Complex Analysis

Chapter I. The Complex Number System I.3. The Complex Plane—Proofs of Theorems

Theorem. The Triangle Inequality. For all $z, w \in \mathbb{C}$, $|z + w| \le |z| + |w|$.

Proof. Let z = a + ib. Then

$$-|z| = -\sqrt{a^2 + b^2} \le -\sqrt{a^2} = -|a| \le \operatorname{Re}(z) \le |a| \le |z|.$$

Theorem. The Triangle Inequality. For all $z, w \in \mathbb{C}$, $|z + w| \le |z| + |w|$.

Proof. Let z = a + ib. Then

$$-|z| = -\sqrt{a^2 + b^2} \le -\sqrt{a^2} = -|a| \le \operatorname{Re}(z) \le |a| \le |z|.$$

So $-|z| \leq \operatorname{Re}(z) \leq |z|$ and $|\operatorname{Re}(z)| \leq |z|$.

Theorem. The Triangle Inequality. For all $z, w \in \mathbb{C}$, $|z + w| \le |z| + |w|$.

Proof. Let z = a + ib. Then

$$-|z| = -\sqrt{a^2 + b^2} \leq -\sqrt{a^2} = -|a| \leq \operatorname{Re}(z) \leq |a| \leq |z|.$$

So $-|z| \leq \operatorname{Re}(z) \leq |z|$ and $|\operatorname{Re}(z)| \leq |z|$. From Exercise I.2.4(a), $|z+w|^2 = |z|^2 + 2\operatorname{Re}(z\overline{w}) + |w|^2$, and so

$$\begin{aligned} |z+w|^2 &\leq |z|^2 + 2|z\overline{w}| + |w|^2 \\ &= |z|^2 + 2|z||w| + |w|^2 \text{ since } |w| = |\overline{w}| \\ &= (|z| + |w|)^2. \end{aligned}$$

Theorem. The Triangle Inequality. For all $z, w \in \mathbb{C}$, $|z + w| \le |z| + |w|$.

Proof. Let z = a + ib. Then

$$-|z| = -\sqrt{a^2 + b^2} \leq -\sqrt{a^2} = -|a| \leq \operatorname{Re}(z) \leq |a| \leq |z|.$$

So $-|z| \leq \text{Re}(z) \leq |z|$ and $|\text{Re}(z)| \leq |z|$. From Exercise I.2.4(a), $|z+w|^2 = |z|^2 + 2\text{Re}(z\overline{w}) + |w|^2$, and so

$$\begin{aligned} |z+w|^2 &\leq |z|^2 + 2|z\overline{w}| + |w|^2 \\ &= |z|^2 + 2|z||w| + |w|^2 \text{ since } |w| = |\overline{w}| \\ &= (|z| + |w|)^2. \end{aligned}$$

Complex Analysis

Therefore $|z + w| \leq |z| + |w|$.

Theorem. The Triangle Inequality. For all $z, w \in \mathbb{C}$, $|z + w| \le |z| + |w|$.

Proof. Let z = a + ib. Then

$$-|z| = -\sqrt{a^2 + b^2} \leq -\sqrt{a^2} = -|a| \leq \operatorname{Re}(z) \leq |a| \leq |z|.$$

So $-|z| \leq \text{Re}(z) \leq |z|$ and $|\text{Re}(z)| \leq |z|$. From Exercise I.2.4(a), $|z+w|^2 = |z|^2 + 2\text{Re}(z\overline{w}) + |w|^2$, and so

$$\begin{aligned} |z+w|^2 &\leq |z|^2 + 2|z\overline{w}| + |w|^2 \\ &= |z|^2 + 2|z||w| + |w|^2 \text{ since } |w| = |\overline{w}| \\ &= (|z| + |w|)^2. \end{aligned}$$

Therefore $|z + w| \leq |z| + |w|$.

Corollary. For nonzero $z, w \in \mathbb{C}$, |z + w| = |z| + |w| if and only if z = tw for some $t \in \mathbb{R}$, $t \ge 0$. **Proof.** First, if z = tw then

$$\begin{aligned} |z+w| &= |tw+w| = |(t+1)w| = |t+1||w| \\ &= (t+1)|w| = t|w| + |w| \\ &= |tw| + |w| = |z| + |w|. \end{aligned}$$

Corollary. For nonzero $z, w \in \mathbb{C}$, |z + w| = |z| + |w| if and only if z = tw for some $t \in \mathbb{R}$, $t \ge 0$. **Proof.** First, if z = tw then

$$egin{array}{rcl} |z+w| &=& |tw+w| = |(t+1)w| = |t+1||w| \ &=& (t+1)|w| = t|w|+|w| \ &=& |tw|+|w| = |z|+|w|. \end{array}$$

Second, we see in the proof of the Triangle Inequality that we get equality when $\operatorname{Re}(z\overline{w}) = |z\overline{w}|$. This only occurs when $\operatorname{Im}(z\overline{w}) = 0$ and $\operatorname{Re}(z\overline{w}) \ge 0$.

Corollary. For nonzero $z, w \in \mathbb{C}$, |z + w| = |z| + |w| if and only if z = tw for some $t \in \mathbb{R}$, $t \ge 0$. **Proof.** First, if z = tw then

$$egin{array}{rcl} |z+w| &=& |tw+w| = |(t+1)w| = |t+1||w| \ &=& (t+1)|w| = t|w|+|w| \ &=& |tw|+|w| = |z|+|w|. \end{array}$$

Second, we see in the proof of the Triangle Inequality that we get equality when $\operatorname{Re}(z\overline{w}) = |z\overline{w}|$. This only occurs when $\operatorname{Im}(z\overline{w}) = 0$ and $\operatorname{Re}(z\overline{w}) \ge 0$. That is, $z\overline{w} \ge 0$ or (if $w \ne 0$) we have $z\overline{w}(w/w) \ge 0$ or

$$rac{zw\overline{w}}{w} \ge 0 ext{ implies } rac{z|w|^2}{w} = rac{z}{w}|w|^2 = s \ge 0$$

where $s \in \mathbb{R}$.

Corollary. For nonzero $z, w \in \mathbb{C}$, |z + w| = |z| + |w| if and only if z = tw for some $t \in \mathbb{R}$, $t \ge 0$. **Proof.** First, if z = tw then

$$egin{array}{rcl} |z+w| &=& |tw+w| = |(t+1)w| = |t+1||w| \ &=& (t+1)|w| = t|w|+|w| \ &=& |tw|+|w| = |z|+|w|. \end{array}$$

Second, we see in the proof of the Triangle Inequality that we get equality when $\operatorname{Re}(z\overline{w}) = |z\overline{w}|$. This only occurs when $\operatorname{Im}(z\overline{w}) = 0$ and $\operatorname{Re}(z\overline{w}) \ge 0$. That is, $z\overline{w} \ge 0$ or (if $w \ne 0$) we have $z\overline{w}(w/w) \ge 0$ or

$$\frac{zw\overline{w}}{w} \ge 0 \text{ implies } \frac{z|w|^2}{w} = \frac{z}{w}|w|^2 = s \ge 0$$

Complex Analysis

where $s \in \mathbb{R}$. So we have that $z = (s/|w|^2)w = tw$ where $t = s/|w|^2 \ge 0$.

Corollary. For nonzero $z, w \in \mathbb{C}$, |z + w| = |z| + |w| if and only if z = tw for some $t \in \mathbb{R}$, $t \ge 0$. **Proof.** First, if z = tw then

$$egin{array}{rcl} |z+w| &=& |tw+w| = |(t+1)w| = |t+1||w| \ &=& (t+1)|w| = t|w|+|w| \ &=& |tw|+|w| = |z|+|w|. \end{array}$$

Second, we see in the proof of the Triangle Inequality that we get equality when $\operatorname{Re}(z\overline{w}) = |z\overline{w}|$. This only occurs when $\operatorname{Im}(z\overline{w}) = 0$ and $\operatorname{Re}(z\overline{w}) \ge 0$. That is, $z\overline{w} \ge 0$ or (if $w \ne 0$) we have $z\overline{w}(w/w) \ge 0$ or

$$\frac{zw\overline{w}}{w} \ge 0 \text{ implies } \frac{z|w|^2}{w} = \frac{z}{w}|w|^2 = s \ge 0$$

where $s \in \mathbb{R}$. So we have that $z = (s/|w|^2)w = tw$ where $t = s/|w|^2 \ge 0$.

Theorem. A Cauchy sequence of complex numbers is convergent.

Proof. Let (z_n) be a Cauchy sequence of complex numbers and let $\operatorname{Re}(z_n) = a_n$, $\operatorname{Im}(z_n) = b_n$ for each $n \in \mathbb{N}$.

Theorem. A Cauchy sequence of complex numbers is convergent.

Proof. Let (z_n) be a Cauchy sequence of complex numbers and let $\operatorname{Re}(z_n) = a_n$, $\operatorname{Im}(z_n) = b_n$ for each $n \in \mathbb{N}$. By definition of Cauchy sequence, we know that for all $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that for $m, n \ge N$ we have $|z_m - z_n| < \varepsilon$.

Theorem. A Cauchy sequence of complex numbers is convergent.

Proof. Let (z_n) be a Cauchy sequence of complex numbers and let $\operatorname{Re}(z_n) = a_n$, $\operatorname{Im}(z_n) = b_n$ for each $n \in \mathbb{N}$. By definition of Cauchy sequence, we know that for all $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that for $m, n \ge N$ we have $|z_m - z_n| < \varepsilon$. Notice that

$$|z_m - z_n| = |(a_m + ib_m) - (a_n + ib_n)|$$
$$= |(a_m - a_n) + i(b_m - b_n)| = \sqrt{(a_m - a_n)^2 + (b_m - b_n)^2}.$$

Theorem. A Cauchy sequence of complex numbers is convergent.

Proof. Let (z_n) be a Cauchy sequence of complex numbers and let $\operatorname{Re}(z_n) = a_n$, $\operatorname{Im}(z_n) = b_n$ for each $n \in \mathbb{N}$. By definition of Cauchy sequence, we know that for all $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that for $m, n \ge N$ we have $|z_m - z_n| < \varepsilon$. Notice that

$$|z_m - z_n| = |(a_m + ib_m) - (a_n + ib_n)|$$
$$= |(a_m - a_n) + i(b_m - b_n)| = \sqrt{(a_m - a_n)^2 + (b_m - b_n)^2}.$$
$$a_m - a_n| = \sqrt{(a_m - a_n)^2} \le \sqrt{(a_m - a_n)^2 + (b_m - b_n)^2} = |z_m - z_n|$$

Now $|a_m - a_n| = \sqrt{(a_m - a_n)^2} \le \sqrt{(a_m - a_n)^2 + (b_m - b_n)^2} = |z_m - z_n|$, so if $m, n \ge N$ then $|a_m - a_n| \le |z_m - z_n| < \varepsilon$, and (a_n) is a Cauchy sequence of *real* numbers.

Theorem. A Cauchy sequence of complex numbers is convergent.

Proof. Let (z_n) be a Cauchy sequence of complex numbers and let $\operatorname{Re}(z_n) = a_n$, $\operatorname{Im}(z_n) = b_n$ for each $n \in \mathbb{N}$. By definition of Cauchy sequence, we know that for all $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that for $m, n \ge N$ we have $|z_m - z_n| < \varepsilon$. Notice that

$$|z_m - z_n| = |(a_m + ib_m) - (a_n + ib_n)|$$

= $|(a_m - a_n) + i(b_m - b_n)| = \sqrt{(a_m - a_n)^2 + (b_m - b_n)^2}$.
Now $|a_m - a_n| = \sqrt{(a_m - a_n)^2} \le \sqrt{(a_m - a_n)^2 + (b_m - b_n)^2} = |z_m - z_n|$, so if $m, n \ge N$ then $|a_m - a_n| \le |z_m - z_n| < \varepsilon$, and (a_n) is a Cauchy sequence of *real* numbers. Since the real numbers are complete, then
Cauchy sequences converge and $(a_n) \to a$ for some $a \in \mathbb{R}$. Similarly, (b_n) is a Cauchy sequence of real numbers and $(b_n) \to b$ for some $b \in \mathbb{R}$.

Theorem. A Cauchy sequence of complex numbers is convergent.

Proof. Let (z_n) be a Cauchy sequence of complex numbers and let $\operatorname{Re}(z_n) = a_n$, $\operatorname{Im}(z_n) = b_n$ for each $n \in \mathbb{N}$. By definition of Cauchy sequence, we know that for all $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that for $m, n \ge N$ we have $|z_m - z_n| < \varepsilon$. Notice that

$$|z_m - z_n| = |(a_m + ib_m) - (a_n + ib_n)|$$

= $|(a_m - a_n) + i(b_m - b_n)| = \sqrt{(a_m - a_n)^2 + (b_m - b_n)^2}.$
 $a_m - a_n| = \sqrt{(a_m - a_n)^2} \le \sqrt{(a_m - a_n)^2 + (b_m - b_n)^2} = |z_m - z_n|,$

so if $m, n \ge N$ then $|a_m - a_n| \le |z_m - z_n| < \varepsilon$, and (a_n) is a Cauchy sequence of *real* numbers. Since the real numbers are complete, then Cauchy sequences converge and $(a_n) \to a$ for some $a \in \mathbb{R}$. Similarly, (b_n) is a Cauchy sequence of real numbers and $(b_n) \to b$ for some $b \in \mathbb{R}$.

Now |

Theorem. A Cauchy sequence of complex numbers is convergent.

proof (continued). We claim that $(z_n) \to a + ib$. Let $\varepsilon > 0$ be given. Since $(a_n) \to a$ and $(b_n) \to b$, there exist $N_1, N_2 \in \mathbb{N}$ such that for all $n \ge N_1$ we have $|a_n - a| < \varepsilon/2$ and for all $n \ge N_2$ we have $|b_n - b| < \varepsilon/2$.

Theorem. A Cauchy sequence of complex numbers is convergent.

proof (continued). We claim that $(z_n) \to a + ib$. Let $\varepsilon > 0$ be given. Since $(a_n) \to a$ and $(b_n) \to b$, there exist $N_1, N_2 \in \mathbb{N}$ such that for all $n \ge N_1$ we have $|a_n - a| < \varepsilon/2$ and for all $n \ge N_2$ we have $|b_n - b| < \varepsilon/2$. So for all $n \ge \max\{N_1, N_2\}$ we have

$$\begin{aligned} z_n - (a + ib)| &= |(a_n + ib_n) - (a + ib)| = |(a_n - a) + i(b_n - b)| \\ &\leq |a_n - a| + |i(b_n - b)| \text{ by the Triangle Inequality} \\ &< \varepsilon/2 + \varepsilon/2 = \varepsilon. \end{aligned}$$

Theorem. A Cauchy sequence of complex numbers is convergent.

proof (continued). We claim that $(z_n) \to a + ib$. Let $\varepsilon > 0$ be given. Since $(a_n) \to a$ and $(b_n) \to b$, there exist $N_1, N_2 \in \mathbb{N}$ such that for all $n \ge N_1$ we have $|a_n - a| < \varepsilon/2$ and for all $n \ge N_2$ we have $|b_n - b| < \varepsilon/2$. So for all $n \ge \max\{N_1, N_2\}$ we have

$$\begin{aligned} z_n - (a + ib)| &= |(a_n + ib_n) - (a + ib)| &= |(a_n - a) + i(b_n - b)| \\ &\leq |a_n - a| + |i(b_n - b)| \text{ by the Triangle Inequality} \\ &< \varepsilon/2 + \varepsilon/2 = \varepsilon. \end{aligned}$$

Therefore $(z_n) \rightarrow a + ib$ and the Cauchy sequence of complex numbers is convergent.

Theorem. A Cauchy sequence of complex numbers is convergent.

proof (continued). We claim that $(z_n) \to a + ib$. Let $\varepsilon > 0$ be given. Since $(a_n) \to a$ and $(b_n) \to b$, there exist $N_1, N_2 \in \mathbb{N}$ such that for all $n \ge N_1$ we have $|a_n - a| < \varepsilon/2$ and for all $n \ge N_2$ we have $|b_n - b| < \varepsilon/2$. So for all $n \ge \max\{N_1, N_2\}$ we have

$$\begin{aligned} |z_n - (a + ib)| &= |(a_n + ib_n) - (a + ib)| &= |(a_n - a) + i(b_n - b)| \\ &\leq |a_n - a| + |i(b_n - b)| \text{ by the Triangle Inequality} \\ &< \varepsilon/2 + \varepsilon/2 = \varepsilon. \end{aligned}$$

Therefore $(z_n) \rightarrow a + ib$ and the Cauchy sequence of complex numbers is convergent.