
Complex Analysis

August 31, 2023

Chapter I. The Complex Number System
I.3. The Complex Plane—Proofs of Theorems

() Complex Analysis August 31, 2023 1 / 6



Table of contents

1 The Triangle Inequality

2 Corollary

3 Cauchy Sequences Theorem

() Complex Analysis August 31, 2023 2 / 6



The Triangle Inequality

The Triangle Inequality

Theorem. The Triangle Inequality.
For all z ,w ∈ C, |z + w | ≤ |z |+ |w |.

Proof. Let z = a + ib. Then

−|z | = −
√

a2 + b2 ≤ −
√

a2 = −|a| ≤ Re(z) ≤ |a| ≤ |z |.

So −|z | ≤ Re(z) ≤ |z | and |Re(z)| ≤ |z |. From Exercise I.2.4(a),
|z + w |2 = |z |2 + 2Re(zw) + |w |2, and so

|z + w |2 ≤ |z |2 + 2|zw |+ |w |2

= |z |2 + 2|z ||w |+ |w |2 since |w | = |w |
= (|z |+ |w |)2.

Therefore |z + w | ≤ |z |+ |w |.
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Corollary

Corollary

Corollary. For nonzero z ,w ∈ C, |z + w | = |z |+ |w | if and only if z = tw
for some t ∈ R, t ≥ 0.
Proof. First, if z = tw then

|z + w | = |tw + w | = |(t + 1)w | = |t + 1||w |
= (t + 1)|w | = t|w |+ |w |
= |tw |+ |w | = |z |+ |w |.

Second, we see in the proof of the Triangle Inequality that we get equality
when Re(zw) = |zw |. This only occurs when Im(zw) = 0 and
Re(zw) ≥ 0. That is, zw ≥ 0 or (if w 6= 0) we have zw(w/w) ≥ 0 or

zww

w
≥ 0 implies

z |w |2

w
=

z

w
|w |2 = s ≥ 0

where s ∈ R. So we have that z = (s/|w |2)w = tw where
t = s/|w |2 ≥ 0.
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Cauchy Sequences Theorem

Cauchy Sequences Theorem

Theorem. A Cauchy sequence of complex numbers is convergent.

Proof. Let (zn) be a Cauchy sequence of complex numbers and let
Re(zn) = an, Im(zn) = bn for each n ∈ N.

By definition of Cauchy
sequence, we know that for all ε > 0 there exists N ∈ N such that for
m, n ≥ N we have |zm − zn| < ε. Notice that

|zm − zn| = |(am + ibm)− (an + ibn)|

= |(am − an) + i(bm − bn)| =
√

(am − an)2 + (bm − bn)2.

Now |am − an| =
√

(am − an)2 ≤
√

(am − an)2 + (bm − bn)2 = |zm − zn|,
so if m, n ≥ N then |am − an| ≤ |zm − zn| < ε, and (an) is a Cauchy
sequence of real numbers. Since the real numbers are complete, then
Cauchy sequences converge and (an) → a for some a ∈ R. Similarly, (bn)
is a Cauchy sequence of real numbers and (bn) → b for some b ∈ R.
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Cauchy Sequences Theorem

Cauchy Sequences Theorem (continued)

Theorem. A Cauchy sequence of complex numbers is convergent.

proof (continued). We claim that (zn) → a + ib. Let ε > 0 be given.
Since (an) → a and (bn) → b, there exist N1,N2 ∈ N such that for all
n ≥ N1 we have |an − a| < ε/2 and for all n ≥ N2 we have |bn − b| < ε/2.

So for all n ≥ max{N1,N2} we have

|zn − (a + ib)| = |(an + ibn)− (a + ib)| = |(an − a) + i(bn − b)|
≤ |an − a|+ |i(bn − b)| by the Triangle Inequality

< ε/2 + ε/2 = ε.

Therefore (zn) → a + ib and the Cauchy sequence of complex numbers is
convergent.
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