Complex Analysis

Chapter I. The Complex Number System

I.3. The Complex Plane-Proofs of Theorems

Table of contents

(1) The Triangle Inequality
(2) Corollary
(3) Cauchy Sequences Theorem

The Triangle Inequality

Theorem. The Triangle Inequality.
For all $z, w \in \mathbb{C},|z+w| \leq|z|+|w|$.

Proof. Let $z=a+i b$. Then

$$
-|z|=-\sqrt{a^{2}+b^{2}} \leq-\sqrt{a^{2}}=-|a| \leq \operatorname{Re}(z) \leq|a| \leq|z| .
$$

The Triangle Inequality

Theorem. The Triangle Inequality.
For all $z, w \in \mathbb{C},|z+w| \leq|z|+|w|$.

Proof. Let $z=a+i b$. Then

$$
-|z|=-\sqrt{a^{2}+b^{2}} \leq-\sqrt{a^{2}}=-|a| \leq \operatorname{Re}(z) \leq|a| \leq|z| .
$$

So $-|z| \leq \operatorname{Re}(z) \leq|z|$ and $|\operatorname{Re}(z)| \leq|z|$.

The Triangle Inequality

Theorem. The Triangle Inequality.
For all $z, w \in \mathbb{C},|z+w| \leq|z|+|w|$.

Proof. Let $z=a+i b$. Then

$$
-|z|=-\sqrt{a^{2}+b^{2}} \leq-\sqrt{a^{2}}=-|a| \leq \operatorname{Re}(z) \leq|a| \leq|z| .
$$

So $-|z| \leq \operatorname{Re}(z) \leq|z|$ and $|\operatorname{Re}(z)| \leq|z|$. From Exercise I.2.4(a),
$z+\left.w\right|^{2}=|z|^{2}+2 \operatorname{Re}(z \bar{w})+|w|^{2}$, and so

$$
\begin{aligned}
|z+w|^{2} & \leq|z|^{2}+2|z \bar{w}|+|w|^{2} \\
& =|z|^{2}+2|z||w|+|w|^{2} \text { since }|w|=|\bar{w}| \\
& =(|z|+|w|)^{2} .
\end{aligned}
$$

The Triangle Inequality

Theorem. The Triangle Inequality.
For all $z, w \in \mathbb{C},|z+w| \leq|z|+|w|$.

Proof. Let $z=a+i b$. Then

$$
-|z|=-\sqrt{a^{2}+b^{2}} \leq-\sqrt{a^{2}}=-|a| \leq \operatorname{Re}(z) \leq|a| \leq|z| .
$$

So $-|z| \leq \operatorname{Re}(z) \leq|z|$ and $|\operatorname{Re}(z)| \leq|z|$. From Exercise I.2.4(a), $|z+w|^{2}=|z|^{2}+2 \operatorname{Re}(z \bar{w})+|w|^{2}$, and so

$$
\begin{aligned}
|z+w|^{2} & \leq|z|^{2}+2|z \bar{w}|+|w|^{2} \\
& =|z|^{2}+2|z||w|+|w|^{2} \text { since }|w|=|\bar{w}| \\
& =(|z|+|w|)^{2} .
\end{aligned}
$$

Therefore $|z+w| \leq|z|+|w|$.

The Triangle Inequality

Theorem. The Triangle Inequality.
For all $z, w \in \mathbb{C},|z+w| \leq|z|+|w|$.

Proof. Let $z=a+i b$. Then

$$
-|z|=-\sqrt{a^{2}+b^{2}} \leq-\sqrt{a^{2}}=-|a| \leq \operatorname{Re}(z) \leq|a| \leq|z| .
$$

So $-|z| \leq \operatorname{Re}(z) \leq|z|$ and $|\operatorname{Re}(z)| \leq|z|$. From Exercise I.2.4(a), $|z+w|^{2}=|z|^{2}+2 \operatorname{Re}(z \bar{w})+|w|^{2}$, and so

$$
\begin{aligned}
|z+w|^{2} & \leq|z|^{2}+2|z \bar{w}|+|w|^{2} \\
& =|z|^{2}+2|z||w|+|w|^{2} \text { since }|w|=|\bar{w}| \\
& =(|z|+|w|)^{2} .
\end{aligned}
$$

Therefore $|z+w| \leq|z|+|w|$.

Corollary

Corollary. For nonzero $z, w \in \mathbb{C},|z+w|=|z|+|w|$ if and only if $z=t w$ for some $t \in \mathbb{R}, t \geq 0$.
Proof. First, if $z=t w$ then

$$
\begin{aligned}
|z+w| & =|t w+w|=|(t+1) w|=|t+1||w| \\
& =(t+1)|w|=t|w|+|w| \\
& =|t w|+|w|=|z|+|w|
\end{aligned}
$$

Corollary

Corollary. For nonzero $z, w \in \mathbb{C},|z+w|=|z|+|w|$ if and only if $z=t w$ for some $t \in \mathbb{R}, t \geq 0$.
Proof. First, if $z=t w$ then

$$
\begin{aligned}
|z+w| & =|t w+w|=|(t+1) w|=|t+1||w| \\
& =(t+1)|w|=t|w|+|w| \\
& =|t w|+|w|=|z|+|w| .
\end{aligned}
$$

Second, we see in the proof of the Triangle Inequality that we get equality when $\operatorname{Re}(z \bar{w})=|z \bar{w}|$. This only occurs when $\operatorname{Im}(z \bar{w})=0$ and $\operatorname{Re}(z \bar{w}) \geq 0$.

Corollary

Corollary. For nonzero $z, w \in \mathbb{C},|z+w|=|z|+|w|$ if and only if $z=t w$ for some $t \in \mathbb{R}, t \geq 0$.
Proof. First, if $z=t w$ then

$$
\begin{aligned}
|z+w| & =|t w+w|=|(t+1) w|=|t+1||w| \\
& =(t+1)|w|=t|w|+|w| \\
& =|t w|+|w|=|z|+|w|
\end{aligned}
$$

Second, we see in the proof of the Triangle Inequality that we get equality when $\operatorname{Re}(z \bar{w})=|z \bar{w}|$. This only occurs when $\operatorname{Im}(z \bar{w})=0$ and $\operatorname{Re}(z \bar{w}) \geq 0$. That is, $z \bar{w} \geq 0$ or (if $w \neq 0$) we have $z \bar{w}(w / w) \geq 0$ or

where $s \in \mathbb{R}$.

Corollary

Corollary. For nonzero $z, w \in \mathbb{C},|z+w|=|z|+|w|$ if and only if $z=t w$ for some $t \in \mathbb{R}, t \geq 0$.
Proof. First, if $z=t w$ then

$$
\begin{aligned}
|z+w| & =|t w+w|=|(t+1) w|=|t+1||w| \\
& =(t+1)|w|=t|w|+|w| \\
& =|t w|+|w|=|z|+|w|
\end{aligned}
$$

Second, we see in the proof of the Triangle Inequality that we get equality when $\operatorname{Re}(z \bar{w})=|z \bar{w}|$. This only occurs when $\operatorname{Im}(z \bar{w})=0$ and $\operatorname{Re}(z \bar{w}) \geq 0$. That is, $z \bar{w} \geq 0$ or (if $w \neq 0$) we have $z \bar{w}(w / w) \geq 0$ or

$$
\frac{z w \bar{w}}{w} \geq 0 \text { implies } \frac{z|w|^{2}}{w}=\frac{z}{w}|w|^{2}=s \geq 0
$$

where $s \in \mathbb{R}$. So we have that $z=\left(s /|w|^{2}\right) w=t w$ where

Corollary

Corollary. For nonzero $z, w \in \mathbb{C},|z+w|=|z|+|w|$ if and only if $z=t w$ for some $t \in \mathbb{R}, t \geq 0$.
Proof. First, if $z=t w$ then

$$
\begin{aligned}
|z+w| & =|t w+w|=|(t+1) w|=|t+1||w| \\
& =(t+1)|w|=t|w|+|w| \\
& =|t w|+|w|=|z|+|w|
\end{aligned}
$$

Second, we see in the proof of the Triangle Inequality that we get equality when $\operatorname{Re}(z \bar{w})=|z \bar{w}|$. This only occurs when $\operatorname{Im}(z \bar{w})=0$ and $\operatorname{Re}(z \bar{w}) \geq 0$. That is, $z \bar{w} \geq 0$ or (if $w \neq 0$) we have $z \bar{w}(w / w) \geq 0$ or

$$
\frac{z w \bar{w}}{w} \geq 0 \text { implies } \frac{z|w|^{2}}{w}=\frac{z}{w}|w|^{2}=s \geq 0
$$

where $s \in \mathbb{R}$. So we have that $z=\left(s /|w|^{2}\right) w=t w$ where $t=s /|w|^{2} \geq 0$.

Cauchy Sequences Theorem

Theorem. A Cauchy sequence of complex numbers is convergent.
Proof. Let $\left(z_{n}\right)$ be a Cauchy sequence of complex numbers and let $\operatorname{Re}\left(z_{n}\right)=a_{n}, \operatorname{Im}\left(z_{n}\right)=b_{n}$ for each $n \in \mathbb{N}$.

Cauchy Sequences Theorem

Theorem. A Cauchy sequence of complex numbers is convergent.
Proof. Let $\left(z_{n}\right)$ be a Cauchy sequence of complex numbers and let $\operatorname{Re}\left(z_{n}\right)=a_{n}, \operatorname{Im}\left(z_{n}\right)=b_{n}$ for each $n \in \mathbb{N}$. By definition of Cauchy sequence, we know that for all $\varepsilon>0$ there exists $N \in \mathbb{N}$ such that for $m, n \geq N$ we have $\left|z_{m}-z_{n}\right|<\varepsilon$.

Cauchy Sequences Theorem

Theorem. A Cauchy sequence of complex numbers is convergent.
Proof. Let $\left(z_{n}\right)$ be a Cauchy sequence of complex numbers and let $\operatorname{Re}\left(z_{n}\right)=a_{n}, \operatorname{Im}\left(z_{n}\right)=b_{n}$ for each $n \in \mathbb{N}$. By definition of Cauchy sequence, we know that for all $\varepsilon>0$ there exists $N \in \mathbb{N}$ such that for $m, n \geq N$ we have $\left|z_{m}-z_{n}\right|<\varepsilon$. Notice that

$$
\begin{gathered}
\left|z_{m}-z_{n}\right|=\left|\left(a_{m}+i b_{m}\right)-\left(a_{n}+i b_{n}\right)\right| \\
=\left|\left(a_{m}-a_{n}\right)+i\left(b_{m}-b_{n}\right)\right|=\sqrt{\left(a_{m}-a_{n}\right)^{2}+\left(b_{m}-b_{n}\right)^{2}} .
\end{gathered}
$$

Cauchy Sequences Theorem

Theorem. A Cauchy sequence of complex numbers is convergent. Proof. Let $\left(z_{n}\right)$ be a Cauchy sequence of complex numbers and let $\operatorname{Re}\left(z_{n}\right)=a_{n}, \operatorname{Im}\left(z_{n}\right)=b_{n}$ for each $n \in \mathbb{N}$. By definition of Cauchy sequence, we know that for all $\varepsilon>0$ there exists $N \in \mathbb{N}$ such that for $m, n \geq N$ we have $\left|z_{m}-z_{n}\right|<\varepsilon$. Notice that

$$
\begin{gathered}
\left|z_{m}-z_{n}\right|=\left|\left(a_{m}+i b_{m}\right)-\left(a_{n}+i b_{n}\right)\right| \\
=\left|\left(a_{m}-a_{n}\right)+i\left(b_{m}-b_{n}\right)\right|=\sqrt{\left(a_{m}-a_{n}\right)^{2}+\left(b_{m}-b_{n}\right)^{2}} .
\end{gathered}
$$

Now $\left|a_{m}-a_{n}\right|=\sqrt{\left(a_{m}-a_{n}\right)^{2}} \leq \sqrt{\left(a_{m}-a_{n}\right)^{2}+\left(b_{m}-b_{n}\right)^{2}}=\left|z_{m}-z_{n}\right|$,
so if $m, n \geq N$ then $\left|a_{m}-a_{n}\right| \leq\left|z_{m}-z_{n}\right|<\varepsilon$, and $\left(a_{n}\right)$ is a Cauchy sequence of real numbers.

Cauchy Sequences Theorem

Theorem. A Cauchy sequence of complex numbers is convergent.
Proof. Let $\left(z_{n}\right)$ be a Cauchy sequence of complex numbers and let $\operatorname{Re}\left(z_{n}\right)=a_{n}, \operatorname{Im}\left(z_{n}\right)=b_{n}$ for each $n \in \mathbb{N}$. By definition of Cauchy sequence, we know that for all $\varepsilon>0$ there exists $N \in \mathbb{N}$ such that for $m, n \geq N$ we have $\left|z_{m}-z_{n}\right|<\varepsilon$. Notice that

$$
\begin{gathered}
\left|z_{m}-z_{n}\right|=\left|\left(a_{m}+i b_{m}\right)-\left(a_{n}+i b_{n}\right)\right| \\
=\left|\left(a_{m}-a_{n}\right)+i\left(b_{m}-b_{n}\right)\right|=\sqrt{\left(a_{m}-a_{n}\right)^{2}+\left(b_{m}-b_{n}\right)^{2}} .
\end{gathered}
$$

Now $\left|a_{m}-a_{n}\right|=\sqrt{\left(a_{m}-a_{n}\right)^{2}} \leq \sqrt{\left(a_{m}-a_{n}\right)^{2}+\left(b_{m}-b_{n}\right)^{2}}=\left|z_{m}-z_{n}\right|$,
so if $m, n \geq N$ then $\left|a_{m}-a_{n}\right| \leq\left|z_{m}-z_{n}\right|<\varepsilon$, and $\left(a_{n}\right)$ is a Cauchy sequence of real numbers. Since the real numbers are complete, then

Cauchy Sequences Theorem

Theorem. A Cauchy sequence of complex numbers is convergent.
Proof. Let $\left(z_{n}\right)$ be a Cauchy sequence of complex numbers and let $\operatorname{Re}\left(z_{n}\right)=a_{n}, \operatorname{Im}\left(z_{n}\right)=b_{n}$ for each $n \in \mathbb{N}$. By definition of Cauchy sequence, we know that for all $\varepsilon>0$ there exists $N \in \mathbb{N}$ such that for $m, n \geq N$ we have $\left|z_{m}-z_{n}\right|<\varepsilon$. Notice that

$$
\begin{gathered}
\left|z_{m}-z_{n}\right|=\left|\left(a_{m}+i b_{m}\right)-\left(a_{n}+i b_{n}\right)\right| \\
=\left|\left(a_{m}-a_{n}\right)+i\left(b_{m}-b_{n}\right)\right|=\sqrt{\left(a_{m}-a_{n}\right)^{2}+\left(b_{m}-b_{n}\right)^{2}} .
\end{gathered}
$$

Now $\left|a_{m}-a_{n}\right|=\sqrt{\left(a_{m}-a_{n}\right)^{2}} \leq \sqrt{\left(a_{m}-a_{n}\right)^{2}+\left(b_{m}-b_{n}\right)^{2}}=\left|z_{m}-z_{n}\right|$, so if $m, n \geq N$ then $\left|a_{m}-a_{n}\right| \leq\left|z_{m}-z_{n}\right|<\varepsilon$, and $\left(a_{n}\right)$ is a Cauchy sequence of real numbers. Since the real numbers are complete, then Cauchy sequences converge and $\left(a_{n}\right) \rightarrow a$ for some $a \in \mathbb{R}$. Similarly, $\left(b_{n}\right)$ is a Cauchy sequence of real numbers and $\left(b_{n}\right) \rightarrow b$ for some $b \in \mathbb{R}$.

Cauchy Sequences Theorem (continued)

Theorem. A Cauchy sequence of complex numbers is convergent.
proof (continued). We claim that $\left(z_{n}\right) \rightarrow a+i b$. Let $\varepsilon>0$ be given. Since $\left(a_{n}\right) \rightarrow a$ and $\left(b_{n}\right) \rightarrow b$, there exist $N_{1}, N_{2} \in \mathbb{N}$ such that for all $n \geq N_{1}$ we have $\left|a_{n}-a\right|<\varepsilon / 2$ and for all $n \geq N_{2}$ we have $\left|b_{n}-b\right|<\varepsilon / 2$.

Cauchy Sequences Theorem (continued)

Theorem. A Cauchy sequence of complex numbers is convergent.
proof (continued). We claim that $\left(z_{n}\right) \rightarrow a+i b$. Let $\varepsilon>0$ be given. Since $\left(a_{n}\right) \rightarrow a$ and $\left(b_{n}\right) \rightarrow b$, there exist $N_{1}, N_{2} \in \mathbb{N}$ such that for all $n \geq N_{1}$ we have $\left|a_{n}-a\right|<\varepsilon / 2$ and for all $n \geq N_{2}$ we have $\left|b_{n}-b\right|<\varepsilon / 2$. So for all $n \geq \max \left\{N_{1}, N_{2}\right\}$ we have

$$
\begin{aligned}
\left|z_{n}-(a+i b)\right| & =\left|\left(a_{n}+i b_{n}\right)-(a+i b)\right|=\left|\left(a_{n}-a\right)+i\left(b_{n}-b\right)\right| \\
& \leq\left|a_{n}-a\right|+\left|i\left(b_{n}-b\right)\right| \text { by the Triangle Inequality } \\
& <\varepsilon / 2+\varepsilon / 2=\varepsilon .
\end{aligned}
$$

Cauchy Sequences Theorem (continued)

Theorem. A Cauchy sequence of complex numbers is convergent. proof (continued). We claim that $\left(z_{n}\right) \rightarrow a+i b$. Let $\varepsilon>0$ be given. Since $\left(a_{n}\right) \rightarrow a$ and $\left(b_{n}\right) \rightarrow b$, there exist $N_{1}, N_{2} \in \mathbb{N}$ such that for all $n \geq N_{1}$ we have $\left|a_{n}-a\right|<\varepsilon / 2$ and for all $n \geq N_{2}$ we have $\left|b_{n}-b\right|<\varepsilon / 2$. So for all $n \geq \max \left\{N_{1}, N_{2}\right\}$ we have

$$
\begin{aligned}
\left|z_{n}-(a+i b)\right| & =\left|\left(a_{n}+i b_{n}\right)-(a+i b)\right|=\left|\left(a_{n}-a\right)+i\left(b_{n}-b\right)\right| \\
& \leq\left|a_{n}-a\right|+\left|i\left(b_{n}-b\right)\right| \text { by the Triangle Inequality } \\
& <\varepsilon / 2+\varepsilon / 2=\varepsilon
\end{aligned}
$$

Therefore $\left(z_{n}\right) \rightarrow a+i b$ and the Cauchy sequence of complex numbers is convergent.

Cauchy Sequences Theorem (continued)

Theorem. A Cauchy sequence of complex numbers is convergent.
proof (continued). We claim that $\left(z_{n}\right) \rightarrow a+i b$. Let $\varepsilon>0$ be given. Since $\left(a_{n}\right) \rightarrow a$ and $\left(b_{n}\right) \rightarrow b$, there exist $N_{1}, N_{2} \in \mathbb{N}$ such that for all $n \geq N_{1}$ we have $\left|a_{n}-a\right|<\varepsilon / 2$ and for all $n \geq N_{2}$ we have $\left|b_{n}-b\right|<\varepsilon / 2$. So for all $n \geq \max \left\{N_{1}, N_{2}\right\}$ we have

$$
\begin{aligned}
\left|z_{n}-(a+i b)\right| & =\left|\left(a_{n}+i b_{n}\right)-(a+i b)\right|=\left|\left(a_{n}-a\right)+i\left(b_{n}-b\right)\right| \\
& \leq\left|a_{n}-a\right|+\left|i\left(b_{n}-b\right)\right| \text { by the Triangle Inequality } \\
& <\varepsilon / 2+\varepsilon / 2=\varepsilon
\end{aligned}
$$

Therefore $\left(z_{n}\right) \rightarrow a+i b$ and the Cauchy sequence of complex numbers is convergent.

