Chapter 6. Metrization Theorems and Paracompactness
Section 39. Local Finiteness—Proofs of Theorems
Table of contents

1 Lemma 39.1

2 Lemma 39.2
Lemma 39.1. Let \mathcal{A} be a locally finite collection of subsets of X. Then:

(a) Any subcollection of \mathcal{A} is locally finite.
(b) The collection $\mathcal{B} = \{\overline{A}\}_{A \in \mathcal{A}}$ of the closures of the elements of \mathcal{A} is locally finite.
(c) $\bigcup_{A \in \mathcal{A}} A = \bigcup_{A \in \mathcal{A}} \overline{A}$.

Proof. (a) This follows trivially from the definition.
Lemma 39.1. Let \(\mathcal{A} \) be a locally finite collection of subsets of \(X \). Then:

(a) Any subcollection of \(\mathcal{A} \) is locally finite.

(b) The collection \(\mathcal{B} = \{ \overline{A} \}_{A \in \mathcal{A}} \) of the closures of the elements of \(\mathcal{A} \) is locally finite.

(c) \(\bigcup_{A \in \mathcal{A}} A = \bigcup_{A \in \mathcal{A}} \overline{A} \).

Proof. (a) This follows trivially from the definition.

(b) First, note that any open set \(U \) that intersects set \(\overline{A} \) must also intersect \(A \) (since \(\overline{A} = A \cup A' \) where \(A' \) is the set of limit points of \(A \), by Theorem 17.6).
Lemma 39.1. Let \mathcal{A} be a locally finite collection of subsets of X. Then:

(a) Any subcollection of \mathcal{A} is locally finite.

(b) The collection $\mathcal{B} = \{\overline{A}\}_{A \in \mathcal{A}}$ of the closures of the elements of \mathcal{A} is locally finite.

(c) $\bigcup_{A \in \mathcal{A}} \overline{A} = \bigcup_{A \in \mathcal{A}} \overline{A}$.

Proof. (a) This follows trivially from the definition.

(b) First, note that any open set U that intersects set \overline{A} must also intersect A (since $\overline{A} = A \cup A'$ where A' is the set of limit points of A, by Theorem 17.6). So if U is a neighborhood of $x \in X$ that only intersects finitely many $A \in \mathcal{A}$, say A_1, A_2, \ldots, A_n, then U also only intersects $\overline{A_1}, \overline{A_2}, \ldots, \overline{A_n} \in \mathcal{B}$ (see Theorem 17.5(a); it could be that $\overline{A_i} = \overline{A_j}$ and U could actually intersect fewer elements of \mathcal{B} than of \mathcal{A}).
Lemma 39.1. Let \mathcal{A} be a locally finite collection of subsets of X. Then:

(a) Any subcollection of \mathcal{A} is locally finite.
(b) The collection $\mathcal{B} = \{\overline{A}\}_{A \in \mathcal{A}}$ of the closures of the elements of \mathcal{A} is locally finite.
(c) $\bigcup_{A \in \mathcal{A}} A = \bigcup_{A \in \mathcal{A}} \overline{A}$.

Proof. (a) This follows trivially from the definition.

(b) First, note that any open set U that intersects set \overline{A} must also intersect A (since $\overline{A} = A \cup A'$ where A' is the set of limit points of A, by Theorem 17.6). So if U is a neighborhood of $x \in X$ that only intersects finitely many $A \in \mathcal{A}$, say A_1, A_2, \ldots, A_n, then U also only intersects $\overline{A_1}, \overline{A_2}, \ldots, \overline{A_n} \in \mathcal{B}$ (see Theorem 17.5(a); it could be that $\overline{A_i} = \overline{A_j}$ and U could actually intersect fewer elements of \mathcal{B} than of \mathcal{A}).
Lemma 39.1. Let \mathcal{A} be a locally finite collection of subsets of X. Then:

(c) $\bigcup_{A \in \mathcal{A}} \overline{A} = \bigcup_{A \in \mathcal{A}} \overline{A}$.

Proof (continued). (c) Denote $Y = \bigcup_{A \in \mathcal{A}} A$. Now each $A \in \mathcal{A}$ is a subset of Y so $\overline{A} \subset \overline{Y}$ (apply Theorem 17.5(a), say). Now let $x \in \overline{Y}$ and let U be a neighborhood of x. Then, since \mathcal{A} is locally finite in X, U intersects only finitely many elements of \mathcal{A}, say A_1, A_2, \ldots, A_k. Assume $x \notin \overline{A}_1, x \notin \overline{A}_2, \ldots, x \notin \overline{A}_k$. Then set $\left(\overline{A}_1 \cup \overline{A}_2 \cup \cdots \cup \overline{A}_k\right)$ is a neighborhood of x that intersects no element of \mathcal{A}. But then U is a neighborhood of x that does not intersect $Y = \bigcup_{A \in \mathcal{A}} A$, a CONTRADICTION to the fact that $x \in \overline{Y}$ (see Theorem 17.5(a)).
Lemma 39.1. Let \mathcal{A} be a locally finite collection of subsets of X. Then:

(c) $\bigcup_{A \in \mathcal{A}} A = \bigcup_{A \in \mathcal{A}} \overline{A}$.

Proof (continued). (c) Denote $Y = \bigcup_{A \in \mathcal{A}} A$. Now each $A \in \mathcal{A}$ is a subset of Y so $\overline{A} \subset \overline{Y}$ (apply Theorem 17.5(a), say). Now let $x \in \overline{Y}$ and let U be a neighborhood of x. Then, since \mathcal{A} is locally finite in X, U intersects only finitely many elements of \mathcal{A}, say A_1, A_2, \ldots, A_k. ASSUME $x \notin \overline{A_1}, x \notin \overline{A_2}, \ldots, x \notin \overline{A_k}$. Then set $(\overline{A_1} \cup \overline{A_2} \cup \cdots \cup \overline{A_k})$ is a neighborhood of x that intersects no element of \mathcal{A}. But then U is a neighborhood of x that does not intersect $Y = \bigcup_{A \in \mathcal{A}} A$, a CONTRADICTION to the fact that $x \in \overline{Y}$ (see Theorem 17.5(a)). So it must be that $x \in \overline{A_i}$ for some i and hence $x \in \bigcup_{A \in \mathcal{A}} \overline{A}$. Therefore $\overline{Y} \subset \bigcup_{A \in \mathcal{A}} \overline{A}$ and so $\overline{Y} = \bigcup_{A \in \mathcal{A}} \overline{A}$, as claimed. \(\square\)
Lemma 39.1. Let \mathcal{A} be a locally finite collection of subsets of X. Then:

(c) $\bigcup_{A \in \mathcal{A}} A = \bigcup_{A \in \mathcal{A}} \overline{A}$.

Proof (continued). (c) Denote $Y = \bigcup_{A \in \mathcal{A}} A$. Now each $A \in \mathcal{A}$ is a subset of Y so $\overline{A} \subset Y$ (apply Theorem 17.5(a), say). Now let $x \in \overline{Y}$ and let U be a neighborhood of x. Then, since \mathcal{A} is locally finite in X, U intersects only finitely many elements of \mathcal{A}, say A_1, A_2, \ldots, A_k. ASSUME $x \notin \overline{A_1}, x \notin \overline{A_2}, \ldots, x \notin \overline{A_k}$. Then set \(\left(\overline{A_1} \cup \overline{A_2} \cup \cdots \cup \overline{A_k}\right)\) is a neighborhood of x that intersects no element of \mathcal{A}. But then U is a neighborhood of x that does not intersect $Y = \bigcup_{A \in \mathcal{A}} A$, a CONTRADICTION to the fact that $x \in \overline{Y}$ (see Theorem 17.5(a)). So it must be that $x \in \overline{A_i}$ for some i and hence $x \in \bigcup_{A \in \mathcal{A}} \overline{A}$. Therefore $\overline{Y} \subset \bigcup_{A \in \mathcal{A}} \overline{A}$ and so $\overline{Y} = \bigcup_{A \in \mathcal{A}} \overline{A}$, as claimed.
Lemma 39.2

Lemma 39.2. Let X be a metrizable space. If \mathcal{A} is an open covering of X, then there is an open covering \mathcal{E} of X refining \mathcal{A} that is countable locally finite.

Proof. We will use the Well-Ordering Theorem: “If A is a set, there exists an order relation on A that is a well-ordering.” Recall that this is equivalent to the Axiom of Choice. Let $<$ be a well-ordering for set \mathcal{A}.
Lemma 39.2. Let X be a metrizable space. If \mathcal{A} is an open covering of X, then there is an open covering \mathcal{E} of X refining \mathcal{A} that is countable locally finite.

Proof. We will use the Well-Ordering Theorem: “If A is a set, there exists an order relation on A that is a well-ordering.” Recall that this is equivalent to the Axiom of Choice. Let $<$ be a well-ordering for set \mathcal{A}.

Since X is metrizable, there is a metric d on X. Let $n \in \mathbb{N}$. Given $U \in \mathcal{A}$, define $S_n(U)$ as the subset of U obtained by “shrinking” U a distance of $1/n$: $S_n(U) = \{x \mid B(x,1/n) \subset U\}$.
Lemma 39.2. Let X be a metrizable space. If \mathcal{A} is an open covering of X, then there is an open covering \mathcal{E} of X refining \mathcal{A} that is countable locally finite.

Proof. We will use the Well-Ordering Theorem: “If A is a set, there exists an order relation on A that is a well-ordering.” Recall that this is equivalent to the Axiom of Choice. Let $<$ be a well-ordering for set \mathcal{A}.

Since X is metrizable, there is a metric d on X. Let $n \in \mathbb{N}$. Given $U \in \mathcal{A}$, define $S_n(U)$ as the subset of U obtained by “shrinking” U a distance of $1/n$: $S_n(U) = \{x \mid B(x, 1/n) \subset U\}$. For each $U \in \mathcal{A}$, define $T_n(U) = S_n(U) \setminus \bigcup_{V \in \mathcal{A}, V < U} V$. The resulting $T_n(U)$ are then disjoint ($T_n(U) \subset S_n(U) \subset U$, so for any $U_1, U_2 \in \mathcal{A}$, we have, say $U_1 < U_2$ and so $T_n(U_1) \cap T_n(U_2) = \emptyset$).
Lemma 39.2. Let X be a metrizable space. If \mathcal{A} is an open covering of X, then there is an open covering \mathcal{E} of X refining \mathcal{A} that is countable locally finite.

Proof. We will use the Well-Ordering Theorem: “If A is a set, there exists an order relation on A that is a well-ordering.” Recall that this is equivalent to the Axiom of Choice. Let $<$ be a well-ordering for set \mathcal{A}.

Since X is metrizable, there is a metric d on X. Let $n \in \mathbb{N}$. Given $U \in \mathcal{A}$, define $S_n(U)$ as the subset of U obtained by “shrinking” U a distance of $1/n$: $S_n(U) = \{x \mid B(x, 1/n) \subset U\}$. For each $U \in \mathcal{A}$, define $T_n(U) = S_n(U) \setminus \bigcup_{V \in \mathcal{A}, V < U} V$. The resulting $T_n(U)$ are then disjoint ($T_n(U) \subset S_n(U) \subset U$, so for any $U_1, U_2 \in \mathcal{A}$, we have, say $U_1 < U_2$ and so $T_n(U_1) \cap T_n(U_2) = \emptyset$).
Lemma 39.2 (continued 1)

Proof (continued). Let $V, W \in \mathcal{A}$ with $V \neq W$. If $x \in T_n(V)$ and $y \in T_n(W)$ then we claim $d(x, y) \geq 1/n$ (see Figure 39.1 in which $U < V < W$).

To justify this, say $V < W$. Since $x \in T_n(V) \subset S_n(V)$, then the $1/n$-neighborhood of x lies in V (by the definition of $S_n(V)$). Since $V < W$ and $y \in T_n(V)$ then $y \notin V$ (by the definition of $T_n(W)$), and so y is not in the $1/n$-neighborhood of x.
Lemma 39.2 (continued 1)

Proof (continued). Let $V, W \in \mathcal{A}$ with $V \neq W$. If $x \in T_n(V)$ and $y \in T_n(W)$ then we claim $d(x, y) \geq 1/n$ (see Figure 39.1 in which $U < V < W$).

To justify this, say $V < W$. Since $x \in T_n(V) \subseteq S_n(V)$, then the $1/n$-neighborhood of x lies in V (by the definition of $S_n(V)$). Since $V < W$ and $y \in T_n(V)$ then $y \not\in V$ (by the definition of $T_n(W)$), and so y is not in the $1/n$-neighborhood of x.
Lemma 39.2 (continued 2)

Proof (continued). Now for each \(U \in \mathcal{A} \), define
\[
E_n(U) = \{ B(x, 1/(3n)) \mid x \in T_n(U) \}
\]
where \(B(x, 1/(3n)) = \{ y \in X \mid d(x, y) < 1/(3n) \} \). That is, \(E_n(U) \) is an “expansion” of \(T_n(U) \) by an amount of \(1/(3n) \). Notice that \(E_n(U) \subset U \) and since \(E_n(U) \) is a union of “open balls” then \(E_n(U) \) itself is open.
Lemma 39.2 (continued 2)

Proof (continued). Now for each \(U \in \mathcal{A} \), define

\[
E_n(U) = \{ B(x, 1/(3n)) \mid x \in T_n(U) \}
\]

where \(B(x, 1/(3n)) = \{ y \in X \mid d(x, y) < 1/(3n) \} \). That is, \(E_n(U) \) is an “expansion” of \(T_n(U) \) by an amount of \(1/(3n) \). Notice that \(E_n(U) \subset U \) and since \(E_n(U) \) is a union of “open balls” then \(E_n(U) \) itself is open.

Let \(V, W \in \mathcal{A} \) with \(V \neq W \). If \(x \in E_n(V) \) and \(y \in E_n(W) \) then we claim \(d(x, y) \geq 1/(3n) \) (see Figure 39.2 in which \(U < V < W \)).
Lemma 39.2 (continued 2)

Proof (continued). Now for each $U \in \mathcal{A}$, define

$$E_n(U) = \{ B(x, 1/(3n)) \mid x \in T_n(U) \}$$

where $B(x, 1/(3n)) = \{ y \in X \mid d(x, y) < 1/(3n) \}$. That is, $E_n(U)$ is an “expansion” of $T_n(U)$ by an amount of $1/(3n)$. Notice that $E_n(U) \subset U$ and since $E_n(U)$ is a union of “open balls” then $E_n(U)$ itself is open.

Let $V, W \in \mathcal{A}$ with $V \neq W$. If $x \in E_n(V)$ and $y \in E_n(W)$ then we claim $d(x, y) \geq 1/(3n)$ (see Figure 39.2 in which $U < V < W$).

![Figure 39.2](image-url)
Lemma 39.2 (continued 2)

Proof (continued). Now for each $U \in \mathcal{A}$, define

$$E_n(U) = \{ B(x, 1/(3n)) \mid x \in T_n(U) \}$$

where $B(x, 1/(3n)) = \{ y \in X \mid d(x, y) < 1/(3n) \}$. That is, $E_n(U)$ is an “expansion” of $T_n(U)$ by an amount of $1/(3n)$. Notice that $E_n(U) \subset U$ and since $E_n(U)$ is a union of “open balls” then $E_n(U)$ itself is open.

Let $V, W \in \mathcal{A}$ with $V \neq W$. If $x \in E_n(V)$ and $y \in E_n(W)$ then we claim $d(x, y) \geq 1/(3n)$ (see Figure 39.2 in which $U < V < W$).
Lemma 39.2 (continued 3)

Proof (continued). By the construction of $E_n(V)$ and $E_n(W)$, there are $x' \in T_n(V)$ and $y' \in T_n(W)$ such that $d(x, x') \leq 1/(3n)$ and $d(y, y') \leq 1/(3n)$. As observed above, $d(x', y') \geq 1/n$ for such x and y. So

\[
\frac{1}{n} \leq d(x', y') \leq d(x', x) + d(x, y) + d(y, y') \text{ by the Triangle Inequality}
\]

\[
\leq \frac{1}{3n} + d(x, y) + \frac{1}{3n},
\]

or $d(x, y) \geq 1/(3n)$.

Lemma 39.2 (continued 3)

Proof (continued). By the construction of $E_n(V)$ and $E_n(W)$, there are $x' \in T_n(V)$ and $y' \in T_n(W)$ such that $d(x, x') \leq 1/(3n)$ and $d(y, y') \leq 1/(3n)$. As observed above, $d(x', y') \geq 1/n$ for such x and y. So

$$\frac{1}{n} \leq d(x', y') \leq d(x', x) + d(x, y) + d(y, y') \text{ by the Triangle Inequality}$$

$$\leq \frac{1}{3n} + d(x, y) + \frac{1}{3n},$$

or $d(x, y) \geq 1/(3n)$.

Now define $\mathcal{E}_n = \{E_n(U) \mid U \in \mathcal{A}\}$. We claim that \mathcal{E}_n is a locally finite collection of open sets that refines \mathcal{S}. First, by construction, each $E_n(U)$ is open and refines \mathcal{A} since $E_n(U) \subset U$ for all $U \in \mathcal{A}$.
Lemma 39.2 (continued 3)

Proof (continued). By the construction of \(E_n(V) \) and \(E_n(W) \), there are \(x' \in T_n(V) \) and \(y' \in T_n(W) \) such that \(d(x, x') \leq 1/(3n) \) and \(d(y, y') \leq 1/(3n) \). As observed above, \(d(x', y') \geq 1/n \) for such \(x \) and \(y \). So

\[
\frac{1}{n} \leq d(x', y') \leq d(x', x) + d(x, y) + d(y, y') \text{ by the Triangle Inequality}
\]

\[
\leq \frac{1}{3n} + d(x, y) + \frac{1}{3n},
\]

or \(d(x, y) \geq 1/(3n) \).

Now define \(\mathcal{E}_n = \{ E_n(U) \mid U \in \mathcal{A} \} \). We claim that \(\mathcal{E}_n \) is a locally finite collection of open sets that refines \(\mathcal{S} \). First, by construction, each \(E_n(U) \) is open and refines \(\mathcal{A} \) since \(E_n(U) \subset U \) for all \(U \in \mathcal{A} \). For any \(x \in X \), the \(1/(6n) \)-neighborhood of \(x \) intersects at most one element of \(\mathcal{E}_n \) (since the elements of \(\mathcal{E}_n \) are a distance of at least \(1/(3n) \) apart). So \(\mathcal{E}_n \) is locally finite.
Lemma 39.2 (continued 3)

Proof (continued). By the construction of $E_n(V)$ and $E_n(W)$, there are $x' \in T_n(V)$ and $y' \in T_n(W)$ such that $d(x, x') \leq 1/(3n)$ and $d(y, y') \leq 1/(3n)$. As observed above, $d(x', y') \geq 1/n$ for such x and y. So

$$\frac{1}{n} \leq d(x', y') \leq d(x', x) + d(x, y) + d(y, y')$$

by the Triangle Inequality

$$\leq \frac{1}{3n} + d(x, y) + \frac{1}{3n},$$

or $d(x, y) \geq 1/(3n)$.

Now define $\mathcal{E}_n = \{E_n(U) \mid U \in \mathcal{A}\}$. We claim that \mathcal{E}_n is a locally finite collection of open sets that refines \mathcal{S}. First, by construction, each $E_n(U)$ is open and refines \mathcal{A} since $E_n(U) \subset U$ for all $U \in \mathcal{A}$. For any $x \in X$, the $1/(6n)$-neighborhood of x intersects at most one element of \mathcal{E}_n (since the elements of \mathcal{E}_n are a distance of at least $1/(3n)$ apart). So \mathcal{E}_n is locally finite.
Lemma 39.2. Let X be a metrizable space. If \mathcal{A} is an open covering of X, then there is an open covering \mathcal{E} of X refining \mathcal{A} that is countable locally finite.

Proof (continued). Now \mathcal{E}_n may not cover X for any given $n \in \mathbb{N}$ (see Figure 39.2), so consider $\mathcal{E} = \bigcup_{n=1}^{\infty} \mathcal{E}_n$. Let $x \in X$. We hypothesized that \mathcal{A} was a covering of X, so use the well-ordering on \mathcal{A} to choose U as the “first” (that is, $<$-least) element of \mathcal{A} that contains x. Since U is open (by hypothesis), there is some $n \in \mathbb{N}$ such that $B(x, 1/n) \subset U$ (since the topology on X is hypothesized to be the metric topology under metric d). Then by the definition of $S_n(U)$, $x \in S_n(U)$.
Lemma 39.2. Let X be a metrizable space. If A is an open covering of X, then there is an open covering \mathcal{E} of X refining A that is countable locally finite.

Proof (continued). Now E_n may not cover X for any given $n \in \mathbb{N}$ (see Figure 39.2), so consider $\mathcal{E} = \bigcup_{n=1}^{\infty} E_n$. Let $x \in X$. We hypothesized that A was a covering of X, so use the well-ordering on A to choose U as the “first” (that is, \prec-least) element of A that contains x. Since U is open (by hypothesis), there is some $n \in \mathbb{N}$ such that $B(x, 1/n) \subset U$ (since the topology on X is hypothesized to be the metric topology under metric d). Then by the definition of $S_n(U)$, $x \in S_n(U)$. Since U is the “first” element of A that contains x, then by the definition of $T_n(U)$ we have $x \in T_n(U)$. Since $T_n(U) \subset E_n(U)$, then $x \in E_n(U)$. Therefore, \mathcal{E} is a covering of X.
Lemma 39.2. Let X be a metrizable space. If \mathcal{A} is an open covering of X, then there is an open covering \mathcal{E} of X refining \mathcal{A} that is countable locally finite.

Proof (continued). Now \mathcal{E}_n may not cover X for any given $n \in \mathbb{N}$ (see Figure 39.2), so consider $\mathcal{E} = \bigcup_{n=1}^{\infty} \mathcal{E}_n$. Let $x \in X$. We hypothesized that \mathcal{A} was a covering of X, so use the well-ordering on \mathcal{A} to choose U as the “first” (that is, \prec-least) element of \mathcal{A} that contains x. Since U is open (by hypothesis), there is some $n \in \mathbb{N}$ such that $B(x, 1/n) \subset U$ (since the topology on X is hypothesized to be the metric topology under metric d). Then by the definition of $S_n(U)$, $x \in S_n(U)$. Since U is the “first” element of \mathcal{A} that contains x, then by the definition of $T_n(U)$ we have $x \in T_n(U)$. Since $T_n(U) \subset E_n(U)$, then $x \in E_n(U)$. Therefore, \mathcal{E} is a covering of X.

Since each \mathcal{E}_n is a refinement of \mathcal{A} then \mathcal{E} is a refinement of \mathcal{A} and since each \mathcal{E}_n is locally finite, then \mathcal{E} is countably locally finite, as claimed. \square
Lemma 39.2 (continued 4)

Lemma 39.2. Let X be a metrizable space. If \mathcal{A} is an open covering of X, then there is an open covering \mathcal{E} of X refining \mathcal{A} that is countable locally finite.

Proof (continued). Now \mathcal{E}_n may not cover X for any given $n \in \mathbb{N}$ (see Figure 39.2), so consider $\mathcal{E} = \bigcup_{n=1}^{\infty} \mathcal{E}_n$. Let $x \in X$. We hypothesized that \mathcal{A} was a covering of X, so use the well-ordering on \mathcal{A} to choose U as the “first” (that is, $<\text{-}least$) element of \mathcal{A} that contains x. Since U is open (by hypothesis), there is some $n \in \mathbb{N}$ such that $B(x, 1/n) \subset U$ (since the topology on X is hypothesized to be the metric topology under metric d). Then by the definition of $S_n(U)$, $x \in S_n(U)$. Since U is the “first” element of \mathcal{A} that contains x, then by the definition of $T_n(U)$ we have $x \in T_n(U)$. Since $T_n(U) \subset E_n(U)$, then $x \in E_n(U)$. Therefore, \mathcal{E} is a covering of X. Since each \mathcal{E}_n is a refinement of \mathcal{A} then \mathcal{E} is a refinement of \mathcal{A} and since each \mathcal{E}_n is locally finite, then \mathcal{E} is countably locally finite, as claimed. \qed