Chapter 9. The Fundamental Group
Section 59. The Fundamental Group of S^n—Proofs of Theorems
Table of contents

1 Theorem 59.1

2 Corollary 59.2

3 Theorem 59.3
Theorem 59.1. Suppose \(X = U \cup V \) where \(U \) and \(V \) are open sets of \(X \). Suppose that \(U \cap V \) is path connected and that \(x_0 \in U \cap V \). Let \(i \) and \(j \) be the inclusion mappings of \(U \) and \(V \), respectively, into \(X \). Then the images of the induced homomorphisms

\[
i_* : \pi_1(U, x_0) \to \pi_1(X, x_0) \quad \text{and} \quad j_* : \pi_1(V, x_0) \to \pi_1(X, x_0)
\]

(1) generate the group \(\pi_1(X, x_0) \).

Proof. Recall that if group \(G \) is generated by elements \(a_i \in G \) where \(i \in I \), then the elements of \(G \) are all finite products of integer powers of the \(a_i \) (Fraleigh’s Theorem 7.6). So the claim of this theorem is that any loop \(f \) in \(X \) based at \(x_0 \) is path homotopic to a product of the form \((g_1 \ast (g_2 \ast (\ldots \ast g_n)))\) where each \(g_i \) is a loop in \(X \) based at \(x_0 \) that lies either in \(U \) or \(V \).
Theorem 59.1

Theorem 59.1. Suppose $X = U \cup V$ where U and V are open sets of X. Suppose that $U \cap V$ is path connected and that $x_0 \in U \cap V$. Let i and j be the inclusion mappings of U and V, respectively, into X. Then the images of the induced homomorphisms

$$i_* : \pi_1(U, x_0) \to \pi_1(X, x_0) \text{ and } j_* : \pi_1(V, x_0) \to \pi_1(X, x_0)$$

(1)

generate the group $\pi_1(X, x_0)$.

Proof. Recall that if group G is generated by elements $a_i \in G$ where $i \in I$, then the elements of G are all finite products of integer powers of the a_i (Fraleigh’s Theorem 7.6). So the claim of this theorem is that any loop f in X based at x_0 is path homotopic to a product of the form $(g_1 * (g_2 * (\ldots * g_n)))$ where each g_i is a loop in X based at x_0 that lies either in U or V.

STEP 1 Choose a subdivision $0 = b_0 < b_1 < \ldots < b_m = 1$ of $[0, 1]$ such that for each i, the set $f([b_{i-1}, b_i])$ is contained in either U or V (which can be done since path f in X is compact) (Munkres cites the Lebesgue Number Lemma [],). If $f(b_i) \in U \cap V$ for all i, we stop. If not, let i be an index such that $f(b_i) \notin U \cap V$.
Theorem 59.1

STEP 1 Choose a subdivision $0 = b_0 < b_1 < \ldots < b_m = 1$ of $[0, 1]$ such that for each i, the set $f([b_{i-1}, b_i])$ is contained in either U or V (which can be done since path f in X is compact) (Munkres cites the Lebesgue Number Lemma [],) If $f(b_i) \in U \cap V$ for all i, we stop. If not, let i be an index such that $f(b_i) \notin U \cap V$. For this index value, each of the sets $f([b_{i-1}, b_i])$ and $f([b_i, b_{i+1}])$ lies either in U or in V. If $f(b_i) \in U$ then both of these sets must lie in U; if $f(b_i) \in V$ then both of these sets must lie in V.

Theorem 59.1

STEP 1 Choose a subdivision $0 = b_0 < b_1 < ... < b_m = 1$ of $[0, 1]$ such that for each i, the set $f([b_{i-1}, b_i])$ is contained in either U or V (which can be done since path f in X is compact) (Munkres cites the Lebesgue Number Lemma []). If $f(b_i) \in U \cap V$ for all i, we stop. If not, let i be an index such that $f(b_i) \notin U \cap V$. For this index value, each of the sets $f([b_{i-1}, b_i])$ and $f([b_i, b_{i+1}])$ lies either in U or in V. If $f(b_i) \in U$ then both of these sets must lie in U; if $f(b_i) \in V$ then both of these sets must lie in V. In either case, delete b_i from the partition, producing the new partition

$$0 = b_0 < b_1 < ... < b_{i-1} < b_i < b_{i+1} < ... < b_m = 1$$ (2)
Theorem 59.1

STEP 1 Choose a subdivision $0 = b_0 < b_1 < ... < b_m = 1$ of $[0, 1]$ such that for each i, the set $f([b_{i-1}, b_i])$ is contained in either U or V (which can be done since path f in X is compact) (Munkres cites the Lebesgue Number Lemma [],) If $f(b_i) \in U \cap V$ for all i, we stop. If not, let i be an index such that $f(b_i) \notin U \cap V$. For this index value, each of the sets $f([b_{i-1}, b_i])$ and $f([b_i, b_{i+1}])$ lies either in U or in V. If $f(b_i) \in U$ then both of these sets must lie in U; if $f(b_i) \in V$ then both of these sets must lie in V. In either case, delete b_i from the partition, producing the new partition

$$0 = b_0 < b_1 < ... < b_{i-1} < b_i < b_{i+1} < ... < b_m = 1$$

(2)

Perform this process over each index value and the process yields a partition $0 = a_0 < a_1 < ... < a_n = 1$ of $[0, 1]$ such that $f(a_i) \in U \cap V$ for all i and $f([a_{i-1}, a_i])$ is contained either in U or in V for all i.
Theorem 59.1

STEP 1 Choose a subdivision \(0 = b_0 < b_1 < \ldots < b_m = 1\) of \([0, 1]\) such that for each \(i\), the set \(f([b_{i-1}, b_i])\) is contained in either \(U\) or \(V\) (which can be done since path \(f\) in \(X\) is compact) (Munkres cites the Lebesgue Number Lemma \([\text{]}\))

If \(f(b_i) \in U \cap V\) for all \(i\), we stop. If not, let \(i\) be an index such that \(f(b_i) \notin U \cap V\). For this index value, each of the sets \(f([b_{i-1}, b_i])\) and \(f([b_i, b_{i+1}])\) lies either in \(U\) or in \(V\). If \(f(b_i) \in U\) then both of these sets must lie in \(U\); if \(f(b_i) \in V\) then both of these sets must lie in \(V\). In either case, delete \(b_i\) from the partition, producing the new partition

\[0 = b_0 < b_1 < \ldots < b_{i-1} < b_i < b_{i+1} < \ldots < b_m = 1\]

(2)

Perform this process over each index value and the process yields a partition \(0 = a_0 < a_1 < \ldots < a_n = 1\) of \([0, 1]\) such that \(f(a_i) \in U \cap V\) for all \(i\) and \(f([a_{i-1}, a_i])\) is contained either in \(U\) or in \(V\) for all \(i\).
Theorem 59.1

STEP 2 Given \(f \), let \(0 = a_0 < a_1 < \ldots < a_n = 1 \) be a partition of the sort constructed in STEP 1. Define \(f_i \) to be the path in \(X \) that equals the positive linear map of \([0, 1]\) onto \([a_{i-1}, a_i]\) followed by \(f \); so \(f_i : [0, 1] \to f|_{[a_{i-1}, a_i]} \).

So \(f_i \) is a path that lies either in \(U \) or in \(V \), and by Theorem 51.3, \([f] = [f_1] \ast [f_2] \ast \ldots \ast [f_n] \).
Theorem 59.1

STEP 2 Given \(f \), let \(0 = a_0 < a_1 < \ldots < a_n = 1 \) be a partition of the sort constructed in STEP 1. Define \(f_i \) to be the path in \(X \) that equals the positive linear map of \([0, 1]\) onto \([a_{i-1}, a_i]\) followed by \(f \); so \(f_i : [0, 1] \to f|_{[a_{i-1}, a_i]} \).

So \(f_i \) is a path that lies either in \(U \) or in \(V \), and by Theorem 51.3, \([f] = [f_1] \ast [f_2] \ast \ldots \ast [f_n] \).

For each index \(i \), choose a path \(\alpha_i \) in \(U \cap V \) from \(x_0 \) to \(f(a_i) \) (which can be done since \(U \cap V \) is path connected). Since \(f(a_0) = f(a_n) = x_0 \), we can choose \(\alpha_0 \) and \(\alpha_n \) to be the constant path at \(x_0 \).
STEP 2 Given f, let $0 = a_0 < a_1 < ... < a_n = 1$ be a partition of the sort constructed in STEP 1. Define f_i to be the path in X that equals the positive linear map of $[0, 1]$ onto $[a_{i-1}, a_i]$ followed by f; so $f_i : [0, 1] \rightarrow f|_{[a_{i-1}, a_i]}$.

So f_i is a path that lies either in U or in V, and by Theorem 51.3, $[f] = [f_1] * [f_2] * ... * [f_n]$.

For each index i, choose a path α_i in $U \cap V$ from x_0 to $f(a_i)$ (which can be done since $U \cap V$ is path connected). Since $f(a_0) = f(a_n) = x_0$, we can choose α_0 and α_n to be the constant path at x_0.
Theorem 59.1

Now set \(f_i = (\alpha_{i-1} * f_i) * \bar{\alpha}_i \) for each \(i \). Then \(g_i \) is a loop in \(X \) based at \(x_0 \) whose image lies either in \(U \) or in \(V \). Now

\[
[g_1] * [g_2] * [g_3] * \ldots * [g_n] = [\alpha_0 * f_1 * \bar{\alpha}_1] * [\alpha_1 * f_2 * \bar{\alpha}_2] * [\alpha_2 * f_3 * \bar{\alpha}_3] * \ldots * [\alpha_{n-1} * f_n * \bar{\alpha}_n] \\
= [\alpha_0] * [f_1] * [\bar{\alpha}_1] * [\alpha_1] * [f_2] * [\bar{\alpha}_2] * [\alpha_2] * [f_3] * [\bar{\alpha}_3] * \ldots * [\alpha_{n-1}] * [f_n] * [\bar{\alpha}_n] \text{ by definition of } [\alpha_{i-1} * f_i * \bar{\alpha}_i] \\
= [f_1] * [f_2] * \ldots * [f_n] \\
= [f] \tag{3}
\]

So arbitrary path \(f \) is path homotopic to a product of loops \(g_i \) where each \(g_i \) is a loop in \(X \) based at \(x_0 \) whose image lies either in \(U \) or in \(V \). That is, either \([g_i] \in \pi_1(U, x_0)\) or \([g_i] \in \pi_1(V, x_0)\) for all \(i \).
Theorem 59.1

Now set $f_i = (\alpha_{i-1} * f_i) * \bar{\alpha}_i$ for each i. Then g_i is a loop in X based at x_0 whose image lies either in U or in V. Now

$$[g_1] * [g_2] * [g_3] * ... * [g_n] = [\alpha_0 * f_1 * \bar{\alpha}_1] * [\alpha_1 * f_2 * \bar{\alpha}_2] * [\alpha_2 * f_3 * \bar{\alpha}_3] *$$

$$... * [\alpha_{n-1} * f_n * \bar{\alpha}_n]$$

$$= [\alpha_0] * [f_1] * [\bar{\alpha}_1] * [\alpha_1] * [f_2] * [\bar{\alpha}_2] * [\alpha_2] * [f_3] *$$

$$[\bar{\alpha}_3] * ... * [\alpha_{n-1}] * [f_n] * [\bar{\alpha}_n] \text{ by definition}$$

$$of [\alpha_{i-1} * f_i * \bar{\alpha}_i]$$

$$= [f_1] * [f_2] * ... * [f_n]$$

$$= [f]$$

(3)

So arbitrary path f is path homotopic to a product of loops g_i where each g_i is a loop in X based at x_0 whose image lies either in U or in V. That is, either $[g_i] \in \pi_1(U, x_0)$ or $[g_i] \in \pi_1(V, x_0)$ for all i. □
Corollary 59.2. Suppose \(X = U \cup V \) where \(U \) and \(V \) are open sets of \(X \). Suppose \(U \cap V \) is nonempty and path connected. If \(U \) and \(V \) are simply connected then \(X \) is simply connected.

Proof. By the definition of simply connected, we know that \(U \) and \(V \) are path connected and \(\pi_1(U, x_0) \cong \pi_1(V, x_0) \cong \{e\} \) for some \(x_0 \in U \cap V \). The hypothesis of Theorem 59.1 are satisfied and the images of \(i_* \) and \(j_* \) as given in Theorem 59.1 consist of the identity of \(\pi_1(X, x_0) \cong \{e\} \). Since \(U \) and \(V \) are path connected and \(U \cap V \) is nonempty, then \(X = U \cup V \) is path connected. So by definition, \(X \) is simply connected. \(\square \)
Corollary 59.2. Suppose $X = U \cup V$ where U and V are open sets of X. Suppose $U \cap V$ is nonempty and path connected. If U and V are simply connected then X is simply connected.

Proof. By the definition of simply connected, we know that U and V are path connected and $\pi_1(U, x_0) \cong \pi_1(V, x_0) \cong \{e\}$ for some $x_0 \in U \cap V$. The hypothesis of Theorem 59.1 are satisfied and the images of i_* and j_* as given in Theorem 59.1 consist of the identity of $\pi_1(X, x_0) \cong \{e\}$. Since U and V are path connected and $U \cap V$ is nonempty, then $X = U \cup V$ is path connected. So by definition, X is simply connected. □
Theorem 59.3

Theorem 59.3. If $n \geq 2$, the n-sphere is simply connected.

Proof. Let $\bar{p} = (0, 0, 0, 1) \in \mathbb{R}^{n+1}$ and $\bar{q} = (0, 0, ..., -1)$ be the "north pole" and the "south pole" of S^n, respectively, where S^n is considered as embedded in \mathbb{R}^{n+1} as

$$S^n = \{(x_1, x_2, ..., x_{n+1}) | x_1^2 + x_2^2 + ... + x_{n+1}^2 = 1\}. \quad (4)$$

STEP 1 Define $f_i(S^n - \{\bar{p}\}) \rightarrow \mathbb{R}^n$ by the equation

$$f(\bar{x}) = f(x_1, ..., x_{n+1}) = \frac{1}{1 - x_{n+1}}(x_1, ..., x_n). \quad (5)$$
Theorem 59.3. If $n \geq 2$, the n-sphere is simply connected.

Proof. Let $\vec{p} = (0, 0, 0, 1) \in \mathbb{R}^{n+1}$ and $\vec{q} = (0, 0, \ldots, -1)$ be the "north pole" and the "south pole" of S^n, respectively, where S^n is considered as embedded in \mathbb{R}^{n+1} as

$$S^n = \{(x_1, x_2, \ldots, x_{n+1})| x_1^2 + x_2^2 + \ldots + x_{n+1}^2 = 1\}. \quad (4)$$

STEP 1 Define $f_i(S^n - \{\vec{p}\}) \rightarrow \mathbb{R}^n$ by the equation

$$f(\vec{x}) = f(x_1, \ldots, x_{n+1}) = \frac{1}{1 - x_{n+1}}(x_1, \ldots, x_n). \quad (5)$$

The map f is called the stereographic projection. (If we take the line in \mathbb{R}^{n+1} through \vec{p} and $\vec{x} \in S^n - \{\vec{p}\}$ then this line intersects the n-plane $\mathbb{R}^n \times \{0\} \subset \mathbb{R}^{n+1}$ at the point $f(\vec{x}) \times \{0\}$. This projection is used in complex analysis to map S^2 to the extended complex plane.)
Theorem 59.3

Theorem 59.3. If $n \geq 2$, the n-sphere is simply connected.

Proof. Let $\vec{p} = (0, 0, 0, 1) \in \mathbb{R}^{n+1}$ and $\vec{q} = (0, 0, ..., -1)$ be the "north pole" and the "south pole" of S^n, respectively, where S^n is considered as embedded in \mathbb{R}^{n+1} as

$$S^n = \{(x_1, x_2, ..., x_{n+1}) | x_1^2 + x_2^2 + ... + x_{n+1}^2 = 1\}. \quad (4)$$

STEP 1 Define $f_i(S^n - \{\vec{p}\}) \to \mathbb{R}^n$ by the equation

$$f(\vec{x}) = f(x_1, ..., x_{n+1}) = \frac{1}{1 - x_{n+1}}(x_1, ..., x_n). \quad (5)$$

The map f is called the stereographic projection. (If we take the line in \mathbb{R}^{n+1} through \vec{p} and $\vec{x} \in S^n - \{\vec{p}\}$ then this line intersects the n-plane $\mathbb{R}^n \times \{0\} \subset \mathbb{R}^{n+1}$ at the point $f(\vec{x}) \times \{0\}$. This projection is used in complex analysis to map S^2 to the extended complex plane.)
Theorem 59.3

Consider the map \(g : \mathbb{R}^n \to (S^n - \{\vec{p}\}) \) given by

\[
g(\vec{y}) = g(y_1, \ldots, y_n) = (t(y) \cdot y_1, \ldots, t(y) \cdot y_n, 1 - t(y))
\]

where \(t(y) = \frac{2}{(1 + \|\vec{y}\|^2)} \). Then \(g \) is a left and right inverse of \(f \). So \(f \) is a bijection, \(f \) is continuous on \(S^n - \{\vec{p}\} \), and \(f^{-1} = g \) is continuous on \(\mathbb{R}^n \). So \(f \) is a homeomorphism between \(S^n - \{\vec{p}\} \) and \(\mathbb{R}^n \).
Consider the map \(g : \mathbb{R}^n \to (S^n - \{ \vec{p} \}) \) given by

\[
g(\vec{y}) = g(y_1, ..., y_n) = (t(y) \cdot y_1, ..., t(y) \cdot y_n, 1 - t(y)) \tag{6}
\]

where \(t(y) = \frac{2}{(1 + \| \vec{y} \|^2)} \). Then \(g \) is a left and right inverse of \(f \). So \(f \) is a bijection, \(f \) is continuous on \(S^n - \{ \vec{p} \} \), and \(f^{-1} = g \) is continuous on \(\mathbb{R}^n \). So \(f \) is a homeomorphism between \(S^n - \{ \vec{p} \} \) and \(\mathbb{R}^n \).

Note that the reflection map \((x_1, ..., x_n, x_{n+1}) \to (x_1, ..., x_n, -x_{n+1})\) defines a homeomorphism of \(S^n - \{ \vec{p} \} \) with \(S^n - \{ \vec{q} \} \), so \(S^n - \{ \vec{q} \} \) is also homeomorphic to \(\mathbb{R}^n \).
Consider the map $g : \mathbb{R}^n \rightarrow (S^n - \{\vec{p}\})$ given by

$$g(\vec{y}) = g(y_1, ..., y_n) = (t(y) \cdot y_1, ..., t(y) \cdot y_n, 1 - t(y))$$ \hspace{1cm} (6)

where $t(y) = \frac{2}{(1 + \|\vec{y}\|^2)}$. Then g is a left and right inverse of f. So f is a bijection, f is continuous on $S^n - \{\vec{p}\}$, and $f^{-1} = g$ is continuous on \mathbb{R}^n. So f is a homeomorphism between $S^n - \{\vec{p}\}$ and \mathbb{R}^n.

Note that the reflection map $(x_1, ..., x_n, x_{n+1}) \rightarrow (x_1, ..., x_n, -x_{n+1})$ defines a homeomorphism of $S^n - \{\vec{p}\}$ with $S^n - \{\vec{q}\}$, so $S^n - \{\vec{q}\}$ is also homeomorphic to \mathbb{R}^n.
Theorem 59.3

STEP 2 Let $U = S^n - \{\vec{p}\}$ and $V = S^n - \{\vec{q}\}$. Then U and V are open sets in S^n.

First, for $n \geq 1$ the sphere S^n is path connected since U and V are path connected (they are homeomorphic to \mathbb{R}^n by STEP 1) and have the point $(1, 0, ..., 0)$ of S^n in common [for example].
Theorem 59.3

STEP 2 Let $U = S^n - \{ \bar{p} \}$ and $V = S^n - \{ \bar{q} \}$. Then U and V are open sets in S^n.

First, for $n \geq 1$ the sphere S^n is path connected since U and V are path connected (they are homeomorphic to \mathbb{R}^n by STEP 1) and have the point $(1, 0, ..., 0)$ of S^n in common [for example].

The space U and V are also simply connected, since they are homeomorphic to \mathbb{R}^n. $U \cap V = S^n \{ \bar{p}, \bar{q} \}$, which is homeomorphic under stereographic projection to $\mathbb{R}^n \{ (0, 0) \}$ (since stereographic projection maps \bar{q} to $(0, 0)$).
STEP 2 Let $U = S^n - \{\vec{p}\}$ and $V = S^n - \{\vec{q}\}$. Then U and V are open sets in S^n.

First, for $n \geq 1$ the sphere S^n is path connected since U and V are path connected (they are homeomorphic to \mathbb{R}^n by STEP 1) and have the point $(1, 0, ..., 0)$ of S^n in common [for example].

The space U and V are also simply connected, since they are homeomorphic to \mathbb{R}^n. $U \cap V = S^n \setminus \{\vec{p}, \vec{q}\}$, which is homeomorphic under stereographic projection to $\mathbb{R}^n \setminus \{(0, 0)\}$ (since stereographic projection maps \vec{q} to $(0, 0)$). Since $n \geq 2$, $\mathbb{R}^n \setminus \{(0, 0)\}$ is path connected because every point of $\mathbb{R}^n \setminus \{(0, 0)\}$ can be joined to a point of S^{n-1} by a straight-line path and S^{n-1} is path connected. So the hypotheses of Corollary 59.2 hold and S^n is simply connected.
Theorem 59.3

STEP 2 Let $U = S^n - \{\vec{p}\}$ and $V = S^n - \{\vec{q}\}$. Then U and V are open sets in S^n.

First, for $n \geq 1$ the sphere S^n is path connected since U and V are path connected (they are homeomorphic to \mathbb{R}^n by STEP 1) and have the point $(1, 0, ..., 0)$ of S^n in common [for example].

The space U and V are also simply connected, since they are homeomorphic to \mathbb{R}^n. $U \cap V = S^n \backslash \{\vec{p}, \vec{q}\}$, which is homeomorphic under stereographic projection to $\mathbb{R}^n \backslash \{(0, 0)\}$ (since stereographic projection maps \vec{q} to $(0, 0)$). Since $n \geq 2$, $\mathbb{R}^n \backslash \{(0, 0)\}$ is path connected because every point of $\mathbb{R}^n \backslash \{(0, 0)\}$ can be joined to a point of S^{n-1} by a straight-line path and S^{n-1} is path connected. So the hypotheses of Corollary 59.2 hold and S^n is simply connected.