, and so X is locally compact. □
Theorem 29.2

Theorem 29.2. Let X be a Hausdorff space. Then X is locally compact if and only if given $x \in X$, and given a neighborhood U of x, there is a neighborhood V of x such that \overline{V} is compact and $\overline{V} \subset U$.

Proof. If X satisfies this condition, then certainly there is a compact subspace of X (namely \overline{V}) containing a neighborhood V of x; that is, the condition implies locally compact.
Theorem 29.2. Let X be a Hausdorff space. Then X is locally compact if and only if given $x \in X$, and given a neighborhood U of x, there is a neighborhood V of x such that \overline{V} is compact and $\overline{V} \subset U$.

Proof. If X satisfies this condition, then certainly there is a compact subspace of X (namely \overline{V}) containing a neighborhood V of x; that is, the condition implies locally compact.

Conversely, suppose X is locally compact and let $x \in X$ with U a neighborhood of x. Since S is locally compact, by Theorem 29.1 there is a space Y, the one-point compactification of X. Let $C = Y \setminus U$. Since U is open in X then U is open in Y (in the proof of Theorem 29.1, all sets open in X are open in Y) and so C is closed in Y.
Theorem 29.2. Let X be a Hausdorff space. Then X is locally compact if and only if given $x \in X$, and given a neighborhood U of x, there is a neighborhood V of x such that \overline{V} is compact and $\overline{V} \subset U$.

Proof. If X satisfies this condition, then certainly there is a compact subspace of X (namely \overline{V}) containing a neighborhood V of x; that is, the condition implies locally compact.

Conversely, suppose X is locally compact and let $x \in X$ with U a neighborhood of x. Since S is locally compact, by Theorem 29.1 there is a space Y, the one-point compactification of X. Let $C = Y \setminus U$. Since U is open in X then U is open in Y (in the proof of Theorem 29.1, all sets open in X are open in Y) and so C is closed in Y. Since Y is compact, then by Theorem 26.2, C is compact in Y. By Lemma 26.4 there are disjoint open sets V and W containing x and C, respectively.
Theorem 29.2

Theorem 29.2. Let X be a Hausdorff space. Then X is locally compact if and only if given $x \in X$, and given a neighborhood U of x, there is a neighborhood V of x such that \overline{V} is compact and $\overline{V} \subset U$.

Proof. If X satisfies this condition, then certainly there is a compact subspace of X (namely \overline{V}) containing a neighborhood V of x; that is, the condition implies locally compact.

Conversely, suppose X is locally compact and let $x \in X$ with U a neighborhood of x. Since S is locally compact, by Theorem 29.1 there is a space Y, the one-point compactification of X. Let $C = Y \setminus U$. Since U is open in X then U is open in Y (in the proof of Theorem 29.1, all sets open in X are open in Y) and so C is closed in Y. Since Y is compact, then by Theorem 26.2, C is compact in Y. By Lemma 26.4 there are disjoint open sets V and W containing x and C, respectively.
Theorem 29.2. Let X be a Hausdorff space. Then X is locally compact if and only if given $x \in X$, and given a neighborhood U of x, there is a neighborhood V of x such that \overline{V} is compact and $\overline{V} \subset U$.

Proof (continued). Then \overline{V} is compact (again, by Theorem 26.2) and \overline{V} is disjoint from C since $\overline{V} = V \cup V'$ where V' is the set of limit point of set V, and since $x \in V$, $C \subset W$, and $V \cap W = \emptyset$, then no points of C are points of closure of V. So $\overline{V} \subset T \setminus C = U$ is the desired set.
Corollary 29.3.

Let X be locally compact and Hausdorff. Let A be a subspace of X. If A is closed in X or open in X, then A is locally compact.

Proof. Suppose A is closed in X. Given $x \in A$, let C be a compact subspace of X containing neighborhood U of $x \in X$ (which can be done since X is locally compact).
Corollary 29.3. Let X be locally compact and Hausdorff. Let A be a subspace of X. If A is closed in X or open in X, then A is locally compact.

Proof. Suppose A is closed in X. Given $x \in A$, let C be a compact subspace of X containing neighborhood U of $x \in X$ (which can be done since X is locally compact). Then $C \cap A$ is closed in C and thus (by Theorem 26.2) compact and it contains the neighborhood $U \cap A$ of $x \in A$. That is, A is locally compact.
Corollary 29.3

Corollary 29.3. Let X be locally compact and Hausdorff. Let A be a subspace of X. If A is closed in X or open in X, then A is locally compact.

Proof. Suppose A is closed in X. Given $x \in A$, let C be a compact subspace of X containing neighborhood U of $x \in X$ (which can be done since X is locally compact). Then $C \cap A$ is closed in C and thus (by Theorem 26.2) compact and it contains the neighborhood $U \cap A$ of $x \in A$. That is, A is locally compact.

Suppose A is open in X. Let $x \in A$. By Theorem 29.2, there is a neighborhood V of x such that \overline{V} is compact and $\overline{V} \subset A$.
Corollary 29.3

Corollary 29.3. Let X be locally compact and Hausdorff. Let A be a subspace of X. If A is closed in X or open in X, then A is locally compact.

Proof. Suppose A is closed in X. Given $x \in A$, let C be a compact subspace of X containing neighborhood U of $x \in X$ (which can be done since X is locally compact). Then $C \cap A$ is closed in C and thus (by Theorem 26.2) compact and it contains the neighborhood $U \cap A$ of $x \in A$. That is, A is locally compact.

Suppose A is open in X. Let $x \in A$. By Theorem 29.2, there is a neighborhood V of x such that \overline{V} is compact and $\overline{V} \subset A$. Then $C = \overline{V}$ is a compact subspace of A containing the neighborhood V of $x \in A$. That is, A is locally compact.

\qed
Corollary 29.3. Let X be locally compact and Hausdorff. Let A be a subspace of X. If A is closed in X or open in X, then A is locally compact.

Proof. Suppose A is closed in X. Given $x \in A$, let C be a compact subspace of X containing neighborhood U of $x \in X$ (which can be done since X is locally compact). Then $C \cap A$ is closed in C and thus (by Theorem 26.2) compact and it contains the neighborhood $U \cap A$ of $x \in A$. That is, A is locally compact.

Suppose A is open in X. Let $x \in A$. By Theorem 29.2, there is a neighborhood V of x such that \overline{V} is compact and $\overline{V} \subset A$. Then $C = \overline{V}$ is a compact subspace of A containing the neighborhood V of $x \in A$. That is, A is locally compact.
Corollary 29.4 A space X is homeomorphic to an open subspace of a compact Hausdorff space if and only if X is locally compact and Hausdorff.

Proof. By Theorem 29.1, X is locally compact and Hausdorff if and only if it has a one-point compactification Y, which is compact and Hausdorff.
Corollary 29.4 A space X is homeomorphic to an open subspace of a compact Hausdorff space if and only if X is locally compact and Hausdorff.

Proof. By Theorem 29.1, X is locally compact and Hausdorff if and only if it has a one-point compactification Y, which is compact and Hausdorff. Since $Y \setminus X = \{\infty\}$ and this is a closed set by Theorem 17.8, then X is open in compact Hausdorff space Y.

Corollary 29.4 A space X is homeomorphic to an open subspace of a compact Hausdorff space if and only if X is locally compact and Hausdorff.

Proof. By Theorem 29.1, X is locally compact and Hausdorff if and only if it has a one-point compactification Y, which is compact and Hausdorff. Since $Y \setminus X = \{\infty\}$ and this is a closed set by Theorem 17.8, then X is open in compact Hausdorff space Y. □