Section 14. The Order Topology

Note. Munkres defines an order relation (which he refers to in this section as a “simple order”), denoted “<,” on a set \(A \) as a relation (see page 21) satisfying:

1. **Comparability:** For every \(x, y \in A \) for which \(x \neq y \), either \(x < y \) or \(y < x \).
2. **Nonreflexivity:** For no \(x \in A \) does the relation \(x < x \) hold.
3. **Transitivity:** If \(x < y \) and \(y < z \) then \(x < z \).

In this section, we use a simple order relation on a set to define a topology on the set.

Definition. Let \(X \) be a set. A *basis* for a topology on \(X \) is a collection \(\mathcal{B} \) of subsets of \(X \) (called *basis elements*) such that

1. For each \(x \in X \), there is at least one basis element \(B \in \mathcal{B} \) such that \(x \in B \).
2. If \(x \in B_1 \cap B_2 \) where \(B_1, B_2 \in \mathcal{B} \) then there is \(B_3 \in \mathcal{B} \) such that \(x \in B_3 \) and \(B_3 \subset B_2 \cap B_2 \).

The topology \(\mathcal{T} \) *generated by* \(\mathcal{B} \) is defined as: A subset \(U \subset X \) is in \(\mathcal{T} \) if for each \(x \in U \) there is \(B \in \mathcal{B} \) such that \(x \in B \) and \(B \subset U \). (Therefore each basis element is in \(\mathcal{T} \).)
Definition. Let \(X \) be a set with a simple order relation \(<\). The following sets are *intervals* in \(X \):

\[
(a, b) = \{ x \in X \mid a < x < b \} \quad \text{(open intervals)}
\]

\[
(a, b] = \{ x \in X \mid a < x \leq b \} \quad \text{(half-open intervals)}
\]

\[
[a, b) = \{ x \in X \mid a \leq x < b \} \quad \text{(half-open intervals)}
\]

\[
[a, b] = \{ x \in X \mid a \leq x \leq b \} \quad \text{(closed intervals)}.
\]

Definition. Let \(X \) be a set with a simple order relation and assume \(X \) has more than one element. Let \(\mathcal{B} \) be the collection of all sets of the following types:

1. All open intervals \((a, b)\) in \(X \).
2. All intervals of the form \([a_0, b)\) where \(a_0 \) is the least element (if one exists) of \(X \).
3. All intervals of the form \((a, b_0]\) where \(b_0 \) is the greatest element (if one exists) of \(X \).

The collection \(\mathcal{B} \) is a basis for a topology on \(X \) called the *order topology*.

Note. Of course we must verify that \(\mathcal{B} \) really is a basis for a topology.

Theorem 14.A. Let \(X \) be a set with a simple order relation and let \(\mathcal{B} \) consist of all open intervals \((a, b)\), all intervals \([a_0, b)\), and all intervals \((a, b_0]\), where \(a_0 \) is the least element of \(X \) and \(b_0 \) is the greatest element of \(X \) (if such exist). Then \(\mathcal{B} \) is a basis for a topology on \(X \).
Example 1. The standard topology on \mathbb{R} is the order topology based on the usual “less than” order on \mathbb{R}.

Example 2. We can put a simple order relation on \mathbb{R}^2 as follows: $(a, b) < (c, d)$ if either (1) $a < c$, or (2) $a = c$ and $b < d$. This is often called the lexicographic ordering (see my Complex Analysis 1 [MATH 5510] notes for a mention on the lexicographic ordering applied to \mathbb{C}: http://faculty.etsu.edu/gardnerr/5510/Ordering-C.pdf) or, as Munkres calls it, the dictionary order. These two types of open intervals under this simple order relation are then as follows:

![Diagram](image-url)

Notice that this can easily be generalized to \mathbb{R}^n.
Example 4. Let $X = \{1, 2\} \times \mathbb{N}$ with the dictionary order. Then $(1, 1)$ is the least element of X, though there is no greatest element of X. The ordering produces the inequalities: $(1, 1) < (1, 2) < (1, 3) < \cdots < (2, 1) < (2, 2) < \cdots$ where the first “\cdots” indicates that all elements of the form $(1, n)$ are present. Notice that all but one singleton is in the basis \mathcal{B} for the order topology:

- $(1, 1) = [(1, 1), (1, 2))$,
- $(1, n) = (1, n - 1), (1, n + 1))$ for $n > 1$,
- $(2, n) = (2, n - 1), (2, n + 1))$ for $n > 1$,

but a basis element containing $(2, 1)$ must be of the form (a, b) where $a < (2, 1)$ and $(2, 1) < b$. But then a is of the form $(1, n)$ for some $n \in \mathbb{N}$, so (a, b) contains an infinite number of elements of X less than $(2, 1)$. Now any open set containing $(2, 1)$ must contain a basis element about $(2, 1)$ and so the singleton $(2, 1)$ is the lone singleton in the topological space which is not open.

Definition. If X is a set with a simple order relation $<$, and $a \in X$ then there are four subsets of X, called *rays* determined by a. They are the following:

- $(a, +\infty) = \{x \in X \mid x > a\}$
- $(-\infty, a) = \{x \in X \mid x < a\}$
- $[a, +\infty) = \{x \in X \mid x \geq a\}$
- $(-\infty, a) = \{x \in X \mid x \leq a\}$.

The first two types of rays are called *open rays* and the last two types are called *closed rays*.
Note. The open rays in X are open sets in the order topology since:

(1) If X has a greatest element b_0 then $(a, +\infty) = (a, b_0] \in \mathcal{B}$ is given.

(2) If X does not have a greatest element then $(a, +\infty) = \sup_{x > a} (a, x)$ is open.

(3) If X has a least element a_0 then $(-\infty, a) = [a_0, a) \in \mathcal{B}$ is open.

(4) If X does not have a least element then $(-\infty, a) = \bigcup_{x < a} (x, a)$ is open.

Notice that we have not yet defined “closed set,” but we will in Section 17.

Theorem 14.B. Let X be a set with a simple order relation. The open rays form a subbasis for the order topology \mathcal{T} on X.

Revised: 5/29/2016