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Proposition II.3.2

Proposition II.3.2

Proposition II.3.2. A set F ⊂ X is closed if and only if for each sequence
{xn} in F with x = lim xn we have x ∈ F .

Proof. Suppose F is closed and x = lim xn where each xn ∈ F . So for all
ε > 0 we have xn ∈ B(x ; ε) for some xn ∈ {xn}. Then B(x ; ε) ∩ F 6= ∅.
So by Proposition 1.13(f), x ∈ F−. Since F is closed, F = F− and x ∈ F .

Next, suppose F is not closed. Then there is some x0 ∈ F− where x0 6∈ F .
Again by Proposition 1.13(f), for every ε > 0 we have B(x0; ε) ∩ F 6= ∅.
In particular, for each n ∈ N, with ε = 1/n, we can choose some
x ∈ B(x0; 1/n) ∩ F and denote it as xn. Then the sequence {xn} thus
created, converges to x0. But then {xn} → x0 6∈ F and so the sequence
condition does not hold.
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Cantor’s Theorem

Cantor’s Theorem

Cantor’s Theorem. A metric space (X , d) is complete if and only if for
any sequence {Fn} of nonempty closed sets with F1 ⊃ F2 ⊃ F3 ⊃ · · · and
diam(Fn) → 0, then the set ∩∞n=1Fn consists of a single point.

Proof. Suppose (X , d) is complete and let {Fn} be a sequence of closed
sets having the properties: (i) F1 ⊃ F2 ⊃ · · · and (ii) diam(Fn) → 0. We
now show ∩Fn consists of a single point. For n ∈ N, let xn ∈ Fn. If
n,m ≥ N then xn, xm ∈ FN and so d(xn, xm) ≤ diam(FN). Since
diam(Fn) → 0, for any given ε > 0, N can be chosen sufficiently large so
that diam(FN) < ε. Therefore, {xn} is a Cauchy sequence.

Since X is
compete, then xn → x0 for some x0 ∈ X . Let M ∈ N. For all n ≥ M we
have x0 ∈ FM by Proposition 3.2. This is true for arbitrary M, so x0 ∈ Fm

for all M ∈ N and x0 ∈ ∩Fn = F . So ∩Fn contains at least one point.
Suppose it contains a second point y . Then x0, y ∈ Fn for all n ∈ N. But
d(x0, y) ≤ diam(Fn) for all n and since diam(Fn) → 0 then d(x0, y) = 0.
That is, x0 = y and F = ∩Fn contains a unique point, as claimed.
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Cantor’s Theorem

Cantor’s Theorem (continued)

Cantor’s Theorem. A metric space (X , d) is complete if and only if for
any sequence {Fn} of nonempty closed sets with F1 ⊃ F2 ⊃ F3 ⊃ · · · and
diam(Fn) → 0, then the set ∩∞n=1Fn consists of a single point.

Proof (continued). Now suppose (X , d) satisfies the condition on nested
closed sets. Let {xn} be a Cauchy sequence in X . Define
Fn = {xn, xn+1, . . .}−; then F1 ⊃ F2 ⊃ F3 ⊃ · · · . Let ε > 0. Choose N
such that for all m, n ≥ N we have d(xn, xm) < ε. So for n ≥ N we have
diam{xn, xn+1, . . .} ≤ ε. So, by Exercise II.3.3, for n ≥ N,

diam(Fn) = diam{xn, xn+1, . . .}− = diam{xn, xn+1, . . .} < ε.

So diam(Fn) → 0. Then by hypothesis there is x0 ∈ X with
{x0} = F1 ∩ F2 ∩ · · · . In particular, x0 ∈ Fn for all n ∈ N and so
d(x0, xn) ≤ diam(Fn). But diam(Fn) → 0, so xn → x0 and sequence {xn}
converges to x0. So (X , d) is complete, as claimed.
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Proposition II.3.8

Proposition II.3.8

Proposition II.3.8. Let (X , d) be a complete metric space and let Y ⊂ X .
Then (Y , d) is a complete metric space if and only if Y is closed in X .

Proof. Suppose (Y , d) is complete. Let x0 be a limit point of Y . Then
there is a sequence {yn} of distinct points in Y such that x0 = lim(yn). By
Exercise II.3.5, {yn} is Cauchy and so converges to some y0 ∈ Y , since
(Y , d) is complete. Since limits of sequences are unique, then y0 = x0 and
x0 ∈ Y . So Y contains its limit points and by Proposition II.3.4(a) Y is
closed. The converse is Exercise II.3.2.
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