Lemma 45.2. A metric space (X, d) is compact if and only if it is sequentially compact.

Proof. Suppose X is sequentially compact. Then every sequence in X has a convergent subsequence, since X is a Cauchy-complete metric space. Therefore, for each n, there exists a convergent subsequence (a_{n+1}) of (a_n), which converges to a point x_n. Now, choose $n < k$ such that $k - n > 2$. Now, for $j > k$, the points a_j and a_k are contained in ball $B_r(1/n, 1/n)$ and lie in X_n, where X_n is the finite subset of X_n.

Section 45. Compactness in Metric Spaces—Proofs of Theorems
Lemma 4.3 (continued)

Let $\mathcal{P}(\mathcal{X}, \mathcal{Y})$ be the collection of all functions $f: \mathcal{X} \rightarrow \mathcal{Y}$. Let \mathcal{X} be an arbitrary point of \mathcal{X}. Since \mathcal{X} is an arbitrary point of \mathcal{X}, there is a corresponding neighborhood of \mathcal{X}, for any α, there is a corresponding neighborhood of \mathcal{X}.

Therefore, \mathcal{X} is an arbitrary point of \mathcal{X} since \mathcal{X} is an arbitrary point of \mathcal{X}.

Lemma 4.3 (continued)

Let \mathcal{X} be a topological space and let $\mathcal{P}(\mathcal{X}, \mathcal{Y})$ be an arbitrary point of \mathcal{X}. Since \mathcal{X} is an arbitrary point of \mathcal{X}, there is a corresponding neighborhood of \mathcal{X}, for any α, there is a corresponding neighborhood of \mathcal{X}.

Therefore, \mathcal{X} is an arbitrary point of \mathcal{X} since \mathcal{X} is an arbitrary point of \mathcal{X}.

Lemma 4.3 (continued)

Let \mathcal{X} be a topological space and let $\mathcal{P}(\mathcal{X}, \mathcal{Y})$ be an arbitrary point of \mathcal{X}. Since \mathcal{X} is an arbitrary point of \mathcal{X}, there is a corresponding neighborhood of \mathcal{X}, for any α, there is a corresponding neighborhood of \mathcal{X}.

Therefore, \mathcal{X} is an arbitrary point of \mathcal{X} since \mathcal{X} is an arbitrary point of \mathcal{X}.

Lemma 4.3 (continued)

Let \mathcal{X} be a topological space and let $\mathcal{P}(\mathcal{X}, \mathcal{Y})$ be an arbitrary point of \mathcal{X}. Since \mathcal{X} is an arbitrary point of \mathcal{X}, there is a corresponding neighborhood of \mathcal{X}, for any α, there is a corresponding neighborhood of \mathcal{X}.

Therefore, \mathcal{X} is an arbitrary point of \mathcal{X} since \mathcal{X} is an arbitrary point of \mathcal{X}.

Lemma 4.3 (continued)

Let \mathcal{X} be a topological space and let $\mathcal{P}(\mathcal{X}, \mathcal{Y})$ be an arbitrary point of \mathcal{X}. Since \mathcal{X} is an arbitrary point of \mathcal{X}, there is a corresponding neighborhood of \mathcal{X}, for any α, there is a corresponding neighborhood of \mathcal{X}.

Therefore, \mathcal{X} is an arbitrary point of \mathcal{X} since \mathcal{X} is an arbitrary point of \mathcal{X}.

Lemma 4.3 (continued)

Let \mathcal{X} be a topological space and let $\mathcal{P}(\mathcal{X}, \mathcal{Y})$ be an arbitrary point of \mathcal{X}. Since \mathcal{X} is an arbitrary point of \mathcal{X}, there is a corresponding neighborhood of \mathcal{X}, for any α, there is a corresponding neighborhood of \mathcal{X}.

Therefore, \mathcal{X} is an arbitrary point of \mathcal{X} since \mathcal{X} is an arbitrary point of \mathcal{X}.

Lemma 4.3 (continued)

Let \mathcal{X} be a topological space and let $\mathcal{P}(\mathcal{X}, \mathcal{Y})$ be an arbitrary point of \mathcal{X}. Since \mathcal{X} is an arbitrary point of \mathcal{X}, there is a corresponding neighborhood of \mathcal{X}, for any α, there is a corresponding neighborhood of \mathcal{X}.

Therefore, \mathcal{X} is an arbitrary point of \mathcal{X} since \mathcal{X} is an arbitrary point of \mathcal{X}.

Lemma 4.3 (continued)

Let \mathcal{X} be a topological space and let $\mathcal{P}(\mathcal{X}, \mathcal{Y})$ be an arbitrary point of \mathcal{X}. Since \mathcal{X} is an arbitrary point of \mathcal{X}, there is a corresponding neighborhood of \mathcal{X}, for any α, there is a corresponding neighborhood of \mathcal{X}.

Therefore, \mathcal{X} is an arbitrary point of \mathcal{X} since \mathcal{X} is an arbitrary point of \mathcal{X}.

Lemma 4.3 (continued)

Let \mathcal{X} be a topological space and let $\mathcal{P}(\mathcal{X}, \mathcal{Y})$ be an arbitrary point of \mathcal{X}. Since \mathcal{X} is an arbitrary point of \mathcal{X}, there is a corresponding neighborhood of \mathcal{X}, for any α, there is a corresponding neighborhood of \mathcal{X}.

Therefore, \mathcal{X} is an arbitrary point of \mathcal{X} since \mathcal{X} is an arbitrary point of \mathcal{X}.

Lemma 4.3 (continued)

Let \mathcal{X} be a topological space and let $\mathcal{P}(\mathcal{X}, \mathcal{Y})$ be an arbitrary point of \mathcal{X}. Since \mathcal{X} is an arbitrary point of \mathcal{X}, there is a corresponding neighborhood of \mathcal{X}, for any α, there is a corresponding neighborhood of \mathcal{X}.

Therefore, \mathcal{X} is an arbitrary point of \mathcal{X} since \mathcal{X} is an arbitrary point of \mathcal{X}.

Lemma 4.3 (continued)

Let \mathcal{X} be a topological space and let $\mathcal{P}(\mathcal{X}, \mathcal{Y})$ be an arbitrary point of \mathcal{X}. Since \mathcal{X} is an arbitrary point of \mathcal{X}, there is a corresponding neighborhood of \mathcal{X}, for any α, there is a corresponding neighborhood of \mathcal{X}.

Therefore, \mathcal{X} is an arbitrary point of \mathcal{X} since \mathcal{X} is an arbitrary point of \mathcal{X}.
Theorem 4.1.4 (continued 3)

Theorem 4.1.4 (continued 2)

Theorem 4.4.2

Theorem 4.4.3

Theorem 4.4.4 (continued 1)

Theorem 4.4.4 (continued 2)

Theorem 4.5.4. The Classical Version of Ascoli's Theorem.
Theorem 4.2: If \mathcal{F} is a compact, complete, and totally bounded subset of X, then \mathcal{F} is compact.

Proof (continued). By Step 2, \mathcal{F} is equicontinuous and pointwise bounded under d. Since \mathcal{F} is compact, \mathcal{F} is bounded. Therefore, \mathcal{F} is also equicontinuous.

Thus, by Theorem 2.1, \mathcal{F} is compact.

Corollary 4.5: Let X be a compact space. Then \mathcal{F} is a closed subset of X.

Proof. By the Heine-Borel Theorem, \mathcal{F} is the desired compact subset of X.

For all $x \in X$, let $\mathcal{F} = (I + N)0 \mathcal{F}$. Then \mathcal{F} is closed, since it is the uniform closure of the set $\{x \in X : \langle x, y \rangle \leq 0\}$ for all $y \in \mathcal{F}$.

Since \mathcal{F} is bounded, there exists a covering of \mathcal{F} by open sets U_i such that \mathcal{F} is covered by finitely many U_i.

Therefore, \mathcal{F} is compact.

Conversely, if \mathcal{F} is closed, then $\mathcal{F} = \mathcal{F}$, and \mathcal{F} is bounded under d. Thus, \mathcal{F} is compact, and \mathcal{F} is equicontinuous.

Theorem 4.4: If \mathcal{F} is a compact, complete, and totally bounded subset of X, then \mathcal{F} is equicontinuous.

Proof. By Theorem 2.1, \mathcal{F} is compact. Therefore, \mathcal{F} is bounded. Since \mathcal{F} is compact, \mathcal{F} is equicontinuous.

Corollary 4.5: Let X be a compact space. Then \mathcal{F} is closed.

Proof. By the Heine-Borel Theorem, \mathcal{F} is the desired compact subset of X.

For all $x \in X$, let $\mathcal{F} = (I + N)0 \mathcal{F}$. Then \mathcal{F} is closed, since it is the uniform closure of the set $\{x \in X : \langle x, y \rangle \leq 0\}$ for all $y \in \mathcal{F}$.

Since \mathcal{F} is bounded, there exists a covering of \mathcal{F} by open sets U_i such that \mathcal{F} is covered by finitely many U_i.

Therefore, \mathcal{F} is compact.

Conversely, if \mathcal{F} is closed, then $\mathcal{F} = \mathcal{F}$, and \mathcal{F} is bounded under d. Thus, \mathcal{F} is compact, and \mathcal{F} is equicontinuous.