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Chapter I. The Complex Number System
Supplement. Location of Zeros of Polynomials—Proofs of Theorems
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Theorem 1. Cauchy’s Location of Zeros Theorem, Category (1)

Cauchy’s Location of Zeros Theorem, Category (1)

Theorem 1. Cauchy’s Location of Zeros Theorem, Category (1).
If p(z) =

∑n
k=0 akzk is a polynomial of degree n, then all the zeros of p

lie in

|z | ≤ 1 + max
0≤k<n

|ak/an| = max
0≤k<n

|an|+ |ak |
|an|

.

Proof. Let M = max0≤k<n |ak/an|. By the Triangle Inequality (and
Exercise I.3.1),

|p(z)| =
∣∣anz

n + (a0 + a1z + a2z
2 + · · ·+ an−1z

n−1)
∣∣

≥ |anz
n| − |a0 + a1z + a2z

2 + · · ·+ an−1z
n−1|

≥ |anz
n| − (|a0|+ |a1||z |+ |a2||z |2 + · · ·+ |an−1||z |n−1). (∗)
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Theorem 1. Cauchy’s Location of Zeros Theorem, Category (1)

Cauchy’s Location of Zeros Theorem, Category (1)
(continued 1)

Proof (continued). Therefore, for |z | > 1 we have

|p(z)| ≥ |an||z |n −

(
n−1∑
k=0

|ak ||z |k
)

by (∗)

= |an||z |n
(

1−
n−1∑
k=0

|ak/an||z |k−n

)

≥ |an||z |n
(

1−M
n−1∑
k=0

|z |k−n

)
= |an||z |n

(
1−M

n∑
k=1

|z |−k

)

≥ |an||z |n
(

1−M
∞∑

k=1

|z |−k

)
. . .
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Theorem 1. Cauchy’s Location of Zeros Theorem, Category (1)

Cauchy’s Location of Zeros Theorem, Category (1)
(continued 2)

Proof (continued). . . .

|p(z)| ≥ |an||z |n
(

1−M
1/|z |

1− 1/|z |

)
since

∞∑
k=1

|z |−k is a

geometric series with ratio 1/|z | < 1 and first term 1/|z |

= |an||z |n
(

1− M

|z | − 1

)
= |an||z |n

(
|z | − 1−M

|z | − 1

)
.

Hence, if |z | > 1 + M, then |p(z)| > 0 and so p(z) 6= 0. So all zeros of p
in |z | > 1 must satisfy |z | ≤ 1 + M; of course the zeros of p in |z | ≤ 1
already lie in |z | ≤ 1 + M. Therefore, all zeros of p lie in
|z | ≤ 1 + M = 1 + max0≤k<n |ak/an| (notice that if
M = max0≤k<n |ak/an| = 0 then p(z) = anz

n and all zeros are at
z = 0).
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(continued 2)
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Theorem 2. Cauchy’s Location of Zeros Theorem, Category (2)

Theorem 2. Cauchy’s Location of Zeros Theorem,
Category (2)

Theorem 2. Cauchy’s Location of Zeros Theorem, Category (2).
If p(z) =

∑n
k=0 akzk is a polynomial of degree n, then all the zeros of p

lie in |z | ≤ r , where r is the positive root of the equation

|an|xn − (|an−1|xn−1 + |an−2|xn−2 + · · ·+ |a1|x + |a0|) = 0.

Proof. As in the proof of Theorem 1, from the Triangle Inequality (and
Exercise I.3.1) we have

|p(z)| ≥ |an||z |n − (|an−1||z |n−1 + |an−2||z |n−2 + · · · |a1||z |+ |a0|).
By Descartes’ Rule of Signs, the equation

f (x) = |an|xn − (|an−1|xn−1 + |an−2|xn−2 + · · · |a1|x + |a0|) = 0

has exactly one real positive root r .

Notice that for “large” positive x ,
f (x) > 0 and so f (x) > 0 for x > r . That is, |p(z)| > 0 (and hence
p(z) 6= 0) for |z | > r . So all zeros of p lie in |z | ≤ r .
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Theorem 4. Kuniyeda, Montel, and Tôya

Theorem 4

Theorem 4. Kuniyeda, Montel, and Tôya For any p and q such that
1/p + 1/q = 1, p > 1, and q > 1, all zeros of polynomial
p(z) =

∑n
k=0 akzk lie in

|z | <

1 +

(
n−1∑
k=0

|ak |p

|an|p

)q/p


1/q

≤
(

1 + nq/p

(
max

0≤k≤n−1

|ak |
|an|

)q)1/q

.

Proof. We have

|p(z)| ≥ |an||z |n − (|an−1||z |n−1 + |an−2||z |n−2 + · · ·+ |a1||z |+ |a0|)

= |an||z |n −
n−1∑
k=0

|ak ||z |k by Triangle Inequality and Exercise I.3.1

≥ |an||z |n −

(
n−1∑
k=0

|ak |p
)1/p (n−1∑

k=0

|z |kq
)1/q

by Hölder’s Inequality
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by Hölder’s Inequality

() Complex Analysis April 2, 2018 7 / 14



Theorem 4. Kuniyeda, Montel, and Tôya

Theorem 4 (continued 1)

Proof (continued). . . .

|p(z)| ≥ |an||z |n
1−

(
n−1∑
k=0

|ak |p

|an|p

)1/p (n−1∑
k=0

1

|z |(n−k)q

)1/q
 . (∗)

If |z | > 1 then

n−1∑
k=0

1

|z |(n−k)q
=

n∑
k=1

1

|z |kq
replacing k with n − k

<

∞∑
k=1

1

|z |kq
under the assumption that |z | > 1

=
∞∑

k=0

1

|z |kq
− 1 =

1

1− |z |−q
− 1 since the series

is a geometric series with ratio |z |−q < 1
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Theorem 4. Kuniyeda, Montel, and Tôya

Theorem 4 (continued 2)

Proof (continued). . . .

n−1∑
k=0

1

|z |(n−k)q
<

1− (1− |z |−q)

1− |z |−q
=

|z |−q

1− |z |−q
=

1

|z |q − 1
,

so from (∗),

|p(z)| > |an||z |n
1−

(
n−1∑
k=0

|ak |p

|an|p

)1/p (
1

|z |q − 1

)1/q
 . (∗∗)

So if |z |q − 1 ≥
(∑n−1

k=0 |ak |p/|an|p
)q/p

(notice that this also implies that

|z | > 1) then −1/(|z |q − 1) ≥ −
(∑n−1

k=0 |ak |p/|an|p
)−q/p

and by (∗∗),

|p(z)| > |an||z |n

1−

(
n−1∑
k=0

|ak |p

|an|p

)1/p
(n−1∑

k=0

|ak |p

|an|p

)−q/p
1/q

 . . .
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Theorem 4. Kuniyeda, Montel, and Tôya

Theorem 4 (continued 3)

Theorem 4. For any p and q such that 1/p + 1/q = 1, p > 1, and q > 1,
all zeros of polynomial p(z) =

∑n
k=0 akzk lie in

|z | <

1 +

(
n−1∑
k=0

|ak |p

|an|p

)q/p


1/q

≤
(

1 + nq/p

(
max

0≤k≤n−1

|ak |
|an|

)q)1/q

.

Proof (continued). . . . or |p(z)| > |an||z |n(1− 1) = 0. So if

|z |q − 1 ≥

(
n−1∑
k=0

|ak |p

|an|p

)q/p

,

or if

|z | ≥

1 +

(
n−1∑
k=0

|ak |p

|an|p

)q/p
1/q

,

then p(z) 6= 0, as claimed.
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Theorem 5. Joyal, Labelle, Rahman Generalization of Theorem 1

Theorem 5. Joyal, Labelle, Rahman

Theorem 5. Joyal, Labelle, Rahman Generalization of Theorem 1.
If p(z) =

∑n
k=0 akzk is a polynomial of degree n, then all the zeros of p

lie in

|z | ≤ 1

2

(
1 + |an−1/an|+

√
(1− |an−1/an|)2 + 4B

)
where B = max0≤k<n−1 |ak/an|.

Proof. By the Triangle Inequality (and Exercise I.3.1)

|p(z)| ≥ |anz
n+an−1z

n−1|−|an−2z
n−2+an−3z

n−3+ · · ·+a1z +a0|. (1)

Next, also by the Triangle Inequality,

|an + an−1z
n−1| ≥ |an||z |n − |an−1||z |n−1 (2)

and
|an−2z

n−2 + an−3z
n−3 + · · ·+ a1z + a0|

≤ |an−2||z |n−2 + |an−3||z |n−3 + · · ·+ |a1||z |+ |a0|
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Theorem 5. Joyal, Labelle, Rahman Generalization of Theorem 1

Theorem 5. Joyal, Labelle, Rahman (cont. 1)

Proof (continued).

≤ max
0≤k<n−1

|ak |(|z |n−2 + |z |n−3 + · · ·+ |z |+ 1)

= B|an|(|z |n−2 + |z |n−3 + · · ·+ |z |+ 1)

= B|an|
|z |n−1 − 1

|z | − 1
since (|z | − 1)(|z |n−2 + · · ·+ |z |+ 1) = |z |n−1 − 1

< B|an|
|z |n−1

|z | − 1
. (3)

Combining (1), (2), and (3) gives

|p(z)| ≥ |anz
n + an−1z

n−1| − |an−2z
n−2 + an−3z

n−3 + · · · a1z + a0|

> |an||z |n − |an−1||z |n−1 − B|an|
|z |n−1

|z | − 1

=
(|z | − 1)(|an||z |n − |an−1||z |n−1)− B|an||z |n−1

|z | − 1
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Theorem 5. Joyal, Labelle, Rahman Generalization of Theorem 1

Theorem 5. Joyal, Labelle, Rahman (cont. 1)

Proof (continued).
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Theorem 5. Joyal, Labelle, Rahman Generalization of Theorem 1

Theorem 5. Joyal, Labelle, Rahman (cont. 2)

Proof (continued).

|p(z)| >
|an||z |n−1

|z | − 1
{(|z | − 1)(|z | − |an−1/an|)− B}

=
|an||z |n−1

|z | − 1

{
|z |2 + (−1− |an−1/an|)|z |+ |an−1/an| − B

}
. (4)

Now |z |2 + (−1− |an−1/an|)|z |+ |an−1/an| −B is a quadratic in |z | so the
graph (as a function of |z |) is a concave up parabola. The roots are

|z | =
−(−1− |an−1/an|)±

√
(−1− |an−1/an|)2 − 4(1)(|an−1/an| − B)

2(1)

=
1 + |an−1/an| ±

√
1 + 2|an−1/an|+ |an−1/an|2 − 4|an−1/an|+ 4B)

2

=
1

2

{
1 + |an−1/an| ±

√
(1− |an−1/an|)2 + 4B

}
.
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Theorem 5. Joyal, Labelle, Rahman Generalization of Theorem 1

Theorem 5. Joyal, Labelle, Rahman (cont. 2)

Proof (continued).
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Theorem 5. Joyal, Labelle, Rahman Generalization of Theorem 1

Theorem 5. Joyal, Labelle, Rahman (cont. 3)

Proof (continued). Notice that (1− |an−1/an|)2 + 4B ≥ 0, so the roots
of the quadratic are real and the graph of the quadratic is concave up with
one or two intercepts. In either case, for |z | greater than the larger
intercept, the quadratic is positive. That is, for

|z | > 1

2

{
1 + |an−1/an|+

√
(1− |an−1/an|)2 + 4B

}
we have

{
|z |2 + (−1− |an−1/an|)|z |+ |an−1/an| − B

}
> 0. Notice that

1+|an−1/an|+
√

(1− |an−1/an|)2 + 4B ≥ 1+|an−1/an|+1−|an−1/an| = 2

so that |z | > 1
2

{
1 + |an−1/an|+

√
(1− |an−1/an|)2 + 4B

}
implies

|z | > 1 and from (4) implies that |p(z)| > 0.

So all zeros of p satisfy

|z | ≤ 1

2

{
1 + |an−1/an|+

√
(1− |an−1/an|)2 + 4B

}
,

as claimed.
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of the quadratic are real and the graph of the quadratic is concave up with
one or two intercepts. In either case, for |z | greater than the larger
intercept, the quadratic is positive. That is, for

|z | > 1

2

{
1 + |an−1/an|+

√
(1− |an−1/an|)2 + 4B

}
we have

{
|z |2 + (−1− |an−1/an|)|z |+ |an−1/an| − B

}
> 0. Notice that

1+|an−1/an|+
√

(1− |an−1/an|)2 + 4B ≥ 1+|an−1/an|+1−|an−1/an| = 2

so that |z | > 1
2

{
1 + |an−1/an|+

√
(1− |an−1/an|)2 + 4B

}
implies

|z | > 1 and from (4) implies that |p(z)| > 0. So all zeros of p satisfy
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√
(1− |an−1/an|)2 + 4B
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