Lemma 40.1 (continued 1)

Proof. We follow Munkres' three-step proof.

1. **Step 1.** Let \(W \) be an open set in \(X \). We claim there is a countable family of \(\mathcal{G} \)-sets that are disjoint open sets with \(C \cap \bigcup(W \mathcal{G}) = \emptyset \).

2. **Step 2.** Let \(\mathcal{G} \) be a \(\mathcal{G} \)-family of disjoint open sets in \(X \).

3. **Step 3.** We now show that \(\mathcal{G} \) is a \(\mathcal{G} \)-family.

Lemma 40.1 (continued 2)

Proof. Applying the regularity to point \(x \) and closed set \(\overline{C} \), the set \(X \setminus \overline{C} \) is regular. Since \(\overline{C} \) is closed, we can find \(\mathcal{G} \)-sets \(G_n \), one for each \(x \in \overline{C} \), such that \(x \in G_n \) and \(G_n \cap \overline{C} = \emptyset \). Since \(\bigcup G_n = \overline{C} \), we can choose \(\mathcal{G} \)-sets \(G_n \) such that \(\bigcup G_n = \overline{C} \). Since each \(G_n \) is locally finite, the union of countably many \(\mathcal{G} \)-sets is locally finite.

Theorem. The Nagata-Smitsuji Theorem. Let \(X \) be a regular space with a basis \(\mathcal{B} \) that is countably locally finite. Then \(X \) is normal.

Proof. Since \(X \) is normal, every closed set in \(X \) is a \(G_\delta \)-set in \(X \).
The intersection of these finite number of neighborhoods of x_0. Let V be the intersection of all these neighborhoods. Since V is an open set in \mathbb{R} and $x_0 \notin V$, there is an $\varepsilon > 0$ such that $B(x_0, \varepsilon) \not\subseteq V$. Let $V' = B(x_0, \varepsilon) \setminus V$. Then V' is an open set in \mathbb{R} and $x_0 \not\in V'$. We have shown that for each $x \in X$ there is a basis element $B(x, \varepsilon)$ such that $B(x, \varepsilon) \subseteq V$ or $B(x, \varepsilon) \subseteq V'$.

Notice that the union of all $B(x, \varepsilon)$ for $x \in X$ is X. Therefore, \mathcal{B} is a basis for X.

Proof (continued): To show that \mathcal{B} is a basis for X, we need to prove that if U is any open set in X, then $U = \bigcup_{B \in \mathcal{B}} B$. Let U be any open set in X. Then U is the union of all basis elements $B \subseteq U$. Thus $U = \bigcup_{B \in \mathcal{B}} B$.

Theorem 4.3 (continued): The Nagerman-Minh-Dong Metrization Theorem

Lemma 4.2. Let $x_0 \in X$. Then x_0 is a limit point of X if and only if x_0 is not in a closed set.

Theorem 4.3. The Nagerman-Minh-Dong Metrization Theorem

Lemma 4.3. The Nagerman-Minh-Dong Metrization Theorem

Theorem 4.4. The Nagerman-Minh-Dong Metrization Theorem

Proof. First, assume X is regular with a countably locally finite basis. Then each compact subset of X can be covered by a countable family of basis elements.

Theorem 4.5. The Nagerman-Minh-Dong Metrization Theorem

Lemma 4.4. The Nagerman-Minh-Dong Metrization Theorem

Theorem 4.6. The Nagerman-Minh-Dong Metrization Theorem

Proof. This was shown in Section 33. Exercise 33.4. We prove it now.

Theorem 4.7. The Nagerman-Minh-Dong Metrization Theorem

Lemma 4.5. The Nagerman-Minh-Dong Metrization Theorem

Theorem 4.8. The Nagerman-Minh-Dong Metrization Theorem

Proof. This was shown in Section 34. Exercise 34.4. We prove it now.

Theorem 4.9. The Nagerman-Minh-Dong Metrization Theorem

Lemma 4.6. The Nagerman-Minh-Dong Metrization Theorem

Theorem 4.10. The Nagerman-Minh-Dong Metrization Theorem

Proof. This was shown in Section 35. Exercise 35.4. We prove it now.
Theorem 4.3 (continued)

Proof (continued). Given $x \in X$ and $\epsilon > 0$, there is some $m \in \mathbb{N}$ with $1/m < \epsilon/2$. There is some open covering of X by definition of B^m, there is some open covering of X by definition of B^m, there is some open covering of X by definition of B^m.

A topological space X is metrizable if and only if X is regular and has a basis that is countably locally finite. A topological space X is metrizable if and only if X is regular and has a basis that is countably locally finite.

Theorem 4.3 (The Nagata-Smirnov Metrization Theorem)

Proof (continued). Now suppose X is metrizable. Then X is normal by Theorem 3.2 and therefore is regular (since every normal space is regular).

Therefore $\exists \epsilon > 0$ such that $B^m \cap \{x \in X^m \mid \langle x \rangle < \epsilon \}$ is a neighborhood of x. By Lemma 3.9, 2.3 open balls of radius $1/m$ of any $x \in X^m$ is a neighborhood of x.

Now to show X has a basis that is countably locally finite. A basis for X is regular and so X is metrizable. Then $\exists \epsilon > 0$ such that $B^m \cap \{x \in X^m \mid \langle x \rangle < \epsilon \}$ is a neighborhood of x. By Lemma 3.9, 2.3 open balls of radius $1/m$ of any $x \in X^m$ is a neighborhood of x.

Now to show X has a basis that is countably locally finite. A basis for X is regular and so X is metrizable. Then $\exists \epsilon > 0$ such that $B^m \cap \{x \in X^m \mid \langle x \rangle < \epsilon \}$ is a neighborhood of x. By Lemma 3.9, 2.3 open balls of radius $1/m$ of any $x \in X^m$ is a neighborhood of x.

Now to show X has a basis that is countably locally finite. A basis for X is regular and so X is metrizable. Then $\exists \epsilon > 0$ such that $B^m \cap \{x \in X^m \mid \langle x \rangle < \epsilon \}$ is a neighborhood of x. By Lemma 3.9, 2.3 open balls of radius $1/m$ of any $x \in X^m$ is a neighborhood of x.