Lemma 3.9.1. Let A be a locally finite collection of subsets of X. Then:

\[A \subseteq V \Rightarrow A \subseteq V \]

Proof (continued). (c) Denote $V = \bigwedge A$. Now each $A \in A$ is a

\[A \cup A \subseteq V \]

since X is metrizable, there is a metric d on X. Let $u \in N$. Given $u \in A$,

there is an open covering of X that is a d-neighborhood of u. Then by

\[u \in A \]

let U be a d-neighborhood of x. Then, since A is locally finite in X, U

intersects only finitely many elements of A. Say A_1, A_2, \ldots, A_k. Assume

\[x \notin A_1 \cup A_2 \]

but $x \in A_k$. Then $\bigwedge A_k \subseteq V$. Therefore $A \subseteq V$.

Chapter 6. Metrization Theorems and Paracompactness

Section 39. Local Finiteness—Proofs of Theorems

Introduction to Topology
Lemma

Lemma 39.2 (continued 4)

[Image 403x526 to 498x658]

Lemma 39.2 (continued 3)

[Image 313x82 to 442x262]