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II.1. Definitions and Examples of Metric Spaces—Proofs of Theorems

() Complex Analysis February 3, 2022 1 / 4



Table of contents

1 Theorem II.1.13(c1)

2 Theorem II.1.13(f)

() Complex Analysis February 3, 2022 2 / 4



Theorem II.1.13(c1)

Theorem II.1.13(c1)

Theorem II.1.13(c1). Let X be a metric space and A ⊂ X . Then
int(A) = X \ (X \ A)−.

Proof. Let x ∈ X \ (X \ A)−. Well, (X \ A)− is closed (it is the
intersection of a collection of closed sets; use Theorem 1.11(c)). So
X \ (X \ A)− is open and so (by the definition of open) there exists ε > 0
such that B(x ; ε) ⊂ X \ (X \ A)−.

Hence B(x ; ε) ∩ (X \ A)− = ∅, and so
B(x ; ε) ∩ (X \ A) = ∅. Therefore B(x ; ε) ⊂ A. Since B(x ; ε) is open and
a subset of set A, then x ∈ int(A). So X \ (X \ A)− ⊂ int(A).

Let x ∈ int(A). Then since int(A) is open (it is the union of a collection of
open sets; use Theorem 1.9(c)). So (by definition) there is ε > 0 such that
B(x ; ε) ⊂ int(A) ⊂ A. Now X \ B(x ; ε) is closed and X \ A ⊂ X \ B(x ; ε),
so (X \ A)− ⊂ X \ B(x ; ε) (the set on the right-hand side is closed by
definition) and x 6∈ (X \ A)−. Therefore x ∈ X \ (X \ A)− and so
int(A) ⊂ X \ (X \ A)−. Hence, int(A) = X \ (X \ A)−.
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Theorem II.1.13(f). Let X be a metric space and A ⊂ X . Then x0 ∈ A−

if and only if for all ε > 0, B(x0; ε) ∩ A 6= ∅.

Proof. Let x0 ∈ A− = X \ int(X \ A) by part (c2). Then x0 6∈ int(X \ A).
By part (e), for every ε > 0 the ball B(x0; ε) is not a subset of X \ A.
That is, there is y ∈ B(x0; ε) ∩ A (for any ε > 0 there is some such y).
Therefore, for all ε > 0, B(x0; ε) ∩ A 6= ∅.

Now suppose x0 6∈ A− = X \ int(X \A) by part (c2). Then x0 ∈ int(X \A)
and, by part (e), there is ε > 0 such that B(x0; ε) ⊂ X \ A. But then
B(x0; ε) ∩ A = ∅ and x0 does not satisfy the condition B(x0; ∅) ∩ A 6= ∅
(here, we have proven the contrapositive of the ‘only if’ part).
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