Complex Analysis

The Extended Complex Plane Proofs of Theorems

Second Edition

Deringer

Topologies on \mathbb{C}_{∞} Theorem

Topologies on \mathbb{C}_{∞} Theorem.

Let $G \subset \mathbb{C}$. Then G is open in metric space $(\mathbb{C}, |\cdot|)$ if and only if G is open in metric space (\mathbb{C}_{∞}, d) .

Proof. Let $G \subset \mathbb{C}$ be open in $(\mathbb{C}, |\cdot|)$ and let $a \in G$. Then, by the definition of "open," there is r > 0 such that $B(a; r) \subset G$. By Proposition VII.3.3(a), there is $\rho > 0$ such that $B_{\infty}(a, \rho) \subset B(a; r) \subset G$. Hence G is open in (\mathbb{C}_{∞}, d) .

Topologies on \mathbb{C}_{∞} Theorem

Topologies on \mathbb{C}_{∞} Theorem.

Let $G \subset \mathbb{C}$. Then G is open in metric space $(\mathbb{C}, |\cdot|)$ if and only if G is open in metric space (\mathbb{C}_{∞}, d) .

Proof. Let $G \subset \mathbb{C}$ be open in $(\mathbb{C}, |\cdot|)$ and let $a \in G$. Then, by the definition of "open," there is r > 0 such that $B(a; r) \subset G$. By Proposition VII.3.3(a), there is $\rho > 0$ such that $B_{\infty}(a, \rho) \subset B(a; r) \subset G$. Hence G is open in (\mathbb{C}_{∞}, d) .

Let $G \subset \mathbb{C}$ be open in (\mathbb{C}_{∞}, d) and let $a \in G$. Then, by definition of "open," there is $\rho > 0$ such that $B_{\infty}(a, \rho) \subset G$. By Proposition VII.3.3(b), there is r > 0 such that $B(a; r) \subset B_{\infty}(a; \rho) \subset G$. Hence G is open in $(\mathbb{C}_{\infty}, |\cdot|)$.

Topologies on \mathbb{C}_{∞} Theorem

Topologies on \mathbb{C}_{∞} Theorem.

Let $G \subset \mathbb{C}$. Then G is open in metric space $(\mathbb{C}, |\cdot|)$ if and only if G is open in metric space (\mathbb{C}_{∞}, d) .

Proof. Let $G \subset \mathbb{C}$ be open in $(\mathbb{C}, |\cdot|)$ and let $a \in G$. Then, by the definition of "open," there is r > 0 such that $B(a; r) \subset G$. By Proposition VII.3.3(a), there is $\rho > 0$ such that $B_{\infty}(a, \rho) \subset B(a; r) \subset G$. Hence G is open in (\mathbb{C}_{∞}, d) .

Let $G \subset \mathbb{C}$ be open in (\mathbb{C}_{∞}, d) and let $a \in G$. Then, by definition of "open," there is $\rho > 0$ such that $B_{\infty}(a, \rho) \subset G$. By Proposition VII.3.3(b), there is r > 0 such that $B(a; r) \subset B_{\infty}(a; \rho) \subset G$. Hence G is open in $(\mathbb{C}_{\infty}, |\cdot|)$.

Sequences in \mathbb{C}_{∞} Theorem

Sequences in \mathbb{C}_{∞} Theorem.

Let $\{z_n\}_{n=1}^{\infty}$ be a sequence of complex numbers. Then for $z \in \mathbb{C}$, $z_n \to z$ in metric space $(\mathbb{C}, |\cdot|)$ if and only if $z_n \to z$ in metric space (\mathbb{C}_{∞}, d) .

Proof. Suppose $z_n \to z$, where $z \in \mathbb{C}$, in $(\mathbb{C}, |\cdot|)$. Let $\varepsilon_2 > 0$. Then Proposition VII.3.3(b) there is $\varepsilon_1 > 0$ such that $B(z; \varepsilon_1) \subset B_{\infty}(z; \varepsilon_2)$. Since $z_n \to z$ in $(\mathbb{C}, |\cdot|)$, then there is $N_1 \in \mathbb{N}$ such that if $n \ge N_1$ then $|z_n - z| < \varepsilon_1$; that is, $n \ge N_1$ implies $z_n \in B(z; \varepsilon_1) \subset B_{\infty}(z; \varepsilon_2)$. Since $\varepsilon_2 > 0$ is arbitrary, we have that $z_n \to z$ in metric space (\mathbb{C}_{∞}, d) .

Sequences in \mathbb{C}_{∞} Theorem

Sequences in \mathbb{C}_{∞} Theorem.

Let $\{z_n\}_{n=1}^{\infty}$ be a sequence of complex numbers. Then for $z \in \mathbb{C}$, $z_n \to z$ in metric space $(\mathbb{C}, |\cdot|)$ if and only if $z_n \to z$ in metric space (\mathbb{C}_{∞}, d) .

Proof. Suppose $z_n \to z$, where $z \in \mathbb{C}$, in $(\mathbb{C}, |\cdot|)$. Let $\varepsilon_2 > 0$. Then Proposition VII.3.3(b) there is $\varepsilon_1 > 0$ such that $B(z; \varepsilon_1) \subset B_{\infty}(z; \varepsilon_2)$. Since $z_n \to z$ in $(\mathbb{C}, |\cdot|)$, then there is $N_1 \in \mathbb{N}$ such that if $n \ge N_1$ then $|z_n - z| < \varepsilon_1$; that is, $n \ge N_1$ implies $z_n \in B(z; \varepsilon_1) \subset B_{\infty}(z; \varepsilon_2)$. Since $\varepsilon_2 > 0$ is arbitrary, we have that $z_n \to z$ in metric space (\mathbb{C}_{∞}, d) .

Suppose $z_n \to z$, where $z \in \mathbb{C}$, in (\mathbb{C}_{∞}, d) . Let $\varepsilon_1 > 0$. Then Proposition VII.3.3(b) there is $\varepsilon_2 > 0$ such that $B_{\infty}(z; \varepsilon_2) \subset B_{\infty}(z; \varepsilon_1)$. Since $z_n \to z$ in (\mathbb{C}_{∞}, d) , then there is $N_2 \in \mathbb{N}$ such that if $n \ge N_2$ then $d(z_n, z) < \varepsilon_2$; that is, $n \ge N_2$ implies $z_n \in B(z; \varepsilon_2) \subset B_{\infty}(z; \varepsilon_1)$. Since $\varepsilon_1 > 0$ is arbitrary, we have that $z_n \to z$ in metric space $(\mathbb{C}, |\cdot|)$.

Sequences in \mathbb{C}_{∞} Theorem

Sequences in \mathbb{C}_{∞} Theorem.

Let $\{z_n\}_{n=1}^{\infty}$ be a sequence of complex numbers. Then for $z \in \mathbb{C}$, $z_n \to z$ in metric space $(\mathbb{C}, |\cdot|)$ if and only if $z_n \to z$ in metric space (\mathbb{C}_{∞}, d) .

Proof. Suppose $z_n \to z$, where $z \in \mathbb{C}$, in $(\mathbb{C}, |\cdot|)$. Let $\varepsilon_2 > 0$. Then Proposition VII.3.3(b) there is $\varepsilon_1 > 0$ such that $B(z; \varepsilon_1) \subset B_{\infty}(z; \varepsilon_2)$. Since $z_n \to z$ in $(\mathbb{C}, |\cdot|)$, then there is $N_1 \in \mathbb{N}$ such that if $n \ge N_1$ then $|z_n - z| < \varepsilon_1$; that is, $n \ge N_1$ implies $z_n \in B(z; \varepsilon_1) \subset B_{\infty}(z; \varepsilon_2)$. Since $\varepsilon_2 > 0$ is arbitrary, we have that $z_n \to z$ in metric space (\mathbb{C}_{∞}, d) .

Suppose $z_n \to z$, where $z \in \mathbb{C}$, in (\mathbb{C}_{∞}, d) . Let $\varepsilon_1 > 0$. Then Proposition VII.3.3(b) there is $\varepsilon_2 > 0$ such that $B_{\infty}(z; \varepsilon_2) \subset B_{\infty}(z; \varepsilon_1)$. Since $z_n \to z$ in (\mathbb{C}_{∞}, d) , then there is $N_2 \in \mathbb{N}$ such that if $n \ge N_2$ then $d(z_n, z) < \varepsilon_2$; that is, $n \ge N_2$ implies $z_n \in B(z; \varepsilon_2) \subset B_{\infty}(z; \varepsilon_1)$. Since $\varepsilon_1 > 0$ is arbitrary, we have that $z_n \to z$ in metric space $(\mathbb{C}, |\cdot|)$.

Compactness of \mathbb{C}_{∞} **Theorem.** \mathbb{C}_{∞} is a compact metric space under *d*.

Proof. Let \mathcal{G} be a collection of open sets in metric space (\mathbb{C}_{∞}, d) such that $\mathbb{C}_{\infty} \subset \sup_{G \in \mathcal{G}} G$. Then $\infty \in G$ for some $G \in \mathcal{G}$, say $\infty \in G_0$. Since G_0 is open and $\infty \in G_0$, there is $\rho > 0$ such that $B_{\infty}(\infty, \rho) \subset G_0$.

Compactness of \mathbb{C}_{∞} **Theorem.** \mathbb{C}_{∞} is a compact metric space under *d*.

Proof. Let \mathcal{G} be a collection of open sets in metric space (\mathbb{C}_{∞}, d) such that $\mathbb{C}_{\infty} \subset \sup_{G \in \mathcal{G}} G$. Then $\infty \in G$ for some $G \in \mathcal{G}$, say $\infty \in G_0$. Since G_0 is open and $\infty \in G_0$, there is $\rho > 0$ such that $B_{\infty}(\infty, \rho) \subset G_0$. So by Proposition VII.2.2(c), there is a compact set K in metric space $(\mathbb{C}, |\cdot|)$ such that $\mathbb{C}_{\infty} \setminus K \subset B_{\infty}(\infty, \rho)$.

Compactness of \mathbb{C}_{∞} **Theorem.** \mathbb{C}_{∞} is a compact metric space under *d*.

Proof. Let \mathcal{G} be a collection of open sets in metric space (\mathbb{C}_{∞}, d) such that $\mathbb{C}_{\infty} \subset \sup_{G \in \mathcal{G}} G$. Then $\infty \in G$ for some $G \in \mathcal{G}$, say $\infty \in G_0$. Since G_0 is open and $\infty \in G_0$, there is $\rho > 0$ such that $B_{\infty}(\infty, \rho) \subset G_0$. So by Proposition VII.2.2(c), there is a compact set K in metric space $(\mathbb{C}, |\cdot|)$ such that $\mathbb{C}_{\infty} \setminus K \subset B_{\infty}(\infty, \rho)$.

Next, for every $z \in K$ there is $G_z \in \mathcal{G}$ such that $z \in G_z$, since \mathcal{G} is an open cover of \mathbb{C}_{∞} . Since G_z is open in (\mathbb{C}_{∞}, d) then there is $\rho_z > 0$ such that $B_{\infty}(z, \rho_z) \subset G_z$. By Proposition VII.2.2(b), there is $r_z > 0$ such that $B(z, r_z) \subset B_{\infty}(z, \rho_z) \subset G_z$. Taking all such $B(z, r_z)$ for $z \in K$ gives an open cover of K: $K \subset \bigcup_{z \in K} B(z, r_z)$.

Compactness of \mathbb{C}_{∞} Theorem. \mathbb{C}_{∞} is a compact metric space under *d*.

Proof. Let \mathcal{G} be a collection of open sets in metric space (\mathbb{C}_{∞}, d) such that $\mathbb{C}_{\infty} \subset \sup_{G \in \mathcal{G}} G$. Then $\infty \in G$ for some $G \in \mathcal{G}$, say $\infty \in G_0$. Since G_0 is open and $\infty \in G_0$, there is $\rho > 0$ such that $B_{\infty}(\infty, \rho) \subset G_0$. So by Proposition VII.2.2(c), there is a compact set K in metric space $(\mathbb{C}, |\cdot|)$ such that $\mathbb{C}_{\infty} \setminus K \subset B_{\infty}(\infty, \rho)$.

Next, for every $z \in K$ there is $G_z \in \mathcal{G}$ such that $z \in G_z$, since \mathcal{G} is an open cover of \mathbb{C}_{∞} . Since G_z is open in (\mathbb{C}_{∞}, d) then there is $\rho_z > 0$ such that $B_{\infty}(z, \rho_z) \subset G_z$. By Proposition VII.2.2(b), there is $r_z > 0$ such that $B(z, r_z) \subset B_{\infty}(z, \rho_z) \subset G_z$. Taking all such $B(z, r_z)$ for $z \in K$ gives an open cover of K: $K \subset \bigcup_{z \in K} B(z, r_z)$.

Compactness of \mathbb{C}_{∞} Theorem (continued)

Compactness of \mathbb{C}_{∞} Theorem. \mathbb{C}_{∞} is a compact metric space under *d*.

Proof (continued). Since *K* is compact in $(\mathbb{C}, |\cdot|)$ then there are finitely many $z \in K$ such that the corresponding $B(z, t_z)$ cover *K*, say $K \subset B(z_1, r_{z_1}) \cup B(z_2, r_{z_2}) \cup \cdots \cup B(z_n, r_{z_n})$. Since $B(z, r_z) \subset G_z$ for all $z \in K$, then $K \subset G_{z_1} \cup G_{z_2} \cup \cdots \cup G_{z_n}$ and so $\{G_{z_i} \mid i = 1, 2, ..., n\}$ is an open cover of *K*.

Compactness of \mathbb{C}_{∞} Theorem (continued)

Compactness of \mathbb{C}_∞ Theorem.

 \mathbb{C}_{∞} is a compact metric space under d.

Proof (continued). Since *K* is compact in $(\mathbb{C}, |\cdot|)$ then there are finitely many $z \in K$ such that the corresponding $B(z, t_z)$ cover *K*, say $K \subset B(z_1, r_{z_1}) \cup B(z_2, r_{z_2}) \cup \cdots \cup B(z_n, r_{z_n})$. Since $B(z, r_z) \subset G_z$ for all $z \in K$, then $K \subset G_{z_1} \cup G_{z_2} \cup \cdots \cup G_{z_n}$ and so $\{G_{z_i} \mid i = 1, 2, ..., n\}$ is an open cover of *K*. Therefore $\{G_0\} \cup \{G_i \mid i = 1, 2, ..., n\} \subset \mathcal{G}$ is a finite cover of \mathbb{C}_∞ which is a subcover of \mathcal{G} and so \mathbb{C}_∞ is compact.

Compactness of \mathbb{C}_{∞} Theorem (continued)

Compactness of \mathbb{C}_∞ Theorem.

 \mathbb{C}_{∞} is a compact metric space under d.

Proof (continued). Since *K* is compact in $(\mathbb{C}, |\cdot|)$ then there are finitely many $z \in K$ such that the corresponding $B(z, t_z)$ cover *K*, say $K \subset B(z_1, r_{z_1}) \cup B(z_2, r_{z_2}) \cup \cdots \cup B(z_n, r_{z_n})$. Since $B(z, r_z) \subset G_z$ for all $z \in K$, then $K \subset G_{z_1} \cup G_{z_2} \cup \cdots \cup G_{z_n}$ and so $\{G_{z_i} \mid i = 1, 2, ..., n\}$ is an open cover of *K*. Therefore $\{G_0\} \cup \{G_i \mid i = 1, 2, ..., n\} \subset \mathcal{G}$ is a finite cover of \mathbb{C}_∞ which is a subcover of \mathcal{G} and so \mathbb{C}_∞ is compact.