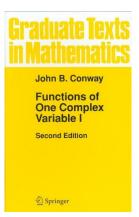
Complex Analysis

Chapter II. Metric Spaces and the Topology of \mathbb{C} II.2. Connectedness—Proofs of Theorems



Theorem II.2.3. An open set $G \subset \mathbb{C}$ is connected if and only if for any two points $a, b \in G$ there is a polygon from a to b lying entirely in G. **Proof.** Suppose that for open set G, for any two points $a, b \in G$ there is a polygon in G from a to b. ASSUME that G is not connected. Then there are sets A and B such that A and B are both open and closed. $G \subset A \cup B$, $A \cap B = \emptyset$, and $A \neq \emptyset \neq B$. Let $a \in A$ and $b \in B$ with polygon P from a to b such that $P \subset G$. Now there must be at least one segment in P with one endpoint in A and the other endpoint in B (or else the polygon cannot connect a point in A to a point in B; remember that $A \cap B = \emptyset$). Say the segment is $[z_k, w_k]$.

Theorem II.2.3. An open set $G \subset \mathbb{C}$ is connected if and only if for any two points $a, b \in G$ there is a polygon from a to b lying entirely in G. **Proof.** Suppose that for open set *G*, for any two points $a, b \in G$ there is a polygon in G from a to b. ASSUME that G is not connected. Then there are sets A and B such that A and B are both open and closed, $G \subset A \cup B$, $A \cap B = \emptyset$, and $A \neq \emptyset \neq B$. Let $a \in A$ and $b \in B$ with polygon P from a to b such that $P \subset G$. Now there must be at least one segment in P with one endpoint in A and the other endpoint in B (or else the polygon cannot connect a point in A to a point in B; remember that $A \cap B = \emptyset$). Say the segment is $[z_k, w_k]$. Define

 $S = \{s \in [0,1] \mid sw_k + (1-s)z_k \in A\}$

 $T = \{t \in [0,1] \mid tw_k + (1-t)z_k \in B\}.$

Then $S \cap T = \emptyset$ (since $A \cap B = \emptyset$), $S \cup T = [0, 1]$ (since $[z_k, w_k] \subset G \subset A \cup B$), $0 \in S$, and $1 \in T$.

Theorem II.2.3. An open set $G \subset \mathbb{C}$ is connected if and only if for any two points $a, b \in G$ there is a polygon from a to b lying entirely in G. **Proof.** Suppose that for open set *G*, for any two points $a, b \in G$ there is a polygon in G from a to b. ASSUME that G is not connected. Then there are sets A and B such that A and B are both open and closed. $G \subset A \cup B$, $A \cap B = \emptyset$, and $A \neq \emptyset \neq B$. Let $a \in A$ and $b \in B$ with polygon P from a to b such that $P \subset G$. Now there must be at least one segment in P with one endpoint in A and the other endpoint in B (or else the polygon cannot connect a point in A to a point in B; remember that $A \cap B = \emptyset$). Say the segment is $[z_k, w_k]$. Define

$$S = \{s \in [0,1] \mid sw_k + (1-s)z_k \in A\}$$
$$T = \{t \in [0,1] \mid tw_k + (1-t)z_k \in B\}.$$
Then $S \cap T = \emptyset$ (since $A \cap B = \emptyset$), $S \cup T = [0,1]$ (since $z_k, w_k] \subset G \subset A \cup B$), $0 \in S$, and $1 \in T$.

Theorem II.2.3 (continued 1)

We need the following exercise: **Exercise II.2.2.** Sets S and T are both open.

Proof. Let $s' \in S$. Then $a' = s'w_k + (1 - s')z_k \in A$. Since A is open, there is $\varepsilon > 0$ such that $B(a'; \varepsilon) \subset A$.

Theorem II.2.3 (continued 1)

We need the following exercise: **Exercise II.2.2.** Sets *S* and *T* are both open. **Proof.** Let $s' \in S$. Then $a' = s'w_k + (1 - s')z_k \in A$. Since *A* is open, there is $\varepsilon > 0$ such that $B(a'; \varepsilon) \subset A$. Then for all

$$s \in ig(s' - arepsilon/|z_k - w_k|, s' + arepsilon/|z_k - w_k|ig) \cap [0, 1],$$

for $a = sw_k + (1 - s)z_k$ we have

$$d(a,a') = |a-a'| = |(sw_k + (1-s)z_k) - (s'w_k + (1-s')z_k)|$$

= $|(s-s')w_k + (s'-s)z_k| = |s'-s||z_k - w_k|$
< $(\varepsilon/|z_k - w_k|)|z_k - w_k| = \varepsilon.$

So

$$\left(s'-arepsilon/|z_k-w_k|,s'+arepsilon/|z_k-w_k|
ight)\cap [0,1]\subset S$$

and therefore S is open (relative to [0,1]). Similarly, set T is open.

- ()

Theorem II.2.3 (continued 1)

We need the following exercise: **Exercise II.2.2.** Sets *S* and *T* are both open. **Proof.** Let $s' \in S$. Then $a' = s'w_k + (1 - s')z_k \in A$. Since *A* is open, there is $\varepsilon > 0$ such that $B(a'; \varepsilon) \subset A$. Then for all

$$m{s} \in ig(m{s}' - arepsilon / |m{z}_k - m{w}_k|, m{s}' + arepsilon / |m{z}_k - m{w}_k|ig) \cap [m{0}, m{1}],$$

for $a = sw_k + (1 - s)z_k$ we have

$$\begin{array}{lll} d(a,a') &=& |a-a'| = |(sw_k + (1-s)z_k) - (s'w_k + (1-s')z_k)| \\ &=& |(s-s')w_k + (s'-s)z_k| = |s'-s||z_k - w_k| \\ &<& (\varepsilon/|z_k - w_k|)|z_k - w_k| = \varepsilon. \end{array}$$

So

$$ig(s' - arepsilon / |z_k - w_k|, s' + arepsilon / |z_k - w_k| ig) \cap [0,1] \subset S$$

and therefore S is open (relative to [0, 1]). Similarly, set T is open.

()

Theorem II.2.3 (continued 2)

Theorem II.2.3. An open set $G \subset \mathbb{C}$ is connected if and only if for any two points $a, b \in G$ there is a polygon from a to b lying entirely in G.

Proof (continued). But then sets S and T are both open and closed sets with respect to [0, 1]. That is, S, T form a separation of [0, 1]. But this implies that [0, 1] is not connected, a CONTRADICTION to Proposition II.2.2. Therefore the assumption that G is not connected is false, and G is connected.

Theorem II.2.3 (continued 2)

Theorem II.2.3. An open set $G \subset \mathbb{C}$ is connected if and only if for any two points $a, b \in G$ there is a polygon from a to b lying entirely in G.

Proof (continued). But then sets S and T are both open and closed sets with respect to [0, 1]. That is, S, T form a separation of [0, 1]. But this implies that [0, 1] is not connected, a CONTRADICTION to Proposition II.2.2. Therefore the assumption that G is not connected is false, and G is connected.

Now suppose that G is open and connected. Fix point $a \in G$. Define

 $A = \{b \in G \mid \text{ there is a polygon from } a \text{ to } b\}.$

We want to show that A = G. We do so by showing that A is both open and closed in the metric space. Since G is open and connected, then either $A = \emptyset$ (which is not the case since $a \in A$) or A = G.

Theorem II.2.3 (continued 2)

Theorem II.2.3. An open set $G \subset \mathbb{C}$ is connected if and only if for any two points $a, b \in G$ there is a polygon from a to b lying entirely in G.

Proof (continued). But then sets S and T are both open and closed sets with respect to [0, 1]. That is, S, T form a separation of [0, 1]. But this implies that [0, 1] is not connected, a CONTRADICTION to Proposition II.2.2. Therefore the assumption that G is not connected is false, and G is connected.

Now suppose that G is open and connected. Fix point $a \in G$. Define

$$A = \{b \in G \mid \text{ there is a polygon from } a \text{ to } b\}.$$

We want to show that A = G. We do so by showing that A is both open and closed in the metric space. Since G is open and connected, then either $A = \emptyset$ (which is not the case since $a \in A$) or A = G.

Theorem II.2.3 (continued 3)

Theorem II.2.3. An open set $G \subset \mathbb{C}$ is connected if and only if for any two points $a, b \in G$ there is a polygon from a to b lying entirely in G.

Proof (continued). Claim 1. The set $A = \{b \in G \mid \text{ there is a polygon from } a \text{ to } b\}$ is open.

Let $b \in A$ and let $P = [a, z_1, z_2, ..., b]$ be a polygon in G. G is open so there exists $\varepsilon > 0$ such that $B(b; \varepsilon) \subset G$. So for all $z \in B(b; \varepsilon)$, the line segment $[b, z] \subset B(b; \varepsilon)$. So the polygon $P \cup [b, z] \subset G$ and this polygon goes from a to z. So $z \in A$. Therefore, $B(b; \varepsilon) \subset A$ and hence A is open.

Theorem II.2.3 (continued 3)

Theorem II.2.3. An open set $G \subset \mathbb{C}$ is connected if and only if for any two points $a, b \in G$ there is a polygon from a to b lying entirely in G.

Proof (continued). Claim 1. The set $A = \{b \in G \mid \text{ there is a polygon from } a \text{ to } b\}$ is open.

Let $b \in A$ and let $P = [a, z_1, z_2, ..., b]$ be a polygon in G. G is open so there exists $\varepsilon > 0$ such that $B(b; \varepsilon) \subset G$. So for all $z \in B(b; \varepsilon)$, the line segment $[b, z] \subset B(b; \varepsilon)$. So the polygon $P \cup [b, z] \subset G$ and this polygon goes from a to z. So $z \in A$. Therefore, $B(b; \varepsilon) \subset A$ and hence A is open.

Theorem II.2.3 (continued 4)

Theorem II.2.3. An open set $G \subset \mathbb{C}$ is connected if and only if for any two points $a, b \in G$ there is a polygon from a to b lying entirely in G.

Proof (continued). Claim 2. The set $A = \{b \in G \mid \text{ there is a polygon from } a \text{ to } b\}$ is closed (in *G*).

If G = A, we are done. So consider, without loss of generality, $G \setminus A \neq \emptyset$ and let $z \in G \setminus A$. Let $\varepsilon > 0$ be such that $B(z; \varepsilon) \subset G$ (this can be done since G is open). ASSUME that $b \in A \cap B(z; \varepsilon)$.

Theorem II.2.3 (continued 4)

Theorem II.2.3. An open set $G \subset \mathbb{C}$ is connected if and only if for any two points $a, b \in G$ there is a polygon from a to b lying entirely in G.

Proof (continued). Claim 2. The set

 $A = \{b \in G \mid \text{ there is a polygon from } a \text{ to } b\}$ is closed (in G).

If G = A, we are done. So consider, without loss of generality, $G \setminus A \neq \emptyset$ and let $z \in G \setminus A$. Let $\varepsilon > 0$ be such that $B(z; \varepsilon) \subset G$ (this can be done since G is open). ASSUME that $b \in A \cap B(z; \varepsilon)$. Then, as in Claim 1, there is a polygon from a to z lying entirely inside G (first, there is a polygon from a to b since $b \in A$, then there is the line segment [b, z]). But this implies $z \in A$, a CONTRADICTION. So the assumption is false and no such $b \in A \cap B(z; \varepsilon)$ exists; that is, $A \cap B(z; \varepsilon) = \emptyset$. Then $B(z; \varepsilon) \subset G \setminus A$ and $G \setminus A$ is open. That is, A is closed.

So set A is both open and closed, and the result follows as described above.

Theorem II.2.3 (continued 4)

Theorem II.2.3. An open set $G \subset \mathbb{C}$ is connected if and only if for any two points $a, b \in G$ there is a polygon from a to b lying entirely in G.

Proof (continued). Claim 2. The set

 $A = \{b \in G \mid \text{ there is a polygon from } a \text{ to } b\}$ is closed (in G).

If G = A, we are done. So consider, without loss of generality, $G \setminus A \neq \emptyset$ and let $z \in G \setminus A$. Let $\varepsilon > 0$ be such that $B(z; \varepsilon) \subset G$ (this can be done since G is open). ASSUME that $b \in A \cap B(z; \varepsilon)$. Then, as in Claim 1, there is a polygon from a to z lying entirely inside G (first, there is a polygon from a to b since $b \in A$, then there is the line segment [b, z]). But this implies $z \in A$, a CONTRADICTION. So the assumption is false and no such $b \in A \cap B(z; \varepsilon)$ exists; that is, $A \cap B(z; \varepsilon) = \emptyset$. Then $B(z; \varepsilon) \subset G \setminus A$ and $G \setminus A$ is open. That is, A is closed.

So set A is both open and closed, and the result follows as described above.

Lemma II.2.6

Lemma II.2.6. Let $x_0 \in X$ and let $\{D_j \mid j \in J\}$ be a collection of connected subsets of X such that $x_0 \in D_j$ for all $j \in J$. Then $D = \bigcup_{j \in J} D_j$ is connected.

Proof. Let A be a subset of metric space (D, d) which is both open and closed and suppose $A \neq \emptyset$. Then $A \cap D_j$ is open in (D_j, d) for all $j \in J$ (by the definition of 'open relative to D_j '). Also, $A \cap D_j$ is closed in (D_j, d) for all $j \in J$ (by the definition of 'closed relative to D_j '; these claims of open and closed are justified rigorously in Exercises II.1.8 and II.1.9). Since D_j is connected, then either $A \cap D_j = \emptyset$ or $A \cap D_j = D_j$ (since $A \cap D_j$ is both open and closed).

Complex Analysis

Lemma II.2.6

Lemma II.2.6. Let $x_0 \in X$ and let $\{D_j \mid j \in J\}$ be a collection of connected subsets of X such that $x_0 \in D_j$ for all $j \in J$. Then $D = \bigcup_{j \in J} D_j$ is connected.

Proof. Let A be a subset of metric space (D, d) which is both open and closed and suppose $A \neq \emptyset$. Then $A \cap D_i$ is open in (D_i, d) for all $i \in J$ (by the definition of 'open relative to D_i '). Also, $A \cap D_i$ is closed in (D_i, d) for all $i \in J$ (by the definition of 'closed relative to D_i '; these claims of open and closed are justified rigorously in Exercises II.1.8 and II.1.9). Since D_i is connected, then either $A \cap D_i = \emptyset$ or $A \cap D_i = D_i$ (since $A \cap D_i$ is both open and closed). Since $A \neq \emptyset$, there is some $k \in J$ such that $A \cap D_k \neq \emptyset$. Then $A \cap D_k = D_k$. Since $x_0 \in D_k$, then $x_0 \in A$. Hence $x_0 \in A \cap D_i$ for all $i \in J$. Again, $A \cap D_i \neq \emptyset$ for all $i \in J$ and $A \cap D_i = D_i$ for all $j \in J$. So $D_i \subset A$ for all $j \in J$. But then $D = \bigcup D_i \subset A$ and so A = D. Therefore, D is both open and closed and hence D is connected.

Lemma II.2.6

Lemma II.2.6. Let $x_0 \in X$ and let $\{D_j \mid j \in J\}$ be a collection of connected subsets of X such that $x_0 \in D_j$ for all $j \in J$. Then $D = \bigcup_{j \in J} D_j$ is connected.

Proof. Let A be a subset of metric space (D, d) which is both open and closed and suppose $A \neq \emptyset$. Then $A \cap D_i$ is open in (D_i, d) for all $i \in J$ (by the definition of 'open relative to D_i '). Also, $A \cap D_i$ is closed in (D_i, d) for all $i \in J$ (by the definition of 'closed relative to D_i '; these claims of open and closed are justified rigorously in Exercises II.1.8 and II.1.9). Since D_i is connected, then either $A \cap D_i = \emptyset$ or $A \cap D_i = D_i$ (since $A \cap D_i$ is both open and closed). Since $A \neq \emptyset$, there is some $k \in J$ such that $A \cap D_k \neq \emptyset$. Then $A \cap D_k = D_k$. Since $x_0 \in D_k$, then $x_0 \in A$. Hence $x_0 \in A \cap D_i$ for all $j \in J$. Again, $A \cap D_i \neq \emptyset$ for all $j \in J$ and $A \cap D_i = D_i$ for all $j \in J$. So $D_i \subset A$ for all $j \in J$. But then $D = \bigcup D_i \subset A$ and so A = D. Therefore, D is both open and closed and hence D is connected.

C

Theorem II.2.7. Let (X, d) be a metric space. Then:

(a) each x₀ ∈ X is contained in some component of X, and (b) distinct components of X are disjoint.

Proof of (a). Let \mathcal{D} be the collection of connected subsets of X which contain point x_0 . By definition $\{x_0\} \in \mathcal{D}$, so $\mathcal{D} \neq \emptyset$. By Lemma II.2.6, $C = \bigcup_{D \in \mathcal{D}} D$ is connected and $x_0 \in C$. Next, if D is a connected set and $C \subset D$, then $x_0 \in D$ and $D \in \mathcal{D}$. But then $D \subset C$ and so C = D. So C is a maximal connected set containing x_0 . That is, C is a component of space X.

Theorem II.2.7. Let (X, d) be a metric space. Then:

(a) each $x_0 \in X$ is contained in some component of X, and

(b) distinct components of X are disjoint.

Proof of (a). Let \mathcal{D} be the collection of connected subsets of X which contain point x_0 . By definition $\{x_0\} \in \mathcal{D}$, so $\mathcal{D} \neq \emptyset$. By Lemma II.2.6, $C = \bigcup_{D \in \mathcal{D}} D$ is connected and $x_0 \in C$. Next, if D is a connected set and $C \subset D$, then $x_0 \in D$ and $D \in \mathcal{D}$. But then $D \subset C$ and so C = D. So C is a maximal connected set containing x_0 . That is, C is a component of space X.

Proof of (b). Suppose C_1 and C_2 are components with $C_1 \neq C_2$. ASSUME $x_0 \in C_1 \cap C_2$. Then by Lemma II.2.6, $C_1 \cup C_2$ is connected. But if C_1 and C_2 are components, then they are maximal connected subsets and so $C_1 = C_1 \cup C_2 = C_2$, a CONTRADICTION to the fact that $C_1 \neq C_2$. So the assumption that there is $x_0 \in C_1 \cap C_2$ is false and different components are disjoint.

Theorem II.2.7. Let (X, d) be a metric space. Then:

(a) each $x_0 \in X$ is contained in some component of X, and

(b) distinct components of X are disjoint.

Proof of (a). Let \mathcal{D} be the collection of connected subsets of X which contain point x_0 . By definition $\{x_0\} \in \mathcal{D}$, so $\mathcal{D} \neq \emptyset$. By Lemma II.2.6, $C = \bigcup_{D \in \mathcal{D}} D$ is connected and $x_0 \in C$. Next, if D is a connected set and $C \subset D$, then $x_0 \in D$ and $D \in \mathcal{D}$. But then $D \subset C$ and so C = D. So C is a maximal connected set containing x_0 . That is, C is a component of space X.

Proof of (b). Suppose C_1 and C_2 are components with $C_1 \neq C_2$. ASSUME $x_0 \in C_1 \cap C_2$. Then by Lemma II.2.6, $C_1 \cup C_2$ is connected. But if C_1 and C_2 are components, then they are maximal connected subsets and so $C_1 = C_1 \cup C_2 = C_2$, a CONTRADICTION to the fact that $C_1 \neq C_2$. So the assumption that there is $x_0 \in C_1 \cap C_2$ is false and different components are disjoint.

Theorem II.2.9. Let G be open in \mathbb{C} . Then the components of G are open and there are only a countable number of them.

Proof. Let *C* be a component of *G* and let $x_0 \in C$. Since *G* is open, there exists $\varepsilon > 0$ such that $B(x_0; \varepsilon) \subset G$. So $x_0 \in B(x_0; \varepsilon) \cap C$ and by Lemma II.2.6, $B(x_0; \varepsilon) \cup C$ is connected. But *C* is a component, so it is a maximal connected set and hence $B(x_0; \varepsilon) \cup C = C$. That is, $B(x_0; \varepsilon) \subset C$ and so *C* is open.

Theorem II.2.9. Let G be open in \mathbb{C} . Then the components of G are open and there are only a countable number of them.

Proof. Let *C* be a component of *G* and let $x_0 \in C$. Since *G* is open, there exists $\varepsilon > 0$ such that $B(x_0; \varepsilon) \subset G$. So $x_0 \in B(x_0; \varepsilon) \cap C$ and by Lemma II.2.6, $B(x_0; \varepsilon) \cup C$ is connected. But *C* is a component, so it is a maximal connected set and hence $B(x_0; \varepsilon) \cup C = C$. That is, $B(x_0; \varepsilon) \subset C$ and so *C* is open.

For countable, let $S = \{a + ib \mid a, b \in \mathbb{Q} \text{ and } a + ib \in G\}$. Then S is countable and each component of G contains a point of S with different components containing different points since the components are disjoint (by Theorem II.2.7(b)). So the number of components is countable.

Theorem II.2.9. Let G be open in \mathbb{C} . Then the components of G are open and there are only a countable number of them.

Proof. Let *C* be a component of *G* and let $x_0 \in C$. Since *G* is open, there exists $\varepsilon > 0$ such that $B(x_0; \varepsilon) \subset G$. So $x_0 \in B(x_0; \varepsilon) \cap C$ and by Lemma II.2.6, $B(x_0; \varepsilon) \cup C$ is connected. But *C* is a component, so it is a maximal connected set and hence $B(x_0; \varepsilon) \cup C = C$. That is, $B(x_0; \varepsilon) \subset C$ and so *C* is open.

For countable, let $S = \{a + ib \mid a, b \in \mathbb{Q} \text{ and } a + ib \in G\}$. Then S is countable and each component of G contains a point of S with different components containing different points since the components are disjoint (by Theorem II.2.7(b)). So the number of components is countable.