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Theorem II.2.3

Theorem II.2.3

Theorem II.2.3. An open set G ⊂ C is connected if and only if for any
two points a, b ∈ G there is a polygon from a to b lying entirely in G .
Proof. Suppose that for open set G , for any two points a, b ∈ G there is a
polygon in G from a to b. ASSUME that G is not connected. Then there
are sets A and B such that A and B are both open and closed,
G ⊂ A ∪ B, A ∩ B = ∅, and A 6= ∅ 6= B. Let a ∈ A and b ∈ B with
polygon P from a to b such that P ⊂ G . Now there must be at least one
segment in P with one endpoint in A and the other endpoint in B (or else
the polygon cannot connect a point in A to a point in B; remember that
A ∩ B = ∅). Say the segment is [zk ,wk ].

Define

S = {s ∈ [0, 1] | swk + (1− s)zk ∈ A}

T = {t ∈ [0, 1] | twk + (1− t)zk ∈ B}.

Then S ∩ T = ∅ (since A ∩ B = ∅), S ∪ T = [0, 1] (since
[zk ,wk ] ⊂ G ⊂ A ∪ B), 0 ∈ S , and 1 ∈ T .
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Theorem II.2.3

Theorem II.2.3 (continued 1)

We need the following exercise:
Exercise II.2.2. Sets S and T are both open.
Proof. Let s ′ ∈ S . Then a′ = s ′wk + (1− s ′)zk ∈ A. Since A is open,
there is ε > 0 such that B(a′; ε) ⊂ A.

Then for all

s ∈
(
s ′ − ε/|zk − wk |, s ′ + ε/|zk − wk |

)
∩ [0, 1],

for a = swk + (1− s)zk we have

d(a, a′) = |a− a′| = |(swk + (1− s)zk)− (s ′wk + (1− s ′)zk)|
= |(s − s ′)wk + (s ′ − s)zk | = |s ′ − s||zk − wk |
< (ε/|zk − wk |)|zk − wk | = ε.

So (
s ′ − ε/|zk − wk |, s ′ + ε/|zk − wk |

)
∩ [0, 1] ⊂ S

and therefore S is open (relative to [0, 1]). Similarly, set T is open.
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Theorem II.2.3

Theorem II.2.3 (continued 2)

Theorem II.2.3. An open set G ⊂ C is connected if and only if for any
two points a, b ∈ G there is a polygon from a to b lying entirely in G .

Proof (continued). But then sets S and T are both open and closed sets
with respect to [0, 1]. That is, S ,T form a separation of [0, 1]. But this
implies that [0, 1] is not connected, a CONTRADICTION to Proposition
II.2.2. Therefore the assumption that G is not connected is false, and G is
connected.

Now suppose that G is open and connected. Fix point a ∈ G . Define

A = {b ∈ G | there is a polygon from a to b}.

We want to show that A = G . We do so by showing that A is both open
and closed in the metric space. Since G is open and connected, then
either A = ∅ (which is not the case since a ∈ A) or A = G .
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Theorem II.2.3

Theorem II.2.3 (continued 3)

Theorem II.2.3. An open set G ⊂ C is connected if and only if for any
two points a, b ∈ G there is a polygon from a to b lying entirely in G .

Proof (continued). Claim 1. The set
A = {b ∈ G | there is a polygon from a to b} is open.

Let b ∈ A and let P = [a, z1, z2, . . . , b] be a polygon in G . G is open so
there exists ε > 0 such that B(b; ε) ⊂ G . So for all z ∈ B(b; ε), the line
segment [b, z ] ⊂ B(b; ε). So the polygon P ∪ [b, z ] ⊂ G and this polygon
goes from a to z . So z ∈ A. Therefore, B(b; ε) ⊂ A and hence A is open.
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Theorem II.2.3

Theorem II.2.3 (continued 4)

Theorem II.2.3. An open set G ⊂ C is connected if and only if for any
two points a, b ∈ G there is a polygon from a to b lying entirely in G .

Proof (continued). Claim 2. The set
A = {b ∈ G | there is a polygon from a to b} is closed (in G ).

If G = A, we are done. So consider, without loss of generality, G \ A 6= ∅
and let z ∈ G \ A. Let ε > 0 be such that B(z ; ε) ⊂ G (this can be done
since G is open). ASSUME that b ∈ A ∩ B(z ; ε).

Then, as in Claim 1,
there is a polygon from a to z lying entirely inside G (first, there is a
polygon from a to b since b ∈ A, then there is the line segment [b, z ]).
But this implies z ∈ A, a CONTRADICTION. So the assumption is false
and no such b ∈ A ∩ B(z ; ε) exists; that is, A ∩ B(z ; ε) = ∅. Then
B(z ; ε) ⊂ G \ A and G \ A is open. That is, A is closed.

So set A is both open and closed, and the result follows as described
above.
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Lemma II.2.6

Lemma II.2.6

Lemma II.2.6. Let x0 ∈ X and let {Dj | j ∈ J} be a collection of
connected subsets of X such that x0 ∈ Dj for all j ∈ J. Then D = ∪j∈JDj

is connected.

Proof. Let A be a subset of metric space (D, d) which is both open and
closed and suppose A 6= ∅. Then A ∩ Dj is open in (Dj , d) for all j ∈ J
(by the definition of ‘open relative to Dj ’). Also, A ∩ Dj is closed in
(Dj , d) for all j ∈ J (by the definition of ‘closed relative to Dj ’; these
claims of open and closed are justified rigorously in Exercises II.1.8 and
II.1.9). Since Dj is connected, then either A ∩ Dj = ∅ or A ∩ Dj = Dj

(since A ∩ Dj is both open and closed).

Since A 6= ∅, there is some k ∈ J
such that A ∩ Dk 6= ∅. Then A ∩ Dk = Dk . Since x0 ∈ Dk , then x0 ∈ A.
Hence x0 ∈ A ∩ Dj for all j ∈ J. Again, A ∩ Dj 6= ∅ for all j ∈ J and
A ∩Dj = Dj for all j ∈ J. So Dj ⊂ A for all j ∈ J. But then D = ∪Dj ⊂ A
and so A = D. Therefore, D is both open and closed and hence D is
connected.
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Theorem II.2.7

Theorem II.2.7

Theorem II.2.7. Let (X , d) be a metric space. Then:

(a) each x0 ∈ X is contained in some component of X , and

(b) distinct components of X are disjoint.

Proof of (a). Let D be the collection of connected subsets of X which
contain point x0. By definition {x0} ∈ D, so D 6= ∅. By Lemma II.2.6,
C = ∪D∈DD is connected and x0 ∈ C . Next, if D is a connected set and
C ⊂ D, then x0 ∈ D and D ∈ D. But then D ⊂ C and so C = D. So C is
a maximal connected set containing x0. That is, C is a component of
space X .

Proof of (b). Suppose C1 and C2 are components with C1 6= C2.
ASSUME x0 ∈ C1 ∩ C2. Then by Lemma II.2.6, C1 ∪ C2 is connected. But
if C1 and C2 are components, then they are maximal connected subsets
and so C1 = C1 ∪ C2 = C2, a CONTRADICTION to the fact that
C1 6= C2. So the assumption that there is x0 ∈ C1 ∩ C2 is false and
different components are disjoint.
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Theorem II.2.9

Theorem II.2.9

Theorem II.2.9. Let G be open in C. Then the components of G are
open and there are only a countable number of them.

Proof. Let C be a component of G and let x0 ∈ C . Since G is open,
there exists ε > 0 such that B(x0; ε) ⊂ G . So x0 ∈ B(x0; ε) ∩ C and by
Lemma II.2.6, B(x0; ε) ∪ C is connected. But C is a component, so it is a
maximal connected set and hence B(x0; ε)∪C = C . That is, B(x0; ε) ⊂ C
and so C is open.

For countable, let S = {a + ib | a, b ∈ Q and a + ib ∈ G}. Then S is
countable and each component of G contains a point of S with different
components containing different points since the components are disjoint
(by Theorem II.2.7(b)). So the number of components is countable.
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