Complex Analysis

Chapter II. Metric Spaces and the Topology of \mathbb{C}

II.1. Definitions and Examples of Metric Spaces—Proofs of Theorems

Table of contents

(1) Theorem II.1.13(c1)
(2) Theorem II.1.13(f)

Theorem II.1.13(c1)

Theorem II.1.13(c1). Let X be a metric space and $A \subset X$. Then $\operatorname{int}(A)=X \backslash(X \backslash A)^{-}$.

Proof. Let $x \in X \backslash(X \backslash A)^{-}$. Well, $(X \backslash A)^{-}$is closed (it is the intersection of a collection of closed sets; use Theorem 1.11(c)). So $X \backslash(X \backslash A)^{-}$is open and so (by the definition of open) there exists $\varepsilon>0$ such that $B(x ; \varepsilon) \subset X \backslash(X \backslash A)^{-}$.

Theorem II.1.13(c1)

Theorem II.1.13(c1). Let X be a metric space and $A \subset X$. Then $\operatorname{int}(A)=X \backslash(X \backslash A)^{-}$.

Proof. Let $x \in X \backslash(X \backslash A)^{-}$. Well, $(X \backslash A)^{-}$is closed (it is the intersection of a collection of closed sets; use Theorem 1.11(c)). So $X \backslash(X \backslash A)^{-}$is open and so (by the definition of open) there exists $\varepsilon>0$ such that $B(x ; \varepsilon) \subset X \backslash(X \backslash A)^{-}$. Hence $B(x ; \varepsilon) \cap(X \backslash A)^{-}=\varnothing$, and so $B(x ; \varepsilon) \cap(X \backslash A)=\varnothing$. Therefore $B(x ; \varepsilon) \subset A$. Since $B(x ; \varepsilon)$ is open and a subset of set A, then $x \in \operatorname{int}(A)$. So $X \backslash(X \backslash A)^{-} \subset \operatorname{int}(A)$.

Theorem II.1.13(c1)

Theorem II.1.13(c1). Let X be a metric space and $A \subset X$. Then $\operatorname{int}(A)=X \backslash(X \backslash A)^{-}$.

Proof. Let $x \in X \backslash(X \backslash A)^{-}$. Well, $(X \backslash A)^{-}$is closed (it is the intersection of a collection of closed sets; use Theorem 1.11(c)). So $X \backslash(X \backslash A)^{-}$is open and so (by the definition of open) there exists $\varepsilon>0$ such that $B(x ; \varepsilon) \subset X \backslash(X \backslash A)^{-}$. Hence $B(x ; \varepsilon) \cap(X \backslash A)^{-}=\varnothing$, and so $B(x ; \varepsilon) \cap(X \backslash A)=\varnothing$. Therefore $B(x ; \varepsilon) \subset A$. Since $B(x ; \varepsilon)$ is open and a subset of set A, then $x \in \operatorname{int}(A)$. So $X \backslash(X \backslash A)^{-} \subset \operatorname{int}(A)$.

Let $x \in \operatorname{int}(A)$. Then since $\operatorname{int}(A)$ is open (it is the union of a collection of open sets; use Theorem 1.9(c)). So (by definition) there is $\varepsilon>0$ such that $B(x ; \varepsilon) \subset \operatorname{int}(A) \subset A$.

Theorem II.1.13(c1)

Theorem II.1.13(c1). Let X be a metric space and $A \subset X$. Then $\operatorname{int}(A)=X \backslash(X \backslash A)^{-}$.

Proof. Let $x \in X \backslash(X \backslash A)^{-}$. Well, $(X \backslash A)^{-}$is closed (it is the intersection of a collection of closed sets; use Theorem 1.11(c)). So $X \backslash(X \backslash A)^{-}$is open and so (by the definition of open) there exists $\varepsilon>0$ such that $B(x ; \varepsilon) \subset X \backslash(X \backslash A)^{-}$. Hence $B(x ; \varepsilon) \cap(X \backslash A)^{-}=\varnothing$, and so $B(x ; \varepsilon) \cap(X \backslash A)=\varnothing$. Therefore $B(x ; \varepsilon) \subset A$. Since $B(x ; \varepsilon)$ is open and a subset of set A, then $x \in \operatorname{int}(A)$. So $X \backslash(X \backslash A)^{-} \subset \operatorname{int}(A)$.

Let $x \in \operatorname{int}(A)$. Then since $\operatorname{int}(A)$ is open (it is the union of a collection of open sets; use Theorem 1.9(c)). So (by definition) there is $\varepsilon>0$ such that $B(x ; \varepsilon) \subset \operatorname{int}(A) \subset A$. Now $X \backslash B(x ; \varepsilon)$ is closed and $X \backslash A \subset X \backslash B(x ; \varepsilon)$, so $(X \backslash A)^{-} \subset X \backslash B(x ; \varepsilon)$ (the set on the right-hand side is closed by definition) and $x \notin(X \backslash A)^{-}$. Therefore $x \in X \backslash(X \backslash A)^{-}$and so $\operatorname{int}(A) \subset X \backslash(X \backslash A)^{-}$. Hence, $\operatorname{int}(A)=X \backslash(X \backslash A)^{-}$

Theorem II.1.13(c1)

Theorem II.1.13(c1). Let X be a metric space and $A \subset X$. Then $\operatorname{int}(A)=X \backslash(X \backslash A)^{-}$.

Proof. Let $x \in X \backslash(X \backslash A)^{-}$. Well, $(X \backslash A)^{-}$is closed (it is the intersection of a collection of closed sets; use Theorem 1.11(c)). So $X \backslash(X \backslash A)^{-}$is open and so (by the definition of open) there exists $\varepsilon>0$ such that $B(x ; \varepsilon) \subset X \backslash(X \backslash A)^{-}$. Hence $B(x ; \varepsilon) \cap(X \backslash A)^{-}=\varnothing$, and so $B(x ; \varepsilon) \cap(X \backslash A)=\varnothing$. Therefore $B(x ; \varepsilon) \subset A$. Since $B(x ; \varepsilon)$ is open and a subset of set A, then $x \in \operatorname{int}(A)$. So $X \backslash(X \backslash A)^{-} \subset \operatorname{int}(A)$.

Let $x \in \operatorname{int}(A)$. Then since $\operatorname{int}(A)$ is open (it is the union of a collection of open sets; use Theorem 1.9(c)). So (by definition) there is $\varepsilon>0$ such that $B(x ; \varepsilon) \subset \operatorname{int}(A) \subset A$. Now $X \backslash B(x ; \varepsilon)$ is closed and $X \backslash A \subset X \backslash B(x ; \varepsilon)$, so $(X \backslash A)^{-} \subset X \backslash B(x ; \varepsilon)$ (the set on the right-hand side is closed by definition) and $x \notin(X \backslash A)^{-}$. Therefore $x \in X \backslash(X \backslash A)^{-}$and so $\operatorname{int}(A) \subset X \backslash(X \backslash A)^{-}$. Hence, $\operatorname{int}(A)=X \backslash(X \backslash A)^{-}$.

Theorem II.1.13(f)

Theorem II.1.13(f). Let X be a metric space and $A \subset X$. Then $x_{0} \in A^{-}$ if and only if for all $\varepsilon>0, B\left(x_{0} ; \varepsilon\right) \cap A \neq \varnothing$.

Proof. Let $x_{0} \in A^{-}=X \backslash \operatorname{int}(X \backslash A)$ by part (c2). Then $x_{0} \notin \operatorname{int}(X \backslash A)$. By part (e), for every $\varepsilon>0$ the ball $B\left(x_{0} ; \varepsilon\right)$ is not a subset of $X \backslash A$. That is, there is $y \in B\left(x_{0} ; \varepsilon\right) \cap A$ (for any $\varepsilon>0$ there is some such y). Therefore, for all $\varepsilon>0, B\left(x_{0} ; \varepsilon\right) \cap A \neq \varnothing$.

Theorem II.1.13(f)

Theorem II.1.13(f). Let X be a metric space and $A \subset X$. Then $x_{0} \in A^{-}$ if and only if for all $\varepsilon>0, B\left(x_{0} ; \varepsilon\right) \cap A \neq \varnothing$.

Proof. Let $x_{0} \in A^{-}=X \backslash \operatorname{int}(X \backslash A)$ by part (c2). Then $x_{0} \notin \operatorname{int}(X \backslash A)$. By part (e), for every $\varepsilon>0$ the ball $B\left(x_{0} ; \varepsilon\right)$ is not a subset of $X \backslash A$. That is, there is $y \in B\left(x_{0} ; \varepsilon\right) \cap A$ (for any $\varepsilon>0$ there is some such y). Therefore, for all $\varepsilon>0, B\left(x_{0} ; \varepsilon\right) \cap A \neq \varnothing$.

Now suppose $x_{0} \notin A^{-}=X \backslash \operatorname{int}(X \backslash A)$ by part (c2). Then $x_{0} \in \operatorname{int}(X \backslash A)$ and, by part (e), there is $\varepsilon>0$ such that $B\left(x_{0} ; \varepsilon\right) \subset X \backslash A$. But then $B\left(x_{0} ; \varepsilon\right) \cap A=\varnothing$ and x_{0} does not satisfy the condition $B\left(x_{0} ; \varnothing\right) \cap A \neq \varnothing$ (here, we have proven the contrapositive of the 'only if' part).

Theorem II.1.13(f)

Theorem II.1.13(f). Let X be a metric space and $A \subset X$. Then $x_{0} \in A^{-}$ if and only if for all $\varepsilon>0, B\left(x_{0} ; \varepsilon\right) \cap A \neq \varnothing$.

Proof. Let $x_{0} \in A^{-}=X \backslash \operatorname{int}(X \backslash A)$ by part (c2). Then $x_{0} \notin \operatorname{int}(X \backslash A)$. By part (e), for every $\varepsilon>0$ the ball $B\left(x_{0} ; \varepsilon\right)$ is not a subset of $X \backslash A$. That is, there is $y \in B\left(x_{0} ; \varepsilon\right) \cap A$ (for any $\varepsilon>0$ there is some such y). Therefore, for all $\varepsilon>0, B\left(x_{0} ; \varepsilon\right) \cap A \neq \varnothing$.

Now suppose $x_{0} \notin A^{-}=X \backslash \operatorname{int}(X \backslash A)$ by part (c2). Then $x_{0} \in \operatorname{int}(X \backslash A)$ and, by part (e), there is $\varepsilon>0$ such that $B\left(x_{0} ; \varepsilon\right) \subset X \backslash A$. But then $B\left(x_{0} ; \varepsilon\right) \cap A=\varnothing$ and x_{0} does not satisfy the condition $B\left(x_{0} ; \varnothing\right) \cap A \neq \varnothing$ (here, we have proven the contrapositive of the 'only if' part).

