Theorem 3.2.1. Every regular space with a countable basis is normal.

Proof. Let A and B be disjoint closed sets in X. Since X is regular, there is a basis element A' of A containing x, for which $x \notin B$. Similarly, there is a basis element B' of B containing y, for which $y \notin A$. Then $A' \cap B'$ is empty.

Let $d(A')$ and $d(B')$ be disjoint open sets with $A' \subset d(A')$ and $B' \subset d(B')$. Then $X \setminus (d(A') \cup d(B'))$ is open and $d(A') \cup d(B') \supseteq X \setminus (d(A') \cup d(B'))$, so $X \setminus (d(A') \cup d(B')) = X \setminus d(A') \cap X \setminus d(B')$ is open.

Now, $A' \cup B'$ is closed, so $X \setminus (A' \cup B')$ is open. Since $A' \cup B' \subset X \setminus (d(A') \cup d(B'))$, we have $A \subset X \setminus (A' \cup B')$ and $B \subset X \setminus (d(A') \cup d(B'))$. This shows that A and B are separated.

Theorem 3.2.2. Every metrizable space is normal.

Proof. Let A and B be disjoint closed sets in X. Since X is normal, there is an open set U containing A and an open set V containing B such that $U \cap V = \emptyset$. Then U and V are disjoint open sets with $A \subset U$ and $B \subset V$. Setting $W = X \setminus (U \cup V)$, we have W open and $A \subset W$ and $B \subset W$. Thus A and B are separated.

Section 3.2. Normal Spaces—Proofs of Theorems

Chapter 4. Compactness and Separation Axioms

Introduction to Topology
Theorem 3.2.4 (continued)

Theorem 3.2.4

Proof (continued). Every well-ordered set X is normal in the order topology.

}\hfill\Box

\[B \subseteq \bigcup_{\alpha \in \beta} A_{\alpha} \subseteq \bigcup_{\alpha \in \beta} V_{\alpha} = U \]

\[\text{exists (a) disjoint open sets with } A \cap B = \emptyset. \]

\[\text{Therefore, } X \text{ is normal.} \]

\[\text{Similary, if } \epsilon < \delta \text{ then } \epsilon \notin \delta(\epsilon) \text{ and } \epsilon \notin \delta(\epsilon). \]

\[\text{Similarily, if } \epsilon < \delta \text{ then } \epsilon \notin \delta(\epsilon) \text{ and } \epsilon \notin \delta(\epsilon). \]

\[\text{Therefore, } X \text{ is normal.} \]

\[\text{Similary, if } \epsilon < \delta \text{ then } \epsilon \notin \delta(\epsilon) \text{ and } \epsilon \notin \delta(\epsilon). \]
Hence, X is normal. Condition is satisfied when one of A or B contains the smallest element of X.

Disjoint open sets containing A and B respectively. So the normality condition is satisfied when $A \cap B = \emptyset$ and $A \cup B = X$. The smallest element of A is contained in X. The smallest element of A is contained in X. The smallest element of A is contained in X. The smallest element of A is contained in X.

Finally, suppose A and B are disjoint closed sets in X where A contains the smallest element of X and B contains the smallest element of X.

Proof (continued). So the normality condition is satisfied when neither (closed) nor B contains the smallest element of X.

Theorem 3.2.4. Every well-ordered set X is normal in the order topology.