Introduction to Topology

Chapter 4. Countability and Separation Axioms
Section 32. Normal Spaces—Proofs of Theorems
<table>
<thead>
<tr>
<th></th>
<th>Theorem 32.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Theorem 32.2</td>
</tr>
<tr>
<td>3</td>
<td>Theorem 32.3</td>
</tr>
<tr>
<td>4</td>
<td>Theorem 32.4</td>
</tr>
</tbody>
</table>
Theorem 32.1.

Every regular space with a countable basis is normal.

Proof. Let X be a regular space with a countable basis B. Let A and B be disjoint closed sets in X.

Since X is regular, each $x \in A$ has a neighborhood U not intersecting B. By Lemma 31.1(a), there is a neighborhood V of x with $V \subset U$, and there is a basis element of B containing x which is a subset of V. Choose such a basis element for each $x \in A$. Then this is a countable (since B is countable) covering of A by open sets whose closures do not intersect B. Denote the sets in this covering as $\{U_n\}_{n \in \mathbb{N}}$.

Similarly, find a countable collection $\{V_n\}$ of open sets covering B such that each set V_n is disjoint from A. Then $U = \bigcup_{n \in \mathbb{N}} U_n$ and $V = \bigcup_{n \in \mathbb{N}} V_n$ are open sets containing A and B, respectively (but they may not be disjoint).

Now, for $n \in \mathbb{N}$, define $U'_n = U_n \cup \bigcup_{i=1}^{n} V_i$ and $V'_n = V_n \cup \bigcup_{i=1}^{n} U_i$. Then each U'_n and V'_n is open.
Theorem 32.1

Theorem 32.1. Every regular space with a countable basis is normal.

Proof. Let X be a regular space with a countable basis \mathcal{B}. Let A and B be disjoint closed sets in X. Since X is regular, each $x \in A$ has a neighborhood U not intersecting B. By Lemma 31.1(a), there is a neighborhood V of x with $\overline{V} \subseteq U$, and there is a basis element of \mathcal{B} containing x which is a subset of V. Then this is a countable (since \mathcal{B} is countable) covering of A by open sets whose closures do not intersect B. Denote the sets in this covering as $\{U_n\}_{n \in \mathbb{N}}$. Similarly, find a countable collection $\{V_n\}$ of open sets covering B such that each set V_n is disjoint from A. Then $U = \bigcup_{n \in \mathbb{N}} U_n$ and $V = \bigcup_{n \in \mathbb{N}} V_n$ are open sets containing A and B, respectively (but they may not be disjoint). Now, for $n \in \mathbb{N}$, define $U'_n = U_n \cup \bigcup_{i=1}^{n} V_i$ and $V'_n = V_n \cup \bigcup_{i=1}^{n} U_i$. Then each U'_n and V'_n is open.
Theorem 32.1

Theorem 32.1. Every regular space with a countable basis is normal.

Proof. Let X be a regular space with a countable basis \mathcal{B}. Let A and B be disjoint closed sets in X. Since X is regular, each $x \in A$ has a neighborhood U not intersecting B. By Lemma 31.1(a), there is a neighborhood V of x with $\overline{V} \subset U$, and there is a basis element of \mathcal{B} containing x which is a subset of V. Choose such a basis element for each $x \in A$. Then this is a countable (since \mathcal{B} is countable) covering of A by open sets whose closures do not intersect B. Denote the sets in this covering as $\{U_n\}_{n \in \mathbb{N}}$.
Theorem 32.1

Theorem 32.1. Every regular space with a countable basis is normal.

Proof. Let X be a regular space with a countable basis B. Let A and B be disjoint closed sets in X. Since X is regular, each $x \in A$ has a neighborhood U not intersecting B. By Lemma 31.1(a), there is a neighborhood V of x with $\overline{V} \subset U$, and there is a basis element of B containing x which is a subset of V. Choose such a basis element for each $x \in A$. Then this is a countable (since B is countable) covering of A by open sets whose closures do not intersect B. Denote the sets in this covering as $\{U_n\}_{n \in \mathbb{N}}$.

Similarly, find a countable collection $\{V_n\}$ of open sets covering B such that each set \overline{V}_n is disjoint from A. Then $U = \bigcup_{n \in \mathbb{N}} U_n$ and $V = \bigcup_{n \in \mathbb{N}} V_n$ are open sets containing A and B, respectively (but they may not be disjoint).
Theorem 32.1

Theorem 32.1. Every regular space with a countable basis is normal.

Proof. Let X be a regular space with a countable basis \mathcal{B}. Let A and B be disjoint closed sets in X. Since X is regular, each $x \in A$ has a neighborhood U not intersecting B. By Lemma 31.1(a), there is a neighborhood V of x with $\overline{V} \subset U$, and there is a basis element of \mathcal{B} containing x which is a subset of V. Choose such a basis element for each $x \in A$. Then this is a countable (since \mathcal{B} is countable) covering of A by open sets whose closures do not intersect B. Denote the sets in this covering as $\{U_n\}_{n \in \mathbb{N}}$. Similarly, find a countable collection $\{V_n\}$ of open sets covering B such that each set \overline{V}_n is disjoint from A. Then $U = \bigcup_{n \in \mathbb{N}} U_n$ and $V = \bigcup_{n \in \mathbb{N}} V_n$ are open sets containing A and B, respectively (but they may not be disjoint). Now, for $n \in \mathbb{N}$, define

$$U'_n = U_n \setminus \bigcup_{i=1}^n \overline{V}_i \quad \text{and} \quad V'_n = V_n \setminus \bigcup_{i=1}^n \overline{U}_i.$$

Then each U'_n and V'_n is open.
Theorem 32.1

Theorem 32.1. Every regular space with a countable basis is normal.

Proof. Let X be a regular space with a countable basis B. Let A and B be disjoint closed sets in X. Since X is regular, each $x \in A$ has a neighborhood U not intersecting B. By Lemma 31.1(a), there is a neighborhood V of x with $\overline{V} \subset U$, and there is a basis element of B containing x which is a subset of V. Choose such a basis element for each $x \in A$. Then this is a countable (since B is countable) covering of A by open sets whose closures do not intersect B. Denote the sets in this covering as $\{U_n\}_{n \in \mathbb{N}}$.

Similarly, find a countable collection $\{V_n\}$ of open sets covering B such that each set \overline{V}_n is disjoint from A. Then $U = \bigcup_{n \in \mathbb{N}} U_n$ and $V = \bigcup_{n \in \mathbb{N}} V_n$ are open sets containing A and B, respectively (but they may not be disjoint). Now, for $n \in \mathbb{N}$, define

$$U'_n = U_n \setminus \bigcup_{i=1}^{n} \overline{V}_i \text{ and } V'_n = V_n \setminus \bigcup_{i=1}^{n} \overline{U}_i.$$

Then each U'_n and V'_n is open.
Theorem 32.1. Every regular space with a countable basis is normal.

Proof (continued). The collection $\{U'_n\}$ covers A and $\{V'_n\}$ covers B (this is where the "\overline{U}_n is disjoint from B" and "\overline{V}_n is disjoint from A" parts are used).

Finally, consider $U' = \bigcup_{n \in \mathbb{N}} U'_n$ and $V' = \bigcup_{n \in \mathbb{N}} V'_n$. Assume $x \in U' \cap V'$. Then $x \in U'_j \cap V'_k$ for some $j, k \in \mathbb{N}$.
Theorem 32.1. Every regular space with a countable basis is normal.

Proof (continued). The collection \(\{ U'_n \} \) covers \(A \) and \(\{ V'_n \} \) covers \(B \) (this is where the “\(\overline{U}_n \) is disjoint from \(B \)” and “\(\overline{V}_n \) is disjoint from \(A \)” parts are used).

Finally, consider \(U' = \bigcup_{n \in \mathbb{N}} U'_n \) and \(V' = \bigcup_{n \in \mathbb{N}} V'_n \). Assume \(x \in U' \cap V' \). Then \(x \in U'_j \cap V'_k \) for some \(j, k \in \mathbb{N} \). If \(j \leq k \) then \(x \in U_j \) (since \(U'_j = J_j \setminus \bigcup_{i=1}^{j} \overline{V}_i \)) but, since \(j \leq k \), \(x \notin V_k \) (since \(V'_k = V_k \setminus \bigcup_{i=1}^{k} \overline{U}_i \), a CONTRADICTION.
Theorem 32.1 (continued)

Theorem 32.1. Every regular space with a countable basis is normal.

Proof (continued). The collection \(\{U'_n\} \) covers \(A \) and \(\{V'_n\} \) covers \(B \) (this is where the “\(\overline{U}_n \) is disjoint from \(B \)” and “\(\overline{V}_n \) is disjoint from \(A \)” parts are used).

Finally, consider \(U' = \bigcup_{n \in \mathbb{N}} U'_n \) and \(V' = \bigcup_{n \in \mathbb{N}} V'_n \). **ASSUME** \(x \in U' \cap V' \). Then \(x \in U'_j \cap V'_k \) for some \(j, k \in \mathbb{N} \). If \(j \leq k \) then \(x \in U_j \) (since \(U'_j = J_j \setminus \bigcup_{i=1}^{j} \overline{V}_i \)) but, since \(j \leq k \), \(x \notin V_k \) (since \(V'_k = V_k \setminus \bigcup_{i=1}^{k} \overline{U}_i \)), a **CONTRADICTION.** A similar contradiction follows if \(j \geq k \). So \(U' \) and \(V' \) are disjoint open sets with \(A \subset U' \) and \(B \subset V' \). That is, \(X \) is regular. \(\square \)
Theorem 32.1. Every regular space with a countable basis is normal.

Proof (continued). The collection \(\{ U'_n \} \) covers \(A \) and \(\{ V'_n \} \) covers \(B \) (this is where the “\(\overline{U}_n \) is disjoint from \(B \)” and “\(\overline{V}_n \) is disjoint from \(A \)” parts are used).

Finally, consider \(U' = \bigcup_{n \in \mathbb{N}} U'_n \) and \(V' = \bigcup_{n \in \mathbb{N}} V'_n \). Assume \(x \in U' \cap V' \). Then \(x \in U'_j \cap V'_k \) for some \(j, k \in \mathbb{N} \). If \(j \leq k \) then \(x \in U_j \) (since \(U'_j = J_j \setminus \bigcup_{i=1}^{j} \overline{V}_i \)) but, since \(j \leq k \), \(x \not\in V_k \) (since \(V'_k = V_k \setminus \bigcup_{i=1}^{k} \overline{U}_i \)), a contradiction. A similar contradiction follows if \(j \geq k \). So \(U' \) and \(V' \) are disjoint open sets with \(A \subset U' \) and \(B \subset V' \). That is, \(X \) is regular. \(\square \)
Theorem 32.2

Theorem 32.2. Every metrizable space is normal.

Proof. Let X be metrizable with metric d. Let A and B be disjoint closed sets in X. For each $a \in A$, choose $\varepsilon_a > 0$ so that $B(a, \varepsilon_a)$ does not intersect B. Similarly, for each $b \in B$, choose $\varepsilon_b > 0$ so that $B(b, \varepsilon_b)$ does not intersect A. Define $U = \bigcup_{a \in A} B(a, \varepsilon_a/2)$ and $V = \bigcup_{b \in B} B(b, \varepsilon_b/2)$. Then U and V are open sets and $A \subset U$, $B \subset V$. Assume $z \in U \cap V$. Then $z \in B(a, \varepsilon_a/2)$ and $z \in B(b, \varepsilon_b/2)$ for some $a \in A$ and $b \in B$. By the Triangle Inequality, $d(a, b) \leq d(a, z) + d(z, b) < \varepsilon_a/2 + \varepsilon_b/2$. If $\varepsilon_a \leq \varepsilon_b$ then $d(a, b) < \varepsilon_b$ and then $a \in B(b, \varepsilon_b)$, a contradiction.
Theorem 32.2

Theorem 32.2. Every metrizable space is normal.

Proof. Let X be metrizable with metric d. Let A and B be disjoint closed sets in X. For each $a \in A$, choose $\varepsilon_a > 0$ so that $B(a, \varepsilon_a)$ does not intersect B (since B is closed, it contains its limit points by Corollary 17.7, so a is not a limit point of B and such $B(a, \varepsilon_a)$ exists). Similarly, for each $b \in B$ choose $\varepsilon_b > 0$ so that $B(b, \varepsilon_b)$ does not intersect A. Then $U = \bigcup_{a \in A} B(a, \varepsilon_a/2)$ and $V = \bigcup_{b \in B} B(b, \varepsilon_b/2)$ are open sets and $A \subset U$, $B \subset V$. Assume $z \in U \cap V$. Then $z \in B(a, \varepsilon_a/2)$ and $z \in B(b, \varepsilon_b/2)$ for some $a \in A$ and $b \in B$. By the Triangle Inequality, $d(a, b) \leq d(a, z) + d(z, b) < \varepsilon_a/2 + \varepsilon_b/2$. If $\varepsilon_a \leq \varepsilon_b$ then $d(a, b) < \varepsilon_b$ and then $a \in B(b, \varepsilon_b)$, a contradiction.
Theorem 32.2. Every metrizable space is normal.

Proof. Let X be metrizable with metric d. Let A and B be disjoint closed sets in X. For each $a \in A$, choose $\varepsilon_a > 0$ so that $B(a, \varepsilon_a)$ does not intersect B (since B is closed, it contains its limit points by Corollary 17.7, so a is not a limit point of B and such $B(a, \varepsilon_a)$ exists). Similarly, for each $b \in B$ choose $\varepsilon_b > 0$ so that $B(b, \varepsilon_b)$ does not intersect A. Define

$$U = \bigcup_{a \in A} B(a, \varepsilon_a/2) \text{ and } V = \bigcup_{b \in B} B(b, \varepsilon_b/2).$$

Then U and V are open sets and $A \subset U$, $B \subset V$.
Theorem 32.2. Every metrizable space is normal.

Proof. Let X be metrizable with metric d. Let A and B be disjoint closed sets in X. For each $a \in A$, choose $\varepsilon_a > 0$ so that $B(a, \varepsilon_a)$ does not intersect B (since B is closed, it contains its limit points by Corollary 17.7, so a is not a limit point of B and such $B(a, \varepsilon_a)$ exists). Similarly, for each $b \in B$ choose $\varepsilon_b > 0$ so that $B(b, \varepsilon_b)$ does not intersect A. Define

$$U = \bigcup_{a \in A} B(a, \varepsilon_a/2) \text{ and } V = \bigcup_{b \in B} B(b, \varepsilon_b/2).$$

Then U and V are open sets and $A \subset U$, $B \subset V$. **ASSUME** $z \in U \cap V$. Then $z \in B(a, \varepsilon_a/2)$ and $z \in B(b, \varepsilon_b/2)$ for some $a \in A$ and $b \in B$. By the Triangle Inequality,

$$d(a, b) \leq d(a, z) + d(z, b) < \varepsilon_a/2 + \varepsilon_b/2.$$

If $\varepsilon_a \leq \varepsilon_b$ then $d(a, b) < \varepsilon_b$ and then $a \in B(b, \varepsilon_b)$, a **CONTRADICTION**.
Theorem 32.2

Theorem 32.2. Every metrizable space is normal.

Proof. Let X be metrizable with metric d. Let A and B be disjoint closed sets in X. For each $a \in A$, choose $\varepsilon_a > 0$ so that $B(a, \varepsilon_a)$ does not intersect B (since B is closed, it contains its limit points by Corollary 17.7, so a is not a limit point of B and such $B(a, \varepsilon_a)$ exists). Similarly, for each $b \in B$ choose $\varepsilon_b > 0$ so that $B(b, \varepsilon_b)$ does not intersect A. Define

$$U = \bigcup_{a \in A} B(a, \varepsilon_a/2) \text{ and } V = \bigcup_{b \in B} B(b, \varepsilon_b/2).$$

Then U and V are open sets and $A \subset U$, $B \subset V$. **ASSUME** $z \in U \cap V$. Then $z \in B(a, \varepsilon_a/2)$ and $z \in B(b, \varepsilon_b/2)$ for some $a \in A$ and $b \in B$. By the Triangle Inequality,

$$d(a, b) \leq d(a, z) + d(z, b) < \varepsilon_a/2 + \varepsilon_b/2.$$

If $\varepsilon_a \leq \varepsilon_b$ then $d(a, b) < \varepsilon_b$ and then $a \in B(b, \varepsilon_b)$, a **CONTRADICTION.**
Theorem 32.2. Every metrizable space is normal.

Proof (continued). Similarly, if $\varepsilon_b \leq \varepsilon_a$ then $d(a, b) < \varepsilon_a$ and $b \in B(a, \varepsilon_a)$, a contradiction. So the assumption that such $z \in U \cap V$ exists is false and U and V are disjoint open sets with $A \subset U$ and $B \subset V$. Therefore, X is normal.
Theorem 32.3. Every compact Hausdorff space is normal.

Proof. Let X be a compact Hausdorff space. Let A and B be disjoint closed sets in X. Let $x \in A$ and $y \in B$. Since A is closed and X is Hausdorff, by Theorem 26.2, A is compact. Let $\{U_a\}_{a \in A}$ be a disjoint open covering of A. Since A is compact, there exists a finite subcovering $\{U_1, U_2, \ldots, U_n\}$ of A. Let $U = U_1 \cap U_2 \cap \cdots \cap U_n$ and $V = V_1 \cap V_2 \cap \cdots \cap V_n$ be disjoint open sets where $A \subset U$ and $B \subset V$. That is, X is regular.
Theorem 32.3. Every compact Hausdorff space is normal.

Proof. Let X be a compact Hausdorff space. Let A and B be disjoint closed sets in X. By Lemma 26.4, for each $a \in A$, there are disjoint open U_a and V_a with $x \in U_x$ and $B \subset V_x$. Since A is closed and X is Hausdorff, then A is compact by Theorem 26.2, so the open covering $\{U_a\}_{a \in A}$ of A has a finite subcover, say $\{U_1, U_2, \ldots, U_n\}$.
Theorem 32.3. Every compact Hausdorff space is normal.

Proof. Let X be a compact Hausdorff space. Let A and B be disjoint closed sets in X. By Lemma 26.4, for each $a \in A$, there are disjoint open U_a and V_a with $a \in U_x$ and $B \subset V_x$. Since A is closed and X is Hausdorff, then A is compact by Theorem 26.2, so the open covering $\{U_a\}_{a \in A}$ of A has a finite subcover, say $\{U_1, U_2, \ldots, U_n\}$. Then $U = U_1 \cap U_2 \cap \cdots \cap U_n$ and $V = V_1 \cap V_2 \cap \cdots \cap V_n$ are disjoint open sets where $A \subset U$ and $B \subset V$. That is, X is regular. \qed
Theorem 32.3

Theorem 32.3. Every compact Hausdorff space is normal.

Proof. Let X be a compact Hausdorff space. Let A and B be disjoint closed sets in X. By Lemma 26.4, for each $a \in A$, there are disjoint open U_a and V_a with $x \in U_x$ and $B \subset V_x$. Since A is closed and X is Hausdorff, then A is compact by Theorem 26.2, so the open covering $\{U_a\}_{a \in A}$ of A has a finite subcover, say $\{U_1, U_2, \ldots, U_n\}$. Then $U = U_1 \cap U_2 \cap \cdots \cap U_n$ and $V = V_1 \cap V_2 \cap \cdots \cap V_n$ are disjoint open sets where $A \subset U$ and $B \subset V$. That is, X is regular.
Theorem 32.4

Theorem 32.4. Every well-ordered set X is normal in the order topology.

Proof. Let X be a well-ordered set. We claim that every interval of the form $(x, y]$ is open in X. If X has a largest element and y is that element, then $(x, y]$ is a basis element of y (see the definition of "order topology" in Section 14). If y is not the largest element of X, then $(x, y]$ equals the open set (x, y') where y' is the immediate successor of y (since X is well-ordered, every nonempty subset of X has a smallest element and so every element $x \in X$ other than the largest element of X has an immediate successor; namely the smallest element of $\{y \in X | v > x\}$). In either case, $(x, y]$ is open in X. Now let A and B be disjoint closed sets in X. First, suppose that neither A nor B contains the smallest element a_0 of X. For each $a \in A$, there is a basis element containing a disjoint from B (since B is closed it contains its limit points by Corollary 17.7, so a is not a limit point of B).
Theorem 32.4. Every well-ordered set \(X \) is normal in the order topology.

Proof. Let \(X \) be a well-ordered set. We claim that every interval of the form \((x, y] \) is open in \(X \). If \(X \) has a largest element and \(y \) is that element, then \((x, y] \) is a basis element of \(y \) (see the definition of “order topology” in Section 14).
Theorem 32.4

Theorem 32.4. Every well-ordered set X is normal in the order topology.

Proof. Let X be a well-ordered set. We claim that every interval of the form $(x, y]$ is open in X. If X has a largest element and y is that element, then $(x, y]$ is a basis element of y (see the definition of “order topology” in Section 14). If y is not the largest element of X, then $(x, y]$ equals the open set (x, y') where y' is the immediate successor of y (since X is well-ordered, every nonempty subset of X has a smallest element and so every element $x \in X$ other than the largest element of X has an immediate successor; namely the smallest element of $\{y \in X \mid v > x\}$). In either case, $(x, y]$ is open in X.
Theorem 32.4

Theorem 32.4. Every well-ordered set X is normal in the order topology.

Proof. Let X be a well-ordered set. We claim that every interval of the form $(x, y]$ is open in X. If X has a largest element and y is that element, then $(x, y]$ is a basis element of y (see the definition of “order topology” in Section 14). If y is not the largest element of X, then $(x, y]$ equals the open set (x, y') where y' is the immediate successor of y (since X is well-ordered, every nonempty subset of X has a smallest element and so every element $x \in X$ other than the largest element of X has an immediate successor; namely the smallest element of $\{y \in X \mid v > x\}$). In either case, $(x, y]$ is open in X.

Now let A and B be disjoint closed sets in X. First, suppose that neither A nor B contains the smallest element a_0 of X.
Theorem 32.4. Every well-ordered set X is normal in the order topology.

Proof. Let X be a well-ordered set. We claim that every interval of the form $(x, y]$ is open in X. If X has a largest element and y is that element, then $(x, y]$ is a basis element of y (see the definition of “order topology” in Section 14). If y is not the largest element of X, then $(x, y]$ equals the open set (x, y') where y' is the immediate successor of y (since X is well-ordered, every nonempty subset of X has a smallest element and so every element $x \in X$ other than the largest element of X has an immediate successor; namely the smallest element of $\{y \in X \mid v > x\}$). In either case, $(x, y]$ is open in X.

Now let A and B be disjoint closed sets in X. First, suppose that neither A nor B contains the smallest element a_0 of X. For each $a \in A$, there is a basis element containing a disjoint from B (since B is closed it contains its limit points by Corollary 17.7, so a is not a limit point of B).
Theorem 32.4. Every well-ordered set X is normal in the order topology.

Proof. Let X be a well-ordered set. We claim that every interval of the form $(x, y]$ is open in X. If X has a largest element and y is that element, then $(x, y]$ is a basis element of y (see the definition of “order topology” in Section 14). If y is not the largest element of X, then $(x, y]$ equals the open set (x, y') where y' is the immediate successor of y (since X is well-ordered, every nonempty subset of X has a smallest element and so every element $x \in X$ other than the largest element of X has an immediate successor; namely the smallest element of $\{y \in X \mid y > x\}$). In either case, $(x, y]$ is open in X.

Now let A and B be disjoint closed sets in X. First, suppose that neither A nor B contains the smallest element a_0 of X. For each $a \in A$, there is a basis element containing a disjoint from B (since B is closed it contains its limit points by Corollary 17.7, so a is not a limit point of B).
Theorem 32.4 (continued 1)

Proof (continued). Since a is not the smallest element of X, the basis element containing a contains some interval of the form $(x, a]$. For each $a \in A$, choose such an interval $(x_a, a]$ disjoint from set B. Similarly, for each $b \in B$, choose an interval $(y_b, b]$ disjoint from set A. Notice that each $(x_a, a]$ and $(y_b, b]$ is open since each is of the form $(x_a, a + 1)$ and $(y_b, b + 1)$ where “+1” represents the immediate successor.

The sets $U = \bigcup_{a \in A} (x_a, a]$ and $V = \bigcup_{b \in B} (y_b, b]$ are open sets where $A \subset U$ and $B \subset V$. ASSUME $z \in U \cap V$. Then $z \in (x_a, a] \cap (y_b, b]$ for some $a \in A$ and $b \in B$. WLOG, $a < b$. If $a \leq y_b$ then the two intervals are disjoint CONTRADICTING the assumption that $z \in (x_a, a] \cap (y_b, b]$. If $a > y_b$ then $y_b < a < b$ and $a \in (y_b, b]$, CONTRADICTING the fact that $(y_b, b]$ is disjoint from A. So the assumption that there is $z \in U \cap V$ is false and so U and V are in fact disjoint.
Proof (continued). Since a is not the smallest element of X, the basis element containing a contains some interval of the form $(x, a]$. For each $a \in A$, choose such an interval $(x_a, a]$ disjoint from set B. Similarly, for each $b \in B$, choose an interval $(y_b, b]$ disjoint from set A. Notice that each $(x_a, a]$ and $(y_b, b]$ is open since each is of the form $(x_a, a + 1)$ and $(y_b, b + 1)$ where “$+1$” represents the immediate successor. The sets

$$U = \bigcup_{a \in A} (x_a, a] \text{ and } V = \bigcup_{b \in B} (y_b, b]$$

are open sets where $A \subset U$ and $B \subset V$. ASSUME $z \in U \cap V$. Then $z \in (x_a, a] \cap (y_b, b]$ for some $a \in A$ and $b \in B$. WLOG, $a < b$. If $a \leq y_b$ then the two intervals are disjoint CONTRADICTING the assumption that $z \in (x_a, a] \cap (y_b, b]$. If $a > y_b$ then $y_b < a < b$ and $a \in (y_b, b)$, CONTRADICTING the fact that $(y_b, b]$ is disjoint from A.

So the assumption that there is $z \in U \cap V$ is false and so U and V are in fact disjoint.
Theorem 32.4 (continued 1)

Proof (continued). Since \(a \) is not the smallest element of \(X \), the basis element containing \(a \) contains some interval of the form \((x, a]\). For each \(a \in A \), choose such an interval \((x_a, a]\) disjoint from set \(B \). Similarly, for each \(b \in B \), choose an interval \((y_b, b]\) disjoint from set \(A \). Notice that each \((x_a, a]\) and \((y_b, b]\) is open since each is of the form \((x_a, a + 1]\) and \((y_b, b + 1]\) where “+1” represents the immediate successor. The sets

\[
U = \bigcup_{a \in A} (x_a, a]\ and \ V = \bigcup_{b \in B} (y_b, b]\n\]

are open sets where \(A \subset U \) and \(B \subset V \). **ASSUME** \(z \in U \cap V \). Then \(z \in (x_a, a] \cap (y_b, b]\) for some \(a \in A \) and \(b \in B \). WLOG, \(a < b \). If \(a \leq y_b \) then the two intervals are disjoint **CONTRADICTING** the assumption that \(z \in (x_a, a] \cap (y_b, b]\). If \(a > y_b \) then \(y_b < a < b \) and \(a \in (y_b, b]\), **CONTRADICTING** the fact that \((y_b, b]\) is disjoint from \(A \).
Theorem 32.4 (continued 1)

Proof (continued). Since a is not the smallest element of X, the basis element containing a contains some interval of the form $(x, a]$. For each $a \in A$, choose such an interval $(x_a, a]$ disjoint from set B. Similarly, for each $b \in B$, choose an interval $(y_b, b]$ disjoint from set A. Notice that each $(x_a, a]$ and $(y_b, b]$ is open since each is of the form $(x_a, a]$ and $(y_b, b]$ is open since each is of the form $(x_a, a + 1)$ and $(y_b, b + 1)$ where “+1” represents the immediate successor. The sets

$$U = \bigcup_{a \in A}(x_a, a] \quad \text{and} \quad V = \bigcup_{b \in B}(y_b, b]$$

are open sets where $A \subset U$ and $B \subset V$. ASSUME $z \in U \cap V$. Then $z \in (x_a, a] \cap (y_b, b]$ for some $a \in A$ and $b \in B$. WLOG, $a < b$. If $a \leq y_b$ then the two intervals are disjoint CONTRADICTING the assumption that $z \in (z_a, a] \cap (y_b, b]$. If $a > y_b$ then $y_b < a < b$ and $a \in (y_b, b]$, CONTRADICTING the fact that $(y_b, b]$ is disjoint from A. So the assumption that there is $z \in U \cap V$ is false and so U and V are in fact disjoint.
Theorem 32.4 (continued 1)

Proof (continued). Since \(a \) is not the smallest element of \(X \), the basis element containing \(a \) contains some interval of the form \((x, a]\). For each \(a \in A \), choose such an interval \((x_a, a]\) disjoint from set \(B \). Similarly, for each \(b \in B \), choose an interval \((y_b, b]\) disjoint from set \(A \). Notice that each \((x_a, a]\) and \((y_b, b]\) is open since each is of the form \((x_a, a]\) and \((y_b, b]\) is open since each is of the form \((x_a, a + 1]\) and \((y_b, b + 1]\) where “+1” represents the immediate successor. The sets

\[
U = \bigcup_{a \in A} (x_a, a]\) and \(V = \bigcup_{b \in B} (y_b, b]\)
\]

are open sets where \(A \subset U \) and \(B \subset V \). ASSUME \(z \in U \cap V \). Then \(z \in (x_a, a]\) \(\cap \) \((y_b, b]\) for some \(a \in A \) and \(b \in B \). WLOG, \(a < b \). If \(a \leq y_b \) then the two intervals are disjoint CONTRADICTING the assumption that \(z \in (z_a, a]\) \(\cap \) \((y_b, b]\). If \(a > y_b \) then \(y_b < a < b \) and \(a \in (y_b, b]\), CONTRADICTING the fact that \((y_b, b]\) is disjoint from \(A \). So the assumption that there is \(z \in U \cap V \) is false and so \(U \) and \(V \) are in fact disjoint.
Theorem 32.4. Every well-ordered set X is normal in the order topology.

Proof (continued). So the normality condition is satisfied when neither (closed) A nor B contains the smallest element of X.

Finally, suppose A and B are disjoint closed sets in X where A contains the smallest element a_0 in X where A contains the smallest element a_0 of X. The set $\{a_0\}$ is both open and closed in X, $\{a_0\} = [a_0, a_0 + 1)$ and $X \setminus \{a_0\} = \bigcup_{x \in X} (a_0, x)$.
Theorem 32.4. Every well-ordered set X is normal in the order topology.

Proof (continued). So the normality condition is satisfied when neither (closed) A nor B contains the smallest element of X.

Finally, suppose A and B are disjoint closed sets in X where A contains the smallest element a_0 in X where A contains the smallest element a_0 of X. The set $\{a_0\}$ is both open and closed in X, $\{a_0\} = [a_0, a_0 + 1)$ and $X \setminus \{a_0\} = \bigcup_{x \in X} (a_0, x)$. By the previous paragraph, there exist disjoint open sets U and V, neither containing a_0, where $A \setminus \{a_0\} \subset U$ and $B \subset V$ (where $A \setminus \{a_0\}$ and B are closed, disjoint sets). Then $U \cup \{a_0\}$ and V are disjoint open sets containing A and B respectively.
Theorem 32.4. Every well-ordered set X is normal in the order topology.

Proof (continued). So the normality condition is satisfied when neither (closed) A nor B contains the smallest element of X.

Finally, suppose A and B are disjoint closed sets in X where A contains the smallest element a_0 in X, where A contains the smallest element a_0 of X. The set $\{a_0\}$ is both open and closed in X, $\{a_0\} = [a_0, a_0 + 1)$ and $X \setminus \{a_0\} = \bigcup_{x \in X} (a_0, x)$. By the previous paragraph, there exist disjoint open sets U and V, neither containing a_0, where $A \setminus \{a_0\} \subset U$ and $B \subset V$ (where $A \setminus \{a_0\}$ and B are closed, disjoint sets). Then $U \cup \{a_0\}$ and V are disjoint open sets containing A and B respectively. So the normality condition is satisfied when one of A or B contains the smallest element of X. Hence, X is normal.
Theorem 32.4. Every well-ordered set \(X \) is normal in the order topology.

Proof (continued). So the normality condition is satisfied when neither (closed) \(A \) nor \(B \) contains the smallest element of \(X \).

Finally, suppose \(A \) and \(B \) are disjoint closed sets in \(X \) where \(A \) contains the smallest element \(a_0 \) in \(X \) where \(A \) contains the smallest element \(a_0 \) of \(X \). The set \(\{a_0\} \) is both open and closed in \(X \), \(\{a_0\} = [a_0, a_0 + 1) \) and \(X \setminus \{a_0\} = \bigcup_{x \in X} (a_0, x) \). By the previous paragraph, there exist disjoint open sets \(U \) and \(V \), neither containing \(a_0 \), where \(A \setminus \{a_0\} \subset U \) and \(B \subset V \) (where \(A \setminus \{a_0\} \) and \(B \) are closed, disjoint sets). Then \(U \cup \{a_0\} \) and \(V \) are disjoint open sets containing \(A \) and \(B \) respectively. So the normality condition is satisfied when one of \(A \) or \(B \) contains the smallest element of \(X \). Hence, \(X \) is normal.