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Theorem 11.1.13(c1)

Theorem 11.1.13(cl). Let X be a metric space and A C X. Then
int(A) = X\ (X\ A)".
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Theorem 11.1.13(c1)

Theorem 11.1.13(cl). Let X be a metric space and A C X. Then
int(A) = X\ (X\ A)".

Proof. Let x € X \ (X \ A)~. Well, (X \ A)~ is closed (it is the

intersection of a collection of closed sets; use Theorem 1.11(c)). So
X\ (X'\ A)~ is open and so (by the definition of open) there exists £ > 0
such that B(x;e) C X \ (X \ A)".
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Theorem 11.1.13(c1)

Theorem 11.1.13(cl). Let X be a metric space and A C X. Then
int(A) = X\ (X\ A)".

Proof. Let x € X \ (X \ A)~. Well, (X \ A)~ is closed (it is the
intersection of a collection of closed sets; use Theorem 1.11(c)). So

X\ (X'\ A)~ is open and so (by the definition of open) there exists £ > 0
such that B(x;e) C X \ (X \ A)~. Hence B(x;¢) N (X \ A)” = &, and so
B(x;e)N (X \ A) = @. Therefore B(x;e) C A. Since B(x;¢) is open and
a subset of set A, then x € int(A). So X \ (X \ A)~ C int(A).

Complex Analysis February 3,2022 3 /4



Theorem 11.1.13(c1)

Theorem 11.1.13(cl). Let X be a metric space and A C X. Then
int(A) = X\ (X\ A)".

Proof. Let x € X \ (X \ A)~. Well, (X \ A)~ is closed (it is the
intersection of a collection of closed sets; use Theorem 1.11(c)). So

X\ (X'\ A)~ is open and so (by the definition of open) there exists £ > 0
such that B(x;e) C X \ (X \ A)~. Hence B(x;¢) N (X \ A)” = &, and so
B(x;e)N (X \ A) = @. Therefore B(x;e) C A. Since B(x;¢) is open and
a subset of set A, then x € int(A). So X \ (X \ A)~ C int(A).

Let x € int(A). Then since int(A) is open (it is the union of a collection of

open sets; use Theorem 1.9(c)). So (by definition) there is ¢ > 0 such that
B(x;e) C int(A) C A.
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Theorem 11.1.13(c1)

Theorem 11.1.13(cl). Let X be a metric space and A C X. Then
int(A) = X\ (X\ A)".

Proof. Let x € X \ (X \ A)~. Well, (X \ A)~ is closed (it is the
intersection of a collection of closed sets; use Theorem 1.11(c)). So

X\ (X'\ A)~ is open and so (by the definition of open) there exists £ > 0
such that B(x;e) C X \ (X \ A)~. Hence B(x;¢) N (X \ A)” = &, and so
B(x;e)N (X \ A) = @. Therefore B(x;e) C A. Since B(x;¢) is open and
a subset of set A, then x € int(A). So X \ (X \ A)~ C int(A).

Let x € int(A). Then since int(A) is open (it is the union of a collection of
open sets; use Theorem 1.9(c)). So (by definition) there is ¢ > 0 such that
B(x;e) C int(A) C A. Now X \ B(x;¢) is closed and X \ A C X\ B(x;¢),
so (X \ A)~ C X'\ B(x;¢) (the set on the right-hand side is closed by
definition) and x ¢ (X \ A)~. Therefore x € X \ (X \ A)™ and so

int(A) € X\ (X' \ A)~. Hence, int(A) = X\ (X \ A)". O
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Theorem 11.1.13(f)

Theorem 11.1.13(f). Let X be a metric space and A C X. Then xp € A~
if and only if for all € > 0, B(xp;¢) N A # @.
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Theorem 11.1.13(f)

Theorem 11.1.13(f). Let X be a metric space and A C X. Then xp € A~
if and only if for all € > 0, B(xp;¢) N A # @.

Proof. Let xp € A~ = X \ int(X \ A) by part (c2). Then xo € int(X \ A).
By part (e), for every € > 0 the ball B(xp;¢) is not a subset of X \ A.
That is, there is y € B(xg;€) N'A (for any € > 0 there is some such y).
Therefore, for all ¢ > 0, B(xp;e) N A # @.
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Theorem 11.1.13(f)

Theorem 11.1.13(f). Let X be a metric space and A C X. Then xp € A~
if and only if for all € > 0, B(xp;¢) N A # @.

Proof. Let xp € A~ = X \ int(X \ A) by part (c2). Then xo € int(X \ A).
By part (e), for every € > 0 the ball B(xp;¢) is not a subset of X \ A.
That is, there is y € B(xg;€) N'A (for any € > 0 there is some such y).
Therefore, for all ¢ > 0, B(xp;e) N A # @.

Now suppose xp € A~ = X \ int(X \ A) by part (c2). Then xp € int(X \ A)
and, by part (e), there is ¢ > 0 such that B(xp;e) C X \ A. But then

B(x0;e) N A= @ and xg does not satisfy the condition B(xp; @) N A # &
(here, we have proven the contrapositive of the ‘only if' part). Ol
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