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Proposition 11.4.3

Proposition 11.4.3. Let K be a compact subset of X. Then
(a) K is closed, and
(b) if F is closed and F C K then F is compact.
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Proposition 11.4.3

Proposition 11.4.3

Proposition 11.4.3. Let K be a compact subset of X. Then
(a) K is closed, and
(b) if F is closed and F C K then F is compact.

Proof. (a) Let xop € K~. We show that xg € K and K = K~ (so K is
closed). Let € > 0. Then

B(xo;e) N K # @ (1)

by Theorem 1.13(f). For each n € N, define (open) G, = X \ B(xo; 1/n)".
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Proposition 11.4.3

Proposition 11.4.3. Let K be a compact subset of X. Then
(a) K is closed, and
(b) if F is closed and F C K then F is compact.

Proof. (a) Let xop € K~. We show that xg € K and K = K~ (so K is
closed). Let € > 0. Then

B(xo;e) N K # @ (1)

by Theorem 1.13(f). For each n € N, define (open) G, = X \ B(xo; 1/n)".
ASSUME xqg ¢ K. Then each G, is open and K C U2 G, = X \ {x0}.
Since K is compact (by hypothesis), then K C U™ ; G, for some m € N
(with possible relabeling of the G,'s) where G; C G, C --- C Gp,. Then

K C Gn = X\ B(x0,1/m)~. This implies that B(xp;1/m)" N K = &,
CONTRADICTING (1). So xp € K, K= K~ and K is closed.
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Proposition 11.4.3

Proposition 11.4.3. Let K be a compact subset of X. Then
(a) K is closed, and
(b) if F is closed and F C K then F is compact.

Proof. (b) Let G be an open cover of F. Since F is closed, then X \ F is
open. So GU{X \ F} is an open cover of K. Since K is compact, there

are G1, Gy, ..., Gy in Gsuchthat K C GGU Gy U---U G, U (X \ F). Since
FCK,then FC GitUGyU---U G, and so F is compact. O
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Proposition 11.4.4

Proposition 11.4.4

Proposition 11.4.4. A set K C X is compact if and only if every collection

F of closed subsets of K with the finite intersection property satisfies
NrerF # 2.
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Proposition 11.4.4

Proposition 11.4.4. A set K C X is compact if and only if every collection
F of closed subsets of K with the finite intersection property satisfies
NrerF # 2.

Proof. Suppose K is compact and F is a collection of closed subsets of K
having the finite intersection property. ASSUME NgcrF = & and let

G =Ugexr(X\ F). Then

Urer(X\ F) = X\ NgexrF by DeMorgan’s Laws
= X by assumption.

So G is an open cover of K. Thus, there are F1, F,..., F, € F such that

K C Up_1(X\ Fx) = X\ NJ_; Fx by DeMorgan. But then
N1 Fk C X \ K.
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Proposition 11.4.4

Proposition 11.4.4. A set K C X is compact if and only if every collection
F of closed subsets of K with the finite intersection property satisfies
NrerF # 2.

Proof. Suppose K is compact and F is a collection of closed subsets of K
having the finite intersection property. ASSUME NgcrF = & and let

G =Ugexr(X\ F). Then

Urer(X\ F) = X\ NgexrF by DeMorgan’s Laws
= X by assumption.

So G is an open cover of K. Thus, there are F1, F,..., F, € F such that
K C Up_1(X\ Fx) = X\ NJ_; Fx by DeMorgan. But then

N1 Fk C X \ K. Since for each k, we have Fx C K by definition of F, it
must be that N]_, Fx = @ (the only subset of K which is a subset of

X\ K is @). But this CONTRADICTS the finite intersection property. So
the assumption that NperF = @ is false and hence NperF # 9.
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Proposition 11.4.4

Proposition 11.4.4 (continued)

Proposition 11.4.4. A set K C X is compact if and only if every collection
F of closed subsets of K with the finite intersection property satisfies
NrerF # 2.

Proof (continued). Now suppose every collection F of closed subsets of
K with the finite intersection property satisfies NgcrF # @. ASSUME K
is not compact. Let G be an open cover of K with no finite subcover and

define F = {K\ G | G € G}. Then F consists of sets closed in K and for
any Fi, Fo, ..., F, € F we have

F10F2ﬂ~--ﬁFn:(K\Gl)ﬁ(K\G2)ﬁ--~ﬂ(K\Gn):K\Uﬂzlck.
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Proposition 11.4.4 (continued)

Proposition 11.4.4. A set K C X is compact if and only if every collection
F of closed subsets of K with the finite intersection property satisfies
NrerF # 2.

Proof (continued). Now suppose every collection F of closed subsets of
K with the finite intersection property satisfies NgcrF # @. ASSUME K
is not compact. Let G be an open cover of K with no finite subcover and
define F = {K\ G | G € G}. Then F consists of sets closed in K and for
any Fi, Fo, ..., F, € F we have

F10F2ﬂ~--ﬁFn:(K\Gl)ﬁ(K\G2)ﬁ--~ﬂ(K\Gn):K\Uﬂzlck.

Since K is not compact, then U] _,; Gx does not cover K and hence

K\ UJ_, Gk # @. So F satisfies the finite intersection property. However,
NeerF = K\ UgegG = @ since G is an open cover of K, a
CONTRADICTION. So the assumption that K is not compact is false and
K is compact. []
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Corollary 11.4.5

Corollary 11.4.5. Every compact metric space is complete.
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Corollary 11.4.5

Corollary 11.4.5

Corollary 11.4.5. Every compact metric space is complete.

Proof. We use Cantor's Theorem (Theorem 11.3.7). Let {F,} be a
sequence of non-empty closed sets with F; D F, D --- and diam(F,) — 0.
Since the F’s are nested, any finite collection satisfies

FoyNFp, NN Fp, # @ (where ny < np < ---ng), so {Fy} has the finite
intersection property.
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Corollary 11.4.5

Corollary 11.4.5. Every compact metric space is complete.

Proof. We use Cantor's Theorem (Theorem 11.3.7). Let {F,} be a
sequence of non-empty closed sets with F; D F, D --- and diam(F,) — 0.
Since the F’s are nested, any finite collection satisfies

Foy N FryN--- N Fp # @ (where np < np < ---ny), so {Fn} has the finite
intersection property. By Proposition 11.4.4, since the metric space is
complete, NpenFn # D. So there is some x € NpenFp. Since

diam(F,) — 0, there is a unique such x (as argued in the proof of Cantor’s
Theorem) and so by Cantor’s Theorem, the metric space is complete. [
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Corollary 11.4.6

Corollary 11.4.6. If X is a compact set in a metric space, then every
infinite set has a limit point in X.
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Corollary 11.4.6

Corollary 11.4.6

Corollary 11.4.6. If X is a compact set in a metric space, then every
infinite set has a limit point in X.

Proof. Let S be an infinite subset of X. ASSUME S has no limit points
in X. Let {a1, a2,...} be a sequence of distinct points in S. Define

Fn ={an,an+1,...}. Then since S has no limit points, set F, has no limit
points for all n € N.
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Corollary 11.4.6

Corollary 11.4.6. If X is a compact set in a metric space, then every
infinite set has a limit point in X.

Proof. Let S be an infinite subset of X. ASSUME S has no limit points
in X. Let {a1, a2,...} be a sequence of distinct points in S. Define

Fn ={an,an+1,...}. Then since S has no limit points, set F, has no limit
points for all n € N. So F, contains all of its limit points (it has none!)
and F, is closed for all n € N by Proposition 11.3.4(a). As in the proof of
Corollary 11.4.5, since the F,, are nested, they satisfy the finite intersection
property. But the a,’s are distinct and so NyenFrn = &. By Proposition
[1.4.4, this implies that X is not compact, a CONTRADICTION. So the
assumption that S has no limit points in X is false. O
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Lemma 11.4.8. Lebesgue's Covering Lemma

Lemma 11.4.8

Lemma 11.4.8. Lebesgue’s Covering Lemma.

If (X, d) is sequentially compact and G is an open cover of X then there is
an € > 0 such that if x € X, there is a set G € G with B(x;¢) C G.
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Lemma 11.4.8

Lemma 11.4.8. Lebesgue’s Covering Lemma.
If (X, d) is sequentially compact and G is an open cover of X then there is
an € > 0 such that if x € X, there is a set G € G with B(x;¢) C G.

Proof. Suppose G is an open cover of X. ASSUME there is no such ¢.
Then for each n € N there is a point x, € X such that B(x,;1/n) is not
contained in any set G € G. Consider the sequence {x,}. Since X is
sequentially compact, then there is a subsequence {xp, } of {x,} such that
Xp, — Xo for some xg € X.
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Lemma 11.4.8

Lemma 11.4.8. Lebesgue’s Covering Lemma.
If (X, d) is sequentially compact and G is an open cover of X then there is
an € > 0 such that if x € X, there is a set G € G with B(x;¢) C G.

Proof. Suppose G is an open cover of X. ASSUME there is no such ¢.
Then for each n € N there is a point x, € X such that B(x,;1/n) is not
contained in any set G € G. Consider the sequence {x,}. Since X is
sequentially compact, then there is a subsequence {xp, } of {x,} such that
Xn, — Xo for some xp € X. Since G is a covering of X then xp € Gg for
some Gy € G and since Gy is open, for some € > 0 we have B(xp; ) C Gp.
Let N € N be such that d(xg; xn,) < €/2 for all ny > N. Next, let

ng > max{N,2/e} and let y € B(xpn,;1/nk) (see the image below).
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Lemma 11.4.8 (continued)
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Then

d(xo0,y) < d(x0,%n,)+ d(xn,,y) by the Triangle Inequality
< €/2 4 1/nk by the choices of ni and y
< e&.

But then B(xp,;1/nk) C B(xp;¢) C G. However, we originally chose x,

such that B(x,; 1/n) is not contained in any G € G, a CONTRADICTION
for n = nk. So the assumption that there is no ¢ > 0 as described is false,
and the result follows. O
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Proposition 11.4.9

Proposition 11.4.9. Let (X, d) be a metric space. The following are
equivalent:

(a
(b
(c
(d

X is compact,
every infinite subset of X has a limit point,

X is sequentially compact, and

~— ~—r — N

X is complete and for all € > 0 there are a finite number of
points xi, X2, ..., X, € X such that X = U}_; B(xx; ). This
property is called total boundedness.
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Proposition 11.4.9

Proposition 11.4.9. Let (X, d) be a metric space. The following are
equivalent:

(a
(b
(c
(

X is compact,
every infinite subset of X has a limit point,

X is sequentially compact, and
d

~— ~—r — N

X is complete and for all € > 0 there are a finite number of
points xi, X2, ..., X, € X such that X = U}_; B(xx; ). This
property is called total boundedness.

Proof. (a) implies (b): This is Corollary 11.4.6.
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Proposition 11.4.9

Proposition 11.4.9. Let (X, d) be a metric space. The following are
equivalent:

(a
(b
(c
(d

X is compact,
every infinite subset of X has a limit point,

X is sequentially compact, and

~— ~—r — N

X is complete and for all € > 0 there are a finite number of
points xi, X2, ..., X, € X such that X = U}_; B(xx; ). This
property is called total boundedness.
Proof. (a) implies (b): This is Corollary 11.4.6.
(b) implies (c): Let {x,} be a sequence in X. Without loss of generality,
the x, are distinct (if an element is repeated an infinite number of times
then it is easy to produce a convergent subsequence; finite repetitions have
no effect). By hypothesis, the set {xj,xp,...} has a limit point, say
xp € X. So some x,, € B(xp;1); some xp, € B(xo,1/2) where ny > ny;
and in general x,, € B(xo;1/k) where n > ng_1 > --- > n > ny.
Complex Analysis February 24, 2022 11 / 17



Proposition 11.4.9

Proposition 11.4.9 (continued 1)

Proposition 11.4.9. Let (X, d) be a metric space. The following are
equivalent:
(c) X is sequentially compact, and
(d) X is complete and for all € > 0 there are a finite number of
points xi, X2, ..., X, € X such that X = U}_; B(xx;€). This
property is called total boundedness.
Proof (continued). Then subsequence {x,, } of {x,} has limit xg € X.
That is, every sequence has a convergent subsequence and X is
sequentially compact.
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Proposition 11.4.9 (continued 1)

Proposition 11.4.9. Let (X, d) be a metric space. The following are
equivalent:
(c) X is sequentially compact, and
(d) X is complete and for all € > 0 there are a finite number of
points xi, X2, ..., X, € X such that X = U}_; B(xx;€). This
property is called total boundedness.
Proof (continued). Then subsequence {x,, } of {x,} has limit xg € X.
That is, every sequence has a convergent subsequence and X is
sequentially compact.
(c) implies (d): Let {x,} be a Cauchy sequence. By hypothesis, {x,} has
a convergent subsequence which converges, say, to xp. Then {x,} — xo
(by Exercise 11.3.8) and so X is complete. Now let € > 0. Fix x; € X. If
X = B(x1;¢) then we conclude (d) with n = 1. Otherwise choose
xp € X\ B(x1;€). If X = B(x1;¢) U B(x2;¢) then we conclude (d) with
n = 2. Continue is this way and construct x3, xa, . ... If the process
terminates at some n, then we conclude (d).
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Proposition 11.4.9 (continued 2)

Proposition 11.4.9. Let (X, d) be a metric space. The following are
equivalent:
(c) X is sequentially compact, and
(d) X is complete and for all € > 0 there are a finite number of
points xi, X2, ..., X € X such that X = U}_; B(xk; ). This
property is called total boundedness.
Proof (continued.) If the process does not terminate then we have a
sequence {x,} where for any n # m we have d(xp, xm) > €. But then
sequence {x,} can have no convergent subsequence, violating the
hypothesis. So the process must terminate and we have X = U], B(xx;¢)
for some {x1,x2,...,Xn}.
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Proposition 11.4.9 (continued 2)

Proposition 11.4.9. Let (X, d) be a metric space. The following are
equivalent:
(c) X is sequentially compact, and
(d) X is complete and for all € > 0 there are a finite number of
points xi, X2, ..., X € X such that X = U}_; B(xk; ). This
property is called total boundedness.
Proof (continued.) If the process does not terminate then we have a
sequence {x,} where for any n # m we have d(xp, xm) > €. But then
sequence {x,} can have no convergent subsequence, violating the
hypothesis. So the process must terminate and we have X = U], B(xx;¢)
for some {x1,x2,...,Xn}.
(d) implies (c): Let {x,} be a sequence of distinct points (as in the proof
of (b) implies (c) we may assume WLOG that the points are distinct).
With € = 1, we can write X as a finite union of balls of radius 1. Since
{xn} is an infinite set, there is some y; € X such that B(yi;1) contains an
infinite number of the x,'s, say {xﬁl)}gozl.
Complex Analysis February 24, 2022 13 / 17



Proposition 11.4.9 (continued 3)

Proposition 11.4.9. Let (X, d) be a metric space. The following are
equivalent:
(c) X is sequentially compact, and
(d) X is complete and for all £ > 0 there are a finite number of
points x1, X2, ..., X, € X such that X = U}_; B(xx;€). This
property is called total boundedness.

Proof (continued.) Similarly with ¢ = 1/2, there is y» € X and
subsequence {x,(,2)} of {x,gl)} with {X,(,2)} C B(y2;1/2). In general, for
each k € N, k > 2, there is y, € X and subsequence {x,(,k)} of {x,(,k_l)}
with {x,(,k)} C B(yk,1/k). Define F = {x,(,k)}_.
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Proposition 11.4.9 (continued 3)

Proposition 11.4.9. Let (X, d) be a metric space. The following are
equivalent:
(c) X is sequentially compact, and
(d) X is complete and for all £ > 0 there are a finite number of
points x1, X2, ..., X, € X such that X = U}_; B(xx;€). This
property is called total boundedness.

Proof (continued.) Similarly with ¢ = 1/2, there is y» € X and
subsequence {x,(,2)} of {x,gl)} with {X,(,2)} C B(y2;1/2). In general, for
each k € N, k > 2, there is yx € X and subsequence {x,(,k)} of {x,(,k_l)}
with ({9} € B(y,1/k). Define Fx = {x{)1=. Then diam(F) < 2/k
and F{ D F, D ---. Since X is complete by hypothesis, then by Theorem
11.3.7, N2, Fi = {xo} for some xg € X. Consider the subsequence of {x,}

defined as {x,Ek)} (by the recursive way the subsequences are constructed,
we are insured that this is in fact a subsequence).
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Proposition 11.4.9 (continued 4)

Proposition 11.4.9. Let (X, d) be a metric space. The following are
equivalent:

(a) X is compact,
(c) X is sequentially compact.
Proof (continued.) Notice that

d(xo,x,((k)) < diam(Fg) (since xo,x,Ek) € Fy)
< 2/k

for all k € N. So x,((k) — xp € X. So {x,} has a convergent subsequence
and X is sequentially compact.
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Proposition 11.4.9 (continued 4)

Proposition 11.4.9. Let (X, d) be a metric space. The following are
equivalent:

(a) X is compact,
(c) X is sequentially compact.
Proof (continued.) Notice that

diam(Fy) (since xo,x,Ek) € Fy)
2/k

d(x0, X)) <
<

for all k € N. So x,((k) — xp € X. So {x,} has a convergent subsequence
and X is sequentially compact.

(c) implies (a): Let G be an open cover of X. Since X is hypothesized to
be sequentially compact, then by Lebesgue’'s Covering Lemma (Lemma
11.4.8), there is some € > 0 such that for every x € X, thereisa G € G
where B(x;e) C G.
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Proposition 11.4.9 (continued 5)

Proposition 11.4.9. Let (X, d) be a metric space. The following are
equivalent:

(a) X is compact,

(c) X is sequentially compact.

Proof (continued.) From above, we have that (c) implies (d), so there
are points x1, X2, ..., X, € X such that X = U}_; B(xk; €). Again, by

Lebesgue's Covering Lemma, for k =1,2,..., n we have some G, € G
such that B(xx;e) C Gk. Then X =U]_; G and {G1, Go,...,Gp} is a
finite subcover of G. So X is compact and (a) follows. O
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Heine-Borel Theorem

Heine-Borel Theorem

Theorem 11.4.10. Heine-Borel Theorem.

A subset K of R" (n > 1) is compact if and only if K is closed and
bounded.
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Heine-Borel Theorem

Heine-Borel Theorem

Theorem 11.4.10. Heine-Borel Theorem.

A subset K of R" (n > 1) is compact if and only if K is closed and
bounded.

Proof. Suppose K is compact. Then K is closed by Proposition 11.4.3(a).
By Theorem 11.4.9(d), X is totally bounded. So there is ¢ > 0 and

X1,X2,...,Xp such that X = UJ_; B(xx; €). We then have that
d(x1,y) < 2ne for all y € X and so X is bounded.
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Heine-Borel Theorem

Theorem 11.4.10. Heine-Borel Theorem.

A subset K of R" (n > 1) is compact if and only if K is closed and
bounded.

Proof. Suppose K is compact. Then K is closed by Proposition 11.4.3(a).
By Theorem 11.4.9(d), X is totally bounded. So there is ¢ > 0 and
X1,X2,...,Xp such that X = UJ_; B(xx; €). We then have that

d(x1,y) < 2ne for all y € X and so X is bounded.

Now suppose K is closed and bounded. Since K C R" is bounded, then
for some a1, a»,...,a, and by, by, ..., b, we have

K C [a1, b1] X [a2, b2] X -+ X [an, by] = F. Now F is closed (consider
R™\ F) and R" is complete (here is where completeness is used—showing
R" is complete based on the completeness of R is similar to the proof that
C is complete in Proposition 11.3.6). So F is complete by Proposition
[1.3.8. By Lemma, F is totally bounded. So by Proposition 11.4.9(d), set F
is compact. Now by Proposition 11.4.3(b), since set K is closed, set K is
compact. L]
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