Complex Analysis

Chapter II. Metric Spaces and the Topology of \mathbb{C} II.4. Compactness—Proofs of Theorems

Table of contents

- Proposition II.4.3
- 2 Proposition II.4.4
- 3 Corollary II.4.5
- 4 Corollary II.4.6
- 5 Lemma II.4.8. Lebesgue's Covering Lemma
- 6 Proposition II.4.9
- 7 Heine-Borel Theorem

Proposition II.4.3. Let K be a compact subset of X. Then

(a) K is closed, and (b) if F is closed and F ⊂ K then F is compact.

Proof. (a) Let $x_0 \in K^-$. We show that $x_0 \in K$ and $K = K^-$ (so K is closed). Let $\varepsilon > 0$. Then

$$B(x_0;\varepsilon) \cap K \neq \emptyset \tag{1}$$

by Theorem 1.13(f). For each $n \in \mathbb{N}$, define (open) $G_n = X \setminus B(x_0; 1/n)^-$.

Proposition II.4.3. Let K be a compact subset of X. Then

(a) K is closed, and
(b) if F is closed and F ⊂ K then F is compact.

Proof. (a) Let $x_0 \in K^-$. We show that $x_0 \in K$ and $K = K^-$ (so K is closed). Let $\varepsilon > 0$. Then

$$B(x_0;\varepsilon) \cap K \neq \emptyset \tag{1}$$

by Theorem 1.13(f). For each $n \in \mathbb{N}$, define (open) $G_n = X \setminus B(x_0; 1/n)^-$. ASSUME $x_0 \notin K$. Then each G_n is open and $K \subset \bigcup_{n=1}^{\infty} G_n = X \setminus \{x_0\}$. Since K is compact (by hypothesis), then $K \subset \bigcup_{n=1}^{m} G_n$ for some $m \in \mathbb{N}$ (with possible relabeling of the G_n 's) where $G_1 \subset G_2 \subset \cdots \subset G_m$. Then $K \subset G_m = X \setminus B(x_0, 1/m)^-$. This implies that $B(x_0; 1/m)^- \cap K = \emptyset$, CONTRADICTING (1). So $x_0 \in K$, $K = K^-$ and K is closed.

Proposition II.4.3. Let K be a compact subset of X. Then

(a) K is closed, and
(b) if F is closed and F ⊂ K then F is compact.

Proof. (a) Let $x_0 \in K^-$. We show that $x_0 \in K$ and $K = K^-$ (so K is closed). Let $\varepsilon > 0$. Then

$$B(x_0;\varepsilon) \cap K \neq \emptyset \tag{1}$$

by Theorem 1.13(f). For each $n \in \mathbb{N}$, define (open) $G_n = X \setminus B(x_0; 1/n)^-$. ASSUME $x_0 \notin K$. Then each G_n is open and $K \subset \bigcup_{n=1}^{\infty} G_n = X \setminus \{x_0\}$. Since K is compact (by hypothesis), then $K \subset \bigcup_{n=1}^{m} G_n$ for some $m \in \mathbb{N}$ (with possible relabeling of the G_n 's) where $G_1 \subset G_2 \subset \cdots \subset G_m$. Then $K \subset G_m = X \setminus B(x_0, 1/m)^-$. This implies that $B(x_0; 1/m)^- \cap K = \emptyset$, CONTRADICTING (1). So $x_0 \in K$, $K = K^-$ and K is closed.

Proposition II.4.3. Let K be a compact subset of X. Then

(a) K is closed, and
(b) if F is closed and F ⊂ K then F is compact.

Proof. (b) Let \mathcal{G} be an open cover of F. Since F is closed, then $X \setminus F$ is open. So $\mathcal{G} \cup \{X \setminus F\}$ is an open cover of K. Since K is compact, there are G_1, G_2, \ldots, G_n in \mathcal{G} such that $K \subset G_1 \cup G_2 \cup \cdots \cup G_n \cup (X \setminus F)$. Since $F \subset K$, then $F \subset G_1 \cup G_2 \cup \cdots \cup G_n$ and so F is compact.

Proposition II.4.4. A set $K \subset X$ is compact if and only if every collection \mathcal{F} of closed subsets of K with the finite intersection property satisfies $\bigcap_{F \in \mathcal{F}} F \neq \emptyset$.

Proof. Suppose K is compact and \mathcal{F} is a collection of closed subsets of K having the finite intersection property. ASSUME $\bigcap_{F \in \mathcal{F}} F = \emptyset$ and let $\mathcal{G} = \bigcup_{F \in \mathcal{F}} (X \setminus F)$. Then

 $\bigcup_{F \in \mathcal{F}} (X \setminus F) = X \setminus \bigcap_{F \in \mathcal{F}} F \text{ by DeMorgan's Laws}$ = X by assumption.

So \mathcal{G} is an open cover of K. Thus, there are $F_1, F_2, \ldots, F_n \in \mathcal{F}$ such that $K \subset \bigcup_{k=1}^n (X \setminus F_k) = X \setminus \bigcap_{k=1}^n F_k$ by DeMorgan. But then $\bigcap_{k=1}^n F_k \subset X \setminus K$.

Proposition II.4.4. A set $K \subset X$ is compact if and only if every collection \mathcal{F} of closed subsets of K with the finite intersection property satisfies $\bigcap_{F \in \mathcal{F}} F \neq \emptyset$.

Proof. Suppose K is compact and \mathcal{F} is a collection of closed subsets of K having the finite intersection property. ASSUME $\bigcap_{F \in \mathcal{F}} F = \emptyset$ and let $\mathcal{G} = \bigcup_{F \in \mathcal{F}} (X \setminus F)$. Then

$$\bigcup_{F \in \mathcal{F}} (X \setminus F) = X \setminus \bigcap_{F \in \mathcal{F}} F$$
 by DeMorgan's Laws
$$= X$$
 by assumption.

So \mathcal{G} is an open cover of K. Thus, there are $F_1, F_2, \ldots, F_n \in \mathcal{F}$ such that $K \subset \bigcup_{k=1}^n (X \setminus F_k) = X \setminus \bigcap_{k=1}^n F_k$ by DeMorgan. But then $\bigcap_{k=1}^n F_k \subset X \setminus K$. Since for each k, we have $F_k \subset K$ by definition of \mathcal{F} , it must be that $\bigcap_{k=1}^n F_k = \emptyset$ (the only subset of K which is a subset of $X \setminus K$ is \emptyset). But this CONTRADICTS the finite intersection property. So the assumption that $\bigcap_{F \in \mathcal{F}} F = \emptyset$ is false and hence $\bigcap_{F \in \mathcal{F}} F \neq \emptyset$.

Proposition II.4.4. A set $K \subset X$ is compact if and only if every collection \mathcal{F} of closed subsets of K with the finite intersection property satisfies $\bigcap_{F \in \mathcal{F}} F \neq \emptyset$.

Proof. Suppose K is compact and \mathcal{F} is a collection of closed subsets of K having the finite intersection property. ASSUME $\bigcap_{F \in \mathcal{F}} F = \emptyset$ and let $\mathcal{G} = \bigcup_{F \in \mathcal{F}} (X \setminus F)$. Then

$$\bigcup_{F \in \mathcal{F}} (X \setminus F) = X \setminus \bigcap_{F \in \mathcal{F}} F$$
 by DeMorgan's Laws
$$= X$$
 by assumption.

So \mathcal{G} is an open cover of K. Thus, there are $F_1, F_2, \ldots, F_n \in \mathcal{F}$ such that $K \subset \bigcup_{k=1}^n (X \setminus F_k) = X \setminus \bigcap_{k=1}^n F_k$ by DeMorgan. But then $\bigcap_{k=1}^n F_k \subset X \setminus K$. Since for each k, we have $F_k \subset K$ by definition of \mathcal{F} , it must be that $\bigcap_{k=1}^n F_k = \emptyset$ (the only subset of K which is a subset of $X \setminus K$ is \emptyset). But this CONTRADICTS the finite intersection property. So the assumption that $\bigcap_{F \in \mathcal{F}} F = \emptyset$ is false and hence $\bigcap_{F \in \mathcal{F}} F \neq \emptyset$.

Proposition II.4.4 (continued)

Proposition II.4.4. A set $K \subset X$ is compact if and only if every collection \mathcal{F} of closed subsets of K with the finite intersection property satisfies $\bigcap_{F \in \mathcal{F}} F \neq \emptyset$.

Proof (continued). Now suppose every collection \mathcal{F} of closed subsets of K with the finite intersection property satisfies $\bigcap_{F \in \mathcal{F}} F \neq \emptyset$. ASSUME K is not compact. Let \mathcal{G} be an open cover of K with no finite subcover and define $\mathcal{F} = \{K \setminus G \mid G \in \mathcal{G}\}$. Then \mathcal{F} consists of sets closed in K and for any $F_1, F_2, \ldots, F_n \in \mathcal{F}$ we have

$F_1 \cap F_2 \cap \cdots \cap F_n = (K \setminus G_1) \cap (K \setminus G_2) \cap \cdots \cap (K \setminus G_n) = K \setminus \cup_{k=1}^n G_k.$

Since K is not compact, then $\bigcup_{k=1}^{n} G_k$ does not cover K and hence $K \setminus \bigcup_{k=1}^{n} G_k \neq \emptyset$. So \mathcal{F} satisfies the finite intersection property. However, $\bigcap_{F \in \mathcal{F}} F = K \setminus \bigcup_{G \in \mathcal{G}} G = \emptyset$ since \mathcal{G} is an open cover of K, a CONTRADICTION. So the assumption that K is not compact is false and K is compact.

Proposition II.4.4 (continued)

Proposition II.4.4. A set $K \subset X$ is compact if and only if every collection \mathcal{F} of closed subsets of K with the finite intersection property satisfies $\bigcap_{F \in \mathcal{F}} F \neq \emptyset$.

Proof (continued). Now suppose every collection \mathcal{F} of closed subsets of K with the finite intersection property satisfies $\bigcap_{F \in \mathcal{F}} F \neq \emptyset$. ASSUME K is not compact. Let \mathcal{G} be an open cover of K with no finite subcover and define $\mathcal{F} = \{K \setminus G \mid G \in \mathcal{G}\}$. Then \mathcal{F} consists of sets closed in K and for any $F_1, F_2, \ldots, F_n \in \mathcal{F}$ we have

$$F_1 \cap F_2 \cap \cdots \cap F_n = (K \setminus G_1) \cap (K \setminus G_2) \cap \cdots \cap (K \setminus G_n) = K \setminus \cup_{k=1}^n G_k.$$

Since *K* is not compact, then $\bigcup_{k=1}^{n} G_k$ does not cover *K* and hence $K \setminus \bigcup_{k=1}^{n} G_k \neq \emptyset$. So \mathcal{F} satisfies the finite intersection property. However, $\bigcap_{F \in \mathcal{F}} F = K \setminus \bigcup_{G \in \mathcal{G}} G = \emptyset$ since \mathcal{G} is an open cover of *K*, a CONTRADICTION. So the assumption that *K* is not compact is false and *K* is compact.

Corollary II.4.5

Corollary 11.4.5. Every compact metric space is complete.

Proof. We use Cantor's Theorem (Theorem II.3.7). Let $\{F_n\}$ be a sequence of non-empty closed sets with $F_1 \supset F_2 \supset \cdots$ and diam $(F_n) \rightarrow 0$. Since the *F*'s are nested, any finite collection satisfies $F_{n_1} \cap F_{n_2} \cap \cdots \cap F_{n_k} \neq \emptyset$ (where $n_1 < n_2 < \cdots n_k$), so $\{F_n\}$ has the finite intersection property.

Corollary II.4.5. Every compact metric space is complete.

Proof. We use Cantor's Theorem (Theorem II.3.7). Let $\{F_n\}$ be a sequence of non-empty closed sets with $F_1 \supset F_2 \supset \cdots$ and diam $(F_n) \rightarrow 0$. Since the *F*'s are nested, any finite collection satisfies $F_{n_1} \cap F_{n_2} \cap \cdots \cap F_{n_k} \neq \emptyset$ (where $n_1 < n_2 < \cdots n_k$), so $\{F_n\}$ has the finite intersection property. By Proposition II.4.4, since the metric space is complete, $\bigcap_{n \in \mathbb{N}} F_n \neq \emptyset$. So there is some $x \in \bigcap_{n \in \mathbb{N}} F_n$. Since diam $(F_n) \rightarrow 0$, there is a unique such x (as argued in the proof of Cantor's Theorem) and so by Cantor's Theorem, the metric space is complete. \Box Corollary II.4.5. Every compact metric space is complete.

Proof. We use Cantor's Theorem (Theorem II.3.7). Let $\{F_n\}$ be a sequence of non-empty closed sets with $F_1 \supset F_2 \supset \cdots$ and diam $(F_n) \rightarrow 0$. Since the *F*'s are nested, any finite collection satisfies $F_{n_1} \cap F_{n_2} \cap \cdots \cap F_{n_k} \neq \emptyset$ (where $n_1 < n_2 < \cdots n_k$), so $\{F_n\}$ has the finite intersection property. By Proposition II.4.4, since the metric space is complete, $\bigcap_{n \in \mathbb{N}} F_n \neq \emptyset$. So there is some $x \in \bigcap_{n \in \mathbb{N}} F_n$. Since diam $(F_n) \rightarrow 0$, there is a unique such *x* (as argued in the proof of Cantor's Theorem) and so by Cantor's Theorem, the metric space is complete. \Box

Corollary II.4.6. If X is a compact set in a metric space, then every infinite set has a limit point in X.

Proof. Let *S* be an infinite subset of *X*. ASSUME *S* has no limit points in *X*. Let $\{a_1, a_2, \ldots\}$ be a sequence of distinct points in *S*. Define $F_n = \{a_n, a_{n+1}, \ldots\}$. Then since *S* has no limit points, set F_n has no limit points for all $n \in \mathbb{N}$.

Corollary II.4.6. If X is a compact set in a metric space, then every infinite set has a limit point in X.

Proof. Let *S* be an infinite subset of *X*. ASSUME *S* has no limit points in *X*. Let $\{a_1, a_2, \ldots\}$ be a sequence of distinct points in *S*. Define $F_n = \{a_n, a_{n+1}, \ldots\}$. Then since *S* has no limit points, set F_n has no limit points for all $n \in \mathbb{N}$. So F_n contains all of its limit points (it has none!) and F_n is closed for all $n \in \mathbb{N}$ by Proposition II.3.4(a). As in the proof of Corollary II.4.5, since the F_n are nested, they satisfy the finite intersection property. But the a_n 's are distinct and so $\bigcap_{n \in \mathbb{N}} F_n = \emptyset$. By Proposition II.4.4, this implies that *X* is not compact, a CONTRADICTION. So the assumption that *S* has no limit points in *X* is false. **Corollary II.4.6.** If X is a compact set in a metric space, then every infinite set has a limit point in X.

Proof. Let *S* be an infinite subset of *X*. ASSUME *S* has no limit points in *X*. Let $\{a_1, a_2, \ldots\}$ be a sequence of distinct points in *S*. Define $F_n = \{a_n, a_{n+1}, \ldots\}$. Then since *S* has no limit points, set F_n has no limit points for all $n \in \mathbb{N}$. So F_n contains all of its limit points (it has none!) and F_n is closed for all $n \in \mathbb{N}$ by Proposition II.3.4(a). As in the proof of Corollary II.4.5, since the F_n are nested, they satisfy the finite intersection property. But the a_n 's are distinct and so $\bigcap_{n \in \mathbb{N}} F_n = \emptyset$. By Proposition II.4.4, this implies that *X* is not compact, a CONTRADICTION. So the assumption that *S* has no limit points in *X* is false.

Lemma II.4.8

Lemma II.4.8. Lebesgue's Covering Lemma.

If (X, d) is sequentially compact and \mathcal{G} is an open cover of X then there is an $\varepsilon > 0$ such that if $x \in X$, there is a set $G \in \mathcal{G}$ with $B(x; \varepsilon) \subset G$.

Proof. Suppose \mathcal{G} is an open cover of X. ASSUME there is no such ε . Then for each $n \in \mathbb{N}$ there is a point $x_n \in X$ such that $B(x_n; 1/n)$ is not contained in any set $G \in \mathcal{G}$. Consider the sequence $\{x_n\}$. Since X is sequentially compact, then there is a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ such that $x_{n_k} \to x_0$ for some $x_0 \in X$.

Lemma II.4.8

Lemma II.4.8. Lebesgue's Covering Lemma.

If (X, d) is sequentially compact and \mathcal{G} is an open cover of X then there is an $\varepsilon > 0$ such that if $x \in X$, there is a set $G \in \mathcal{G}$ with $B(x; \varepsilon) \subset G$.

Proof. Suppose \mathcal{G} is an open cover of X. ASSUME there is no such ε . Then for each $n \in \mathbb{N}$ there is a point $x_n \in X$ such that $B(x_n; 1/n)$ is not contained in any set $G \in \mathcal{G}$. Consider the sequence $\{x_n\}$. Since X is sequentially compact, then there is a subsequence $\{x_n\}$ of $\{x_n\}$ such that $x_{n_k} \to x_0$ for some $x_0 \in X$. Since \mathcal{G} is a covering of X then $x_0 \in G_0$ for some $G_0 \in \mathcal{G}$ and since G_0 is open, for some $\varepsilon > 0$ we have $B(x_0; \varepsilon) \subset G_0$. Let $N \in \mathbb{N}$ be such that $d(x_0; x_{n_k}) < \varepsilon/2$ for all $n_k \ge N$. Next, let $n_k > \max\{N, 2/\varepsilon\}$ and let $y \in B(x_{n_k}; 1/n_k)$ (see the image below).

Lemma II.4.8

Lemma II.4.8. Lebesgue's Covering Lemma.

If (X, d) is sequentially compact and \mathcal{G} is an open cover of X then there is an $\varepsilon > 0$ such that if $x \in X$, there is a set $G \in \mathcal{G}$ with $B(x; \varepsilon) \subset G$.

Proof. Suppose \mathcal{G} is an open cover of X. ASSUME there is no such ε . Then for each $n \in \mathbb{N}$ there is a point $x_n \in X$ such that $B(x_n; 1/n)$ is not contained in any set $G \in \mathcal{G}$. Consider the sequence $\{x_n\}$. Since X is sequentially compact, then there is a subsequence $\{x_n\}$ of $\{x_n\}$ such that $x_{n_k} \to x_0$ for some $x_0 \in X$. Since \mathcal{G} is a covering of X then $x_0 \in G_0$ for some $G_0 \in \mathcal{G}$ and since G_0 is open, for some $\varepsilon > 0$ we have $B(x_0; \varepsilon) \subset G_0$. Let $N \in \mathbb{N}$ be such that $d(x_0; x_{n_k}) < \varepsilon/2$ for all $n_k \ge N$. Next, let $n_k > \max\{N, 2/\varepsilon\}$ and let $y \in B(x_{n_k}; 1/n_k)$ (see the image below). Lemma II.4.8. Lebesgue's Covering Lemma

Lemma II.4.8 (continued)

Then

$$\begin{array}{rcl} d(x_0,y) & \leq & d(x_0,x_{n_k}) + d(x_{n_k},y) \text{ by the Triangle Inequality} \\ & < & \varepsilon/2 + 1/n_k \text{ by the choices of } n_k \text{ and } y \\ & < & \varepsilon. \end{array}$$

But then $B(x_{n_k}; 1/n_k) \subset B(x_0; \varepsilon) \subset G$. However, we originally chose x_n such that $B(x_n; 1/n)$ is not contained in any $G \in \mathcal{G}$, a CONTRADICTION for $n = n_k$. So the assumption that there is no $\varepsilon > 0$ as described is false, and the result follows.

Proposition II.4.9. Let (X, d) be a metric space. The following are equivalent:

- (a) X is compact,
- (b) every infinite subset of X has a limit point,
- (c) X is sequentially compact, and
- (d) X is complete and for all $\varepsilon > 0$ there are a finite number of points $x_1, x_2, \ldots, x_n \in X$ such that $X = \bigcup_{k=1}^n B(x_k; \varepsilon)$. This property is called *total boundedness*.

Proof. (a) implies (b): This is Corollary II.4.6.

Proposition II.4.9. Let (X, d) be a metric space. The following are equivalent:

- (a) X is compact,
- (b) every infinite subset of X has a limit point,
- (c) X is sequentially compact, and
- (d) X is complete and for all $\varepsilon > 0$ there are a finite number of points $x_1, x_2, \ldots, x_n \in X$ such that $X = \bigcup_{k=1}^n B(x_k; \varepsilon)$. This property is called *total boundedness*.

Proof. (a) implies (b): This is Corollary II.4.6.

(b) implies (c): Let $\{x_n\}$ be a sequence in X. Without loss of generality, the x_n are distinct (if an element is repeated an infinite number of times then it is easy to produce a convergent subsequence; finite repetitions have no effect). By hypothesis, the set $\{x_1, x_2, \ldots\}$ has a limit point, say $x_0 \in X$. So some $x_{n_1} \in B(x_0; 1)$; some $x_{n_2} \in B(x_0, 1/2)$ where $n_2 > n_1$; and in general $x_{n_k} \in B(x_0; 1/k)$ where $n_k > n_{k-1} > \cdots > n_2 > n_1$.

Proposition II.4.9. Let (X, d) be a metric space. The following are equivalent:

- (a) X is compact,
- (b) every infinite subset of X has a limit point,
- (c) X is sequentially compact, and
- (d) X is complete and for all $\varepsilon > 0$ there are a finite number of points $x_1, x_2, \ldots, x_n \in X$ such that $X = \bigcup_{k=1}^n B(x_k; \varepsilon)$. This property is called *total boundedness*.

Proof. (a) implies (b): This is Corollary II.4.6.

(b) implies (c): Let $\{x_n\}$ be a sequence in X. Without loss of generality, the x_n are distinct (if an element is repeated an infinite number of times then it is easy to produce a convergent subsequence; finite repetitions have no effect). By hypothesis, the set $\{x_1, x_2, \ldots\}$ has a limit point, say $x_0 \in X$. So some $x_{n_1} \in B(x_0; 1)$; some $x_{n_2} \in B(x_0, 1/2)$ where $n_2 > n_1$; and in general $x_{n_k} \in B(x_0; 1/k)$ where $n_k > n_{k-1} > \cdots > n_2 > n_1$.

Proposition II.4.9 (continued 1)

Proposition II.4.9. Let (X, d) be a metric space. The following are equivalent:

- (c) X is sequentially compact, and
- (d) X is complete and for all $\varepsilon > 0$ there are a finite number of points $x_1, x_2, \ldots, x_n \in X$ such that $X = \bigcup_{k=1}^n B(x_k; \varepsilon)$. This property is called *total boundedness*.

Proof (continued). Then subsequence $\{x_{n_k}\}$ of $\{x_n\}$ has limit $x_0 \in X$. That is, every sequence has a convergent subsequence and X is sequentially compact.

(c) implies (d): Let $\{x_n\}$ be a Cauchy sequence. By hypothesis, $\{x_n\}$ has a convergent subsequence which converges, say, to x_0 . Then $\{x_n\} \rightarrow x_0$ (by Exercise II.3.8) and so X is complete. Now let $\varepsilon > 0$. Fix $x_1 \in X$. If $X = B(x_1; \varepsilon)$ then we conclude (d) with n = 1. Otherwise choose $x_2 \in X \setminus B(x_1; \varepsilon)$. If $X = B(x_1; \varepsilon) \cup B(x_2; \varepsilon)$ then we conclude (d) with n = 2. Continue is this way and construct x_3, x_4, \ldots If the process terminates at some n, then we conclude (d).

Proposition II.4.9 (continued 1)

Proposition II.4.9. Let (X, d) be a metric space. The following are equivalent:

- (c) X is sequentially compact, and
- (d) X is complete and for all $\varepsilon > 0$ there are a finite number of points $x_1, x_2, \ldots, x_n \in X$ such that $X = \bigcup_{k=1}^n B(x_k; \varepsilon)$. This property is called *total boundedness*.

Proof (continued). Then subsequence $\{x_{n_k}\}$ of $\{x_n\}$ has limit $x_0 \in X$. That is, every sequence has a convergent subsequence and X is sequentially compact.

(c) implies (d): Let $\{x_n\}$ be a Cauchy sequence. By hypothesis, $\{x_n\}$ has a convergent subsequence which converges, say, to x_0 . Then $\{x_n\} \to x_0$ (by Exercise II.3.8) and so X is complete. Now let $\varepsilon > 0$. Fix $x_1 \in X$. If $X = B(x_1; \varepsilon)$ then we conclude (d) with n = 1. Otherwise choose $x_2 \in X \setminus B(x_1; \varepsilon)$. If $X = B(x_1; \varepsilon) \cup B(x_2; \varepsilon)$ then we conclude (d) with n = 2. Continue is this way and construct x_3, x_4, \ldots . If the process terminates at some *n*, then we conclude (d).

Proposition II.4.9 (continued 2)

Proposition II.4.9. Let (X, d) be a metric space. The following are equivalent:

- (c) X is sequentially compact, and
- (d) X is complete and for all $\varepsilon > 0$ there are a finite number of points $x_1, x_2, \ldots, x_n \in X$ such that $X = \bigcup_{k=1}^n B(x_k; \varepsilon)$. This property is called *total boundedness*.

Proof (continued.) If the process does not terminate then we have a sequence $\{x_n\}$ where for any $n \neq m$ we have $d(x_n, x_m) \geq \varepsilon$. But then sequence $\{x_n\}$ can have no convergent subsequence, violating the hypothesis. So the process must terminate and we have $X = \bigcup_{k=1}^{m} B(x_k; \varepsilon)$ for some $\{x_1, x_2, \ldots, x_n\}$.

(d) implies (c): Let $\{x_n\}$ be a sequence of distinct points (as in the proof of (b) implies (c) we may assume WLOG that the points are distinct). With $\varepsilon = 1$, we can write X as a finite union of balls of radius 1. Since $\{x_n\}$ is an infinite set, there is some $y_1 \in X$ such that $B(y_1; 1)$ contains an infinite number of the x_n 's, say $\{x_n^{(1)}\}_{n=1}^{\infty}$.

Proposition II.4.9 (continued 2)

Proposition II.4.9. Let (X, d) be a metric space. The following are equivalent:

- (c) X is sequentially compact, and
- (d) X is complete and for all $\varepsilon > 0$ there are a finite number of points $x_1, x_2, \ldots, x_n \in X$ such that $X = \bigcup_{k=1}^n B(x_k; \varepsilon)$. This property is called *total boundedness*.

Proof (continued.) If the process does not terminate then we have a sequence $\{x_n\}$ where for any $n \neq m$ we have $d(x_n, x_m) \geq \varepsilon$. But then sequence $\{x_n\}$ can have no convergent subsequence, violating the hypothesis. So the process must terminate and we have $X = \bigcup_{k=1}^m B(x_k; \varepsilon)$ for some $\{x_1, x_2, \ldots, x_n\}$.

(d) implies (c): Let $\{x_n\}$ be a sequence of distinct points (as in the proof of (b) implies (c) we may assume WLOG that the points are distinct). With $\varepsilon = 1$, we can write X as a finite union of balls of radius 1. Since $\{x_n\}$ is an infinite set, there is some $y_1 \in X$ such that $B(y_1; 1)$ contains an infinite number of the x_n 's, say $\{x_n^{(1)}\}_{n=1}^{\infty}$.

Proposition II.4.9 (continued 3)

Proposition II.4.9. Let (X, d) be a metric space. The following are equivalent:

- (c) X is sequentially compact, and
- (d) X is complete and for all $\varepsilon > 0$ there are a finite number of points $x_1, x_2, \ldots, x_n \in X$ such that $X = \bigcup_{k=1}^n B(x_k; \varepsilon)$. This property is called *total boundedness*.

Proof (continued.) Similarly with $\varepsilon = 1/2$, there is $y_2 \in X$ and subsequence $\{x_n^{(2)}\}$ of $\{x_n^{(1)}\}$ with $\{x_n^{(2)}\} \subset B(y_2; 1/2)$. In general, for each $k \in \mathbb{N}$, $k \ge 2$, there is $y_k \in X$ and subsequence $\{x_n^{(k)}\}$ of $\{x_n^{(k-1)}\}$ with $\{x_n^{(k)}\} \subset B(y_k, 1/k)$. Define $F_k = \{x_n^{(k)}\}^-$. Then diam $(F_k) \le 2/k$ and $F_1 \supset F_2 \supset \cdots$. Since X is complete by hypothesis, then by Theorem II.3.7, $\bigcap_{k=1}^{\infty} F_k = \{x_0\}$ for some $x_0 \in X$. Consider the subsequence of $\{x_n\}$ defined as $\{x_k^{(k)}\}$ (by the recursive way the subsequences are constructed, we are insured that this is in fact a subsequence).

Proposition II.4.9 (continued 3)

Proposition II.4.9. Let (X, d) be a metric space. The following are equivalent:

- (c) X is sequentially compact, and
- (d) X is complete and for all $\varepsilon > 0$ there are a finite number of points $x_1, x_2, \ldots, x_n \in X$ such that $X = \bigcup_{k=1}^n B(x_k; \varepsilon)$. This property is called *total boundedness*.

Proof (continued.) Similarly with $\varepsilon = 1/2$, there is $y_2 \in X$ and subsequence $\{x_n^{(2)}\}$ of $\{x_n^{(1)}\}$ with $\{x_n^{(2)}\} \subset B(y_2; 1/2)$. In general, for each $k \in \mathbb{N}$, $k \ge 2$, there is $y_k \in X$ and subsequence $\{x_n^{(k)}\}$ of $\{x_n^{(k-1)}\}$ with $\{x_n^{(k)}\} \subset B(y_k, 1/k)$. Define $F_k = \{x_n^{(k)}\}^-$. Then diam $(F_k) \le 2/k$ and $F_1 \supset F_2 \supset \cdots$. Since X is complete by hypothesis, then by Theorem II.3.7, $\bigcap_{k=1}^{\infty} F_k = \{x_0\}$ for some $x_0 \in X$. Consider the subsequence of $\{x_n\}$ defined as $\{x_k^{(k)}\}$ (by the recursive way the subsequences are constructed, we are insured that this is in fact a subsequence).

Proposition II.4.9 (continued 4)

Proposition II.4.9. Let (X, d) be a metric space. The following are equivalent:

- (a) X is compact,
- (c) X is sequentially compact.

Proof (continued.) Notice that

$$\begin{array}{rcl} d(x_0, x_k^{(k)}) & \leq & \mathsf{diam}(F_k) \; (\mathsf{since} \; x_0, x_k^{(k)} \in F_k) \\ & \leq & 2/k \end{array}$$

for all $k \in \mathbb{N}$. So $x_k^{(k)} \to x_0 \in X$. So $\{x_n\}$ has a convergent subsequence and X is sequentially compact.

(c) implies (a): Let \mathcal{G} be an open cover of X. Since X is hypothesized to be sequentially compact, then by Lebesgue's Covering Lemma (Lemma II.4.8), there is some $\varepsilon > 0$ such that for every $x \in X$, there is a $G \in \mathcal{G}$ where $B(x; \varepsilon) \subset G$.

Proposition II.4.9 (continued 4)

Proposition II.4.9. Let (X, d) be a metric space. The following are equivalent:

- (a) X is compact,
- (c) X is sequentially compact.

Proof (continued.) Notice that

$$\begin{array}{rcl} d(x_0, x_k^{(k)}) & \leq & \mathsf{diam}(F_k) \; (\mathsf{since} \; x_0, x_k^{(k)} \in F_k) \\ & \leq & 2/k \end{array}$$

for all $k \in \mathbb{N}$. So $x_k^{(k)} \to x_0 \in X$. So $\{x_n\}$ has a convergent subsequence and X is sequentially compact.

(c) implies (a): Let \mathcal{G} be an open cover of X. Since X is hypothesized to be sequentially compact, then by Lebesgue's Covering Lemma (Lemma II.4.8), there is some $\varepsilon > 0$ such that for every $x \in X$, there is a $G \in \mathcal{G}$ where $B(x; \varepsilon) \subset G$.

Proposition II.4.9 (continued 5)

Proposition II.4.9. Let (X, d) be a metric space. The following are equivalent:

- (a) X is compact,
- (c) X is sequentially compact.

Proof (continued.) From above, we have that (c) implies (d), so there are points $x_1, x_2, \ldots, x_n \in X$ such that $X = \bigcup_{k=1}^n B(x_k; \varepsilon)$. Again, by Lebesgue's Covering Lemma, for $k = 1, 2, \ldots, n$ we have some $G_k \in \mathcal{G}$ such that $B(x_k; \varepsilon) \subset G_k$. Then $X = \bigcup_{k=1}^n G_k$ and $\{G_1, G_2, \ldots, G_n\}$ is a finite subcover of \mathcal{G} . So X is compact and (a) follows.

Heine-Borel Theorem

Theorem II.4.10. Heine-Borel Theorem.

A subset K of \mathbb{R}^n $(n \ge 1)$ is compact if and only if K is closed and bounded.

Proof. Suppose *K* is compact. Then *K* is closed by Proposition II.4.3(a). By Theorem II.4.9(d), *X* is totally bounded. So there is $\varepsilon > 0$ and x_1, x_2, \ldots, x_n such that $X = \bigcup_{k=1}^n B(x_k; \varepsilon)$. We then have that $d(x_1, y) < 2n\varepsilon$ for all $y \in X$ and so *X* is bounded.

Heine-Borel Theorem

Theorem II.4.10. Heine-Borel Theorem.

A subset K of \mathbb{R}^n $(n \ge 1)$ is compact if and only if K is closed and bounded.

Proof. Suppose *K* is compact. Then *K* is closed by Proposition II.4.3(a). By Theorem II.4.9(d), *X* is totally bounded. So there is $\varepsilon > 0$ and x_1, x_2, \ldots, x_n such that $X = \bigcup_{k=1}^n B(x_k; \varepsilon)$. We then have that $d(x_1, y) < 2n\varepsilon$ for all $y \in X$ and so *X* is bounded.

Now suppose *K* is closed and bounded. Since $K \subset \mathbb{R}^n$ is bounded, then for some a_1, a_2, \ldots, a_n and b_1, b_2, \ldots, b_n we have $K \subset [a_1, b_1] \times [a_2, b_2] \times \cdots \times [a_n, b_n] = F$. Now *F* is closed (consider $\mathbb{R}^n \setminus F$) and \mathbb{R}^n is complete (here is where completeness is used—showing \mathbb{R}^n is complete based on the completeness of \mathbb{R} is similar to the proof that \mathbb{C} is complete in Proposition II.3.6). So *F* is complete by Proposition II.3.8. By Lemma, *F* is totally bounded. So by Proposition II.4.9(d), set *F* is compact. Now by Proposition II.4.3(b), since set *K* is closed, set *K* is

Heine-Borel Theorem

Theorem II.4.10. Heine-Borel Theorem.

A subset K of \mathbb{R}^n $(n \ge 1)$ is compact if and only if K is closed and bounded.

Proof. Suppose K is compact. Then K is closed by Proposition II.4.3(a). By Theorem II.4.9(d), X is totally bounded. So there is $\varepsilon > 0$ and x_1, x_2, \ldots, x_n such that $X = \bigcup_{k=1}^n B(x_k; \varepsilon)$. We then have that $d(x_1, y) < 2n\varepsilon$ for all $y \in X$ and so X is bounded. Now suppose K is closed and bounded. Since $K \subset \mathbb{R}^n$ is bounded, then for some a_1, a_2, \ldots, a_n and b_1, b_2, \ldots, b_n we have $K \subset [a_1, b_1] \times [a_2, b_2] \times \cdots \times [a_n, b_n] = F$. Now F is closed (consider $\mathbb{R}^n \setminus F$) and \mathbb{R}^n is complete (here is where completeness is used—showing \mathbb{R}^n is complete based on the completeness of \mathbb{R} is similar to the proof that \mathbb{C} is complete in Proposition II.3.6). So *F* is complete by Proposition II.3.8. By Lemma, F is totally bounded. So by Proposition II.4.9(d), set F is compact. Now by Proposition II.4.3(b), since set K is closed, set K is compact.