Section 44. A Space-Filling Curve

Note. In this section, we give the surprising result that there is a continuous function from the interval $[0, 1]$ onto the unit square $[0, 1] \times [0, 1]$.

Note. We first refer to Hans Sagan’s *Space-Filling Curves* (Springer-Verlag, Universitext series, 1994) for some historical comments.

Note. In 1878, George Cantor proved that the interval $[0, 1]$ and the square $[0, 1] \times [0, 1]$ have the same cardinality so that there is a one to one and onto function from $[0, 1]$ to $[0, 1] \times [0, 1]$. In 1879, E. Netto proved that such a function must be discontinuous (in “Beitrag zur Mannigfaltigkeitslehre,” *Crelle Journal*, 86, 265–268 (1879)). In 1890, Guiseppe Peano (1858–1912) constructed a continuous onto mapping from $[0, 1]$ to $[0, 1] \times [0, 1]$ (“Sur une courbe, qui remplit toute une aire plane,” *Mathematische Annalen*, 36(1), 157–160 (1890)). The result image of $[0, 1]$ is called a “space-filling curve” (or “Peano curve”) and satisfies the surprising property that the one-dimensional interval is continuously mapped onto the two-dimensional square! Additional examples were given by David Hilbert (1862–1943), Eliakim H. Moore (1862–1932), Henri Lebesgue (1875–1941), Waclaw Sierpiński (1882–1969), George Pólya (1887–1985) and others [Sagan, page 1]. The references for these works are:

Note. The exercises in this section have you show:

1. There is a continuous functions from \([0,1]\) onto \([0,1]^n\) for any given \(n \in \mathbb{N}\) (Exercise 44.1).

2. There is a continuous function from \(\mathbb{R}\) onto \(\mathbb{R}^n\) for any give \(n \in \mathbb{N}\) (Exercise 44.2).

3. There is not a continuous function from \(\mathbb{R}\) onto \(\mathbb{R}^\omega\) where \(\mathbb{R}^\omega\) is given the product topology (Exercise 44.3).

Note. The Hahn-Mazurkiewicz Theorem states that: “A non-empty Hausdorff topological space is a continuous image of the unit interval if and only if it is a compact, connected, weakly locally connected, metrizable space.” It is named for
Stefan Mazurkiewicz (1888–1945) and Hans Hahn (1879–1934). A Hausdorff space that is the continuous image of the closed unit interval is called a Peano space. See Exercise 44.4 for a little more information.

Theorem 44.1. Let $I = [0, 1]$. There exists a continuous map $f : I \to I^2$ whose image fills up the entire square I^2 (that is, f is onto).

Proof. We follow Munkres’ 4-step proof. In Steps 1 and 2 we define a sequence of continuous functions (f_n) where $f_n : I \to I^2$. In Step 3 we show that (f_n) is a Cauchy sequence and use the results of Section 43 to show that (f_n) converges to a continuous function $f : I \to I^2$. In Step 4 we show that f is onto.

Step 1. First, we map I into I^2 with $f_0 = g$ as shown in Figure 44.1. It is easy to express f_0 parametrically as

$$f_0(t) = \begin{cases} (t, t) & \text{for } t \in [0, 1/2] \\ (t, 1-t) & \text{for } t \in (1/2, 1]. \end{cases}$$

We then modify $f_0 = g$ to produce $f_1 = g'$ as shown in Figure 44.2. Partition I into 8 pieces and partition I^2 into 4 pieces such that $f_1 = g'$ behaves similarly on the upper two squares and $f_1 = g'$ behaves on the lower two squares as shown. We could describe $f_1 = g'$ piecewise using 8 pieces.
Step 2. We now partition each square of Figure 44.1 into 4 subsquares and produce f_2 as given in Figure 44.4. Each square is Figure 44.4 is further partitioned into 4 squares and f_3 produced as shown in Figure 44.5 (there are 64 subsquares in Figure 44.5, though only 16 of them are shown). The iterative process leads us to 4 cases in terms of how to define f_{n+1}, in terms of f. One of the cases is given in how g' is produced from g in Figures 44.1 and 44.2. The other three cases are symmetries of this case. If a square has f_n defined on it as given in Figure 44.1 rotated 180° (with the segment of f_n on this square starting and ending at the upper corners of the squares) then f_{n+1} on the subsquares is given in Figure 44.2 rotated 180°.

If a square has f_n defined as in Figure 44.3 then f_{n+1} is defined on the 4 subsquares as given by h' in Figure 44.3. If a square has f_n defined as it is given in Figure 44.3 rotated 180° (with the segment of f_n on the square starting and ending on the right corners of the square) then f_{n+1} on the subsquares is given by Figure 44.3 rotated 180°. Notice that f_n is defined on 4^n subsquares, each containing 2 linear pieces of f_n (so f_n consists of 2×4^n linear pieces) and that the length of a side of each subsquare is $1/2^n$.
Step 3. Let \(d(x, y) \) denote the square metric on \(\mathbb{R}^2 \):
\[
 d(x, y) = \max\{|x_1 - y_1|, |x_2 - y_2|\}
\]
(a metric on \(\mathbb{R}^n \) introduced in Section 20). Let \(\rho \) denote the corresponding sup metric on \((I, I^2)\):
\[
 \rho(f, g) = \sup\{d(f(t), g(t)) \mid t \in I\}.
\]
By Theorem 43.2, \(\mathbb{R}^2 \) is complete under \(\rho \). Since \(I^2 \) is closed in \(\mathbb{R}^2 \), then any Cauchy sequence in \(I^2 \) converges in \(\mathbb{R}^2 \), but the limit of the Cauchy sequence is a limit point of \(I^2 \) and since \(I^2 \) is closed, then the limit is in \(I^2 \). That is, any Cauchy sequence in \(I^2 \) converges in \(I^2 \). Hence \(I^2 \) is complete under \(\rho \). By Theorem 43.6, \(C(I, I^2) \) is complete in the metric \(\bar{\rho} \). Since a sequence is Cauchy under \(\rho \) if and only if it is Cauchy under \(\bar{\rho} \) (see the note on page 264 or the “Note” in the class notes before Lemma 43.1), then \(C(I, I^2) \) is complete in the metric \(\rho \).

We claim that \((f_n)\) is defined piecewise on \(4^n\) squares each with a side of length \(1/2^n\). Since \(f_{n+1} \) is based on \(f_n \) and each square is partitioned into 4 subsquares, then \(f_n \) under the square metric differed on each subsquare by at most \(1/2^n\). So \(\rho(f_n, f_{n+1}) \leq 1/2^n \). So by the Triangle Inequality
\[
 \rho(f_n, f_{n+m}) \leq \rho(f_n, f_{n+1}) + \rho(f_{n+1}, f_{n+2}) + \cdots + \rho(f_{n+m-1}, f_{n+m})
\]
\[
 \leq \frac{1}{2^n} + \frac{1}{2^{n+1}} + \cdots + \frac{1}{2^{n+m-1}} < \frac{1}{2^n} + \frac{1}{2^{n+2}} + \frac{1}{2^{n+2}} + \cdots = \frac{1/2^n}{1 - 1/2} = \frac{2}{2^n} = \frac{1}{2^{n-1}}
\]
for all \(m, n \in \mathbb{N} \). So for all \(\varepsilon > 0 \), there exists \(N \in \mathbb{N} \) such that \(1/2^{n-1} < \varepsilon \) and so for all \(m, n \geq N \) we have \(\rho(f_n, f_{n+m}) < \varepsilon \). That is, \((f_n)\) is a Cauchy sequence with respect to \(\rho \). Since \(C(I, I^2) \) is complete, then \((f_n)\) converges in \(C(I, I^2) \) and so there is continuous \(f : I \to I^2 \) such that \((f_n) \to f \).
Step 4. Finally, we show that f is onto. Let $x \in I^2$. For given $n \in \mathbb{N}$, x is in some subsquare with side of length $1/2^n$ and so there is a point $t_0 \in I$ such that $d(f(t_0), x) \leq 1/2^n$. Let $\varepsilon > 0$. There is $N \in \mathbb{N}$ such that $1/2^N < \varepsilon/2$ and so there is $t_0 \in I$ such that $d(f(t_0), x) < \varepsilon$. Therefore x is a limit point of $f(I)$. Since f is continuous and I is compact (by Corollary 27.2) then $f(I)$ is compact by Theorem 26.5. By Theorem 26.3, $f(I)$ is therefore closed and so by Theorem 17.6 $f(I)$ includes its limit points. That is, $x \in F(I)$ and so f is onto, as claimed.

\[\square\]