Complex Analysis

Chapter II. Metric Spaces and the Topology of \mathbb{C} II.4. Compactness-Proofs of Theorems

Table of contents

(1) Proposition II.4.3
(2) Proposition II.4.4
(3) Corollary II.4.5
(4) Corollary II.4.6
(5) Lemma II.4.8. Lebesgue's Covering Lemma
(6) Proposition II.4.9
(7) Heine-Borel Theorem

Proposition II.4.3

Proposition II.4.3. Let K be a compact subset of X. Then
(a) K is closed, and
(b) if F is closed and $F \subset K$ then F is compact.

Proof. (a) Let $x_{0} \in K^{-}$. We show that $x_{0} \in K$ and $K=K^{-}$(so K is closed). Let $\varepsilon>0$. Then

$$
\begin{equation*}
B\left(x_{0} ; \varepsilon\right) \cap K \neq \varnothing \tag{1}
\end{equation*}
$$

by Theorem 1.13(f). For each $n \in \mathbb{N}$, define (open) $G_{n}=X \backslash B\left(x_{0} ; 1 / n\right)^{-}$

Proposition II.4.3

Proposition II.4.3. Let K be a compact subset of X. Then
(a) K is closed, and
(b) if F is closed and $F \subset K$ then F is compact.

Proof. (a) Let $x_{0} \in K^{-}$. We show that $x_{0} \in K$ and $K=K^{-}$(so K is closed). Let $\varepsilon>0$. Then

$$
\begin{equation*}
B\left(x_{0} ; \varepsilon\right) \cap K \neq \varnothing \tag{1}
\end{equation*}
$$

by Theorem 1.13(f). For each $n \in \mathbb{N}$, define (open) $G_{n}=X \backslash B\left(x_{0} ; 1 / n\right)^{-}$. ASSUME $x_{0} \notin K$. Then each G_{n} is open and $K \subset \cup_{n=1}^{\infty} G_{n}=X \backslash\left\{x_{0}\right\}$ Since K is compact (by hypothesis), then $K \subset \cup_{n=1}^{m} G_{n}$ for some $m \in \mathbb{N}$ (with possible relabeling of the G_{n} 's) where $G_{1} \subset G_{2} \subset \cdots \subset G_{m}$. Then $K \subset G_{m}=X \backslash B\left(x_{0}, 1 / m\right)^{-}$. This implies that $B\left(x_{0} ; 1 / m\right)^{-} \cap K=\varnothing$, CONTRADICTING (1). So $x_{0} \in K, K=K^{-}$and K is closed.

Proposition II.4.3

Proposition II.4.3. Let K be a compact subset of X. Then
(a) K is closed, and
(b) if F is closed and $F \subset K$ then F is compact.

Proof. (a) Let $x_{0} \in K^{-}$. We show that $x_{0} \in K$ and $K=K^{-}$(so K is closed). Let $\varepsilon>0$. Then

$$
\begin{equation*}
B\left(x_{0} ; \varepsilon\right) \cap K \neq \varnothing \tag{1}
\end{equation*}
$$

by Theorem 1.13(f). For each $n \in \mathbb{N}$, define (open) $G_{n}=X \backslash B\left(x_{0} ; 1 / n\right)^{-}$. ASSUME $x_{0} \notin K$. Then each G_{n} is open and $K \subset \cup_{n=1}^{\infty} G_{n}=X \backslash\left\{x_{0}\right\}$. Since K is compact (by hypothesis), then $K \subset \cup_{n=1}^{m} G_{n}$ for some $m \in \mathbb{N}$ (with possible relabeling of the G_{n} 's) where $G_{1} \subset G_{2} \subset \cdots \subset G_{m}$. Then $K \subset G_{m}=X \backslash B\left(x_{0}, 1 / m\right)^{-}$. This implies that $B\left(x_{0} ; 1 / m\right)^{-} \cap K=\varnothing$, CONTRADICTING (1). So $x_{0} \in K, K=K^{-}$and K is closed.

Proposition II.4.3

Proposition II.4.3. Let K be a compact subset of X. Then
(a) K is closed, and
(b) if F is closed and $F \subset K$ then F is compact.

Proof. (b) Let \mathcal{G} be an open cover of F. Since F is closed, then $X \backslash F$ is open. So $\mathcal{G} \cup\{X \backslash F\}$ is an open cover of K. Since K is compact, there are $G_{1}, G_{2}, \ldots, G_{n}$ in \mathcal{G} such that $K \subset G_{1} \cup G_{2} \cup \cdots \cup G_{n} \cup(X \backslash F)$. Since $F \subset K$, then $F \subset G_{1} \cup G_{2} \cup \cdots \cup G_{n}$ and so F is compact.

Proposition II.4.4

Proposition II.4.4. A set $K \subset X$ is compact if and only if every collection \mathcal{F} of closed subsets of K with the finite intersection property satisfies $\cap_{F \in \mathcal{F}} F \neq \varnothing$.
Proof. Suppose K is compact and \mathcal{F} is a collection of closed subsets of K having the finite intersection property. ASSUME $\cap_{F \in \mathcal{F}} F=\varnothing$ and let $\mathcal{G}=\cup_{F \in \mathcal{F}}(X \backslash F)$. Then

$$
\begin{aligned}
\cup_{F \in \mathcal{F}}(X \backslash F) & =X \backslash \cap_{F \in \mathcal{F}} F \text { by DeMorgan's Laws } \\
& =X \text { by assumption. }
\end{aligned}
$$

So \mathcal{G} is an open cover of K. Thus, there are $F_{1}, F_{2}, \ldots, F_{n} \in \mathcal{F}$ such that $K \subset \cup_{k=1}^{n}\left(X \backslash F_{k}\right)=X \backslash \cap_{k=1}^{n} F_{k}$ by DeMorgan. But then $\cap_{k=1}^{n} F_{k} \subset X \backslash K$.

Proposition II.4.4

Proposition II.4.4. A set $K \subset X$ is compact if and only if every collection \mathcal{F} of closed subsets of K with the finite intersection property satisfies $\cap_{F \in \mathcal{F}} F \neq \varnothing$.
Proof. Suppose K is compact and \mathcal{F} is a collection of closed subsets of K having the finite intersection property. ASSUME $\cap_{F \in \mathcal{F}} F=\varnothing$ and let $\mathcal{G}=\cup_{F \in \mathcal{F}}(X \backslash F)$. Then

$$
\begin{aligned}
\cup_{F \in \mathcal{F}}(X \backslash F) & =X \backslash \cap_{F \in \mathcal{F}} F \text { by DeMorgan's Laws } \\
& =X \text { by assumption. }
\end{aligned}
$$

So \mathcal{G} is an open cover of K. Thus, there are $F_{1}, F_{2}, \ldots, F_{n} \in \mathcal{F}$ such that $K \subset \cup_{k=1}^{n}\left(X \backslash F_{k}\right)=X \backslash \cap_{k=1}^{n} F_{k}$ by DeMorgan. But then $\cap_{k=1}^{n} F_{k} \subset X \backslash K$. Since for each k, we have $F_{k} \subset K$ by definition of \mathcal{F}, it must be that $\cap_{k=1}^{n} F_{k}=\varnothing$ (the only subset of K which is a subset of $X \backslash K$ is \varnothing). But this CONTRADICTS the finite intersection property. So the assumption that $\cap_{F \in \mathcal{F}} F=\varnothing$ is false and hence $\cap_{F \in \mathcal{F}} F \neq \varnothing$.

Proposition II.4.4

Proposition II.4.4. A set $K \subset X$ is compact if and only if every collection \mathcal{F} of closed subsets of K with the finite intersection property satisfies
$\cap_{F \in \mathcal{F}} F \neq \varnothing$.
Proof. Suppose K is compact and \mathcal{F} is a collection of closed subsets of K having the finite intersection property. ASSUME $\cap_{F \in \mathcal{F}} F=\varnothing$ and let $\mathcal{G}=\cup_{F \in \mathcal{F}}(X \backslash F)$. Then

$$
\begin{aligned}
\cup_{F \in \mathcal{F}}(X \backslash F) & =X \backslash \cap_{F \in \mathcal{F}} F \text { by DeMorgan's Laws } \\
& =X \text { by assumption. }
\end{aligned}
$$

So \mathcal{G} is an open cover of K. Thus, there are $F_{1}, F_{2}, \ldots, F_{n} \in \mathcal{F}$ such that $K \subset \cup_{k=1}^{n}\left(X \backslash F_{k}\right)=X \backslash \cap_{k=1}^{n} F_{k}$ by DeMorgan. But then $\cap_{k=1}^{n} F_{k} \subset X \backslash K$. Since for each k, we have $F_{k} \subset K$ by definition of \mathcal{F}, it must be that $\cap_{k=1}^{n} F_{k}=\varnothing$ (the only subset of K which is a subset of $X \backslash K$ is \varnothing). But this CONTRADICTS the finite intersection property. So the assumption that $\cap_{F \in \mathcal{F}} F=\varnothing$ is false and hence $\cap_{F \in \mathcal{F}} F \neq \varnothing$.

Proposition II.4.4 (continued)

Proposition II.4.4. A set $K \subset X$ is compact if and only if every collection \mathcal{F} of closed subsets of K with the finite intersection property satisfies $\cap_{F \in \mathcal{F}} F \neq \varnothing$.
Proof (continued). Now suppose every collection \mathcal{F} of closed subsets of K with the finite intersection property satisfies $\cap_{F \in \mathcal{F}} F \neq \varnothing$. ASSUME K is not compact. Let \mathcal{G} be an open cover of K with no finite subcover and define $\mathcal{F}=\{K \backslash G \mid G \in \mathcal{G}\}$. Then \mathcal{F} consists of sets closed in K and for any $F_{1}, F_{2}, \ldots, F_{n} \in \mathcal{F}$ we have
$F_{1} \cap F_{2} \cap \cdots \cap F_{n}=\left(K \backslash G_{1}\right) \cap\left(K \backslash G_{2}\right) \cap \cdots \cap\left(K \backslash G_{n}\right)=K \backslash \cup_{k=1}^{n} G_{k}$.
Since K is not compact, then $\cup_{k=1}^{n} G_{k}$ does not cover K and hence $K \backslash \cup_{k=1}^{n} G_{k} \neq \varnothing$. So \mathcal{F} satisfies the finite intersection property. However, CONTRADICTION. So the assumption that K is not compact is false and K is compact.

Proposition II.4.4 (continued)

Proposition II.4.4. A set $K \subset X$ is compact if and only if every collection \mathcal{F} of closed subsets of K with the finite intersection property satisfies $\cap_{F \in \mathcal{F}} F \neq \varnothing$.
Proof (continued). Now suppose every collection \mathcal{F} of closed subsets of K with the finite intersection property satisfies $\cap_{F \in \mathcal{F}} F \neq \varnothing$. ASSUME K is not compact. Let \mathcal{G} be an open cover of K with no finite subcover and define $\mathcal{F}=\{K \backslash G \mid G \in \mathcal{G}\}$. Then \mathcal{F} consists of sets closed in K and for any $F_{1}, F_{2}, \ldots, F_{n} \in \mathcal{F}$ we have

$$
F_{1} \cap F_{2} \cap \cdots \cap F_{n}=\left(K \backslash G_{1}\right) \cap\left(K \backslash G_{2}\right) \cap \cdots \cap\left(K \backslash G_{n}\right)=K \backslash \cup_{k=1}^{n} G_{k} .
$$

Since K is not compact, then $\cup_{k=1}^{n} G_{k}$ does not cover K and hence $K \backslash \cup_{k=1}^{n} G_{k} \neq \varnothing$. So \mathcal{F} satisfies the finite intersection property. However, $\cap_{F \in \mathcal{F}} F=K \backslash \cup_{G \in \mathcal{G}} G=\varnothing$ since \mathcal{G} is an open cover of K, a CONTRADICTION. So the assumption that K is not compact is false and K is compact.

Corollary II.4.5

Corollary II.4.5. Every compact metric space is complete.
Proof. We use Cantor's Theorem (Theorem II.3.7). Let $\left\{F_{n}\right\}$ be a sequence of non-empty closed sets with $F_{1} \supset F_{2} \supset \cdots$ and $\operatorname{diam}\left(F_{n}\right) \rightarrow 0$. Since the F 's are nested, any finite collection satisfies $F_{n_{1}} \cap F_{n_{2}} \cap \cdots \cap F_{n_{k}} \neq \varnothing$ (where $\left.n_{1}<n_{2}<\cdots n_{k}\right)$, so $\left\{F_{n}\right\}$ has the finite intersection property.

Corollary II.4.5

Corollary II.4.5. Every compact metric space is complete.
Proof. We use Cantor's Theorem (Theorem II.3.7). Let $\left\{F_{n}\right\}$ be a sequence of non-empty closed sets with $F_{1} \supset F_{2} \supset \cdots$ and $\operatorname{diam}\left(F_{n}\right) \rightarrow 0$. Since the F 's are nested, any finite collection satisfies $F_{n_{1}} \cap F_{n_{2}} \cap \cdots \cap F_{n_{k}} \neq \varnothing$ (where $n_{1}<n_{2}<\cdots n_{k}$), so $\left\{F_{n}\right\}$ has the finite intersection property. By Proposition II.4.4, since the metric space is complete, $\cap_{n \in \mathbb{N}} F_{n} \neq \varnothing$. So there is some $x \in \cap_{n \in \mathbb{N}} F_{n}$. Since $\operatorname{diam}\left(F_{n}\right) \rightarrow 0$, there is a unique such x (as argued in the proof of Cantor's Theorem) and so by Cantor's Theorem, the metric space is complete.

Corollary II.4.5

Corollary II.4.5. Every compact metric space is complete.
Proof. We use Cantor's Theorem (Theorem II.3.7). Let $\left\{F_{n}\right\}$ be a sequence of non-empty closed sets with $F_{1} \supset F_{2} \supset \cdots$ and $\operatorname{diam}\left(F_{n}\right) \rightarrow 0$. Since the F 's are nested, any finite collection satisfies $F_{n_{1}} \cap F_{n_{2}} \cap \cdots \cap F_{n_{k}} \neq \varnothing$ (where $n_{1}<n_{2}<\cdots n_{k}$), so $\left\{F_{n}\right\}$ has the finite intersection property. By Proposition II.4.4, since the metric space is complete, $\cap_{n \in \mathbb{N}} F_{n} \neq \varnothing$. So there is some $x \in \cap_{n \in \mathbb{N}} F_{n}$. Since $\operatorname{diam}\left(F_{n}\right) \rightarrow 0$, there is a unique such x (as argued in the proof of Cantor's Theorem) and so by Cantor's Theorem, the metric space is complete.

Corollary II.4.6

Corollary II.4.6. If X is a compact set in a metric space, then every infinite set has a limit point in X.

Proof. Let S be an infinite subset of X. ASSUME S has no limit points in X. Let $\left\{a_{1}, a_{2}, \ldots\right\}$ be a sequence of distinct points in S. Define $F_{n}=\left\{a_{n}, a_{n+1}, \ldots\right\}$. Then since S has no limit points, set F_{n} has no limit points for all $n \in \mathbb{N}$.

Corollary II.4.6

Corollary II.4.6. If X is a compact set in a metric space, then every infinite set has a limit point in X.

Proof. Let S be an infinite subset of X. ASSUME S has no limit points in X. Let $\left\{a_{1}, a_{2}, \ldots\right\}$ be a sequence of distinct points in S. Define $F_{n}=\left\{a_{n}, a_{n+1}, \ldots\right\}$. Then since S has no limit points, set F_{n} has no limit points for all $n \in \mathbb{N}$. So F_{n} contains all of its limit points (it has none!) and F_{n} is closed for all $n \in \mathbb{N}$ by Proposition II.3.4(a). As in the proof of Corollary II.4.5, since the F_{n} are nested, they satisfy the finite intersection property. But the a_{n} 's are distinct and so $\cap_{n \in \mathbb{N}} F_{n}=\varnothing$. By Proposition II.4.4, this implies that X is not compact, a CONTRADICTION. So the assumption that S has no limit points in X is false.

Corollary II.4.6

Corollary II.4.6. If X is a compact set in a metric space, then every infinite set has a limit point in X.

Proof. Let S be an infinite subset of X. ASSUME S has no limit points in X. Let $\left\{a_{1}, a_{2}, \ldots\right\}$ be a sequence of distinct points in S. Define $F_{n}=\left\{a_{n}, a_{n+1}, \ldots\right\}$. Then since S has no limit points, set F_{n} has no limit points for all $n \in \mathbb{N}$. So F_{n} contains all of its limit points (it has none!) and F_{n} is closed for all $n \in \mathbb{N}$ by Proposition II.3.4(a). As in the proof of Corollary II.4.5, since the F_{n} are nested, they satisfy the finite intersection property. But the a_{n} 's are distinct and so $\cap_{n \in \mathbb{N}} F_{n}=\varnothing$. By Proposition II.4.4, this implies that X is not compact, a CONTRADICTION. So the assumption that S has no limit points in X is false.

Lemma II.4.8

Lemma II.4.8. Lebesgue's Covering Lemma.

If (X, d) is sequentially compact and \mathcal{G} is an open cover of X then there is an $\varepsilon>0$ such that if $x \in X$, there is a set $G \in \mathcal{G}$ with $B(x ; \varepsilon) \subset G$.

Proof. Suppose \mathcal{G} is an open cover of X. ASSUME there is no such ε. Then for each $n \in \mathbb{N}$ there is a point $x_{n} \in X$ such that $B\left(x_{n} ; 1 / n\right)$ is not contained in any set $G \in \mathcal{G}$. Consider the sequence $\left\{x_{n}\right\}$. Since X is sequentially compact, then there is a subsequence $\left\{x_{n_{k}}\right\}$ of $\left\{x_{n}\right\}$ such that $x_{n_{k}} \rightarrow x_{0}$ for some $x_{0} \in X$.

Lemma II.4.8

Lemma II.4.8. Lebesgue's Covering Lemma.

If (X, d) is sequentially compact and \mathcal{G} is an open cover of X then there is an $\varepsilon>0$ such that if $x \in X$, there is a set $G \in \mathcal{G}$ with $B(x ; \varepsilon) \subset G$.

Proof. Suppose \mathcal{G} is an open cover of X. ASSUME there is no such ε. Then for each $n \in \mathbb{N}$ there is a point $x_{n} \in X$ such that $B\left(x_{n} ; 1 / n\right)$ is not contained in any set $G \in \mathcal{G}$. Consider the sequence $\left\{x_{n}\right\}$. Since X is sequentially compact, then there is a subsequence $\left\{x_{n_{k}}\right\}$ of $\left\{x_{n}\right\}$ such that $x_{n_{k}} \rightarrow x_{0}$ for some $x_{0} \in X$. Since \mathcal{G} is a covering of X then $x_{0} \in G_{0}$ for some $G_{0} \in \mathcal{G}$ and since G_{0} is open, for some $\varepsilon>0$ we have $B\left(x_{0} ; \varepsilon\right) \subset G_{0}$. Let $N \in \mathbb{N}$ be such that $d\left(x_{0} ; x_{n_{k}}\right)<\varepsilon / 2$ for all $n_{k} \geq N$. Next, let $n_{k}>\max \{N, 2 / \varepsilon\}$ and let $y \in B\left(x_{n_{k}} ; 1 / n_{k}\right)$ (see the image below).

Lemma II.4.8

Lemma II.4.8. Lebesgue's Covering Lemma.

If (X, d) is sequentially compact and \mathcal{G} is an open cover of X then there is an $\varepsilon>0$ such that if $x \in X$, there is a set $G \in \mathcal{G}$ with $B(x ; \varepsilon) \subset G$.

Proof. Suppose \mathcal{G} is an open cover of X. ASSUME there is no such ε. Then for each $n \in \mathbb{N}$ there is a point $x_{n} \in X$ such that $B\left(x_{n} ; 1 / n\right)$ is not contained in any set $G \in \mathcal{G}$. Consider the sequence $\left\{x_{n}\right\}$. Since X is sequentially compact, then there is a subsequence $\left\{x_{n_{k}}\right\}$ of $\left\{x_{n}\right\}$ such that $x_{n_{k}} \rightarrow x_{0}$ for some $x_{0} \in X$. Since \mathcal{G} is a covering of X then $x_{0} \in G_{0}$ for some $G_{0} \in \mathcal{G}$ and since G_{0} is open, for some $\varepsilon>0$ we have $B\left(x_{0} ; \varepsilon\right) \subset G_{0}$. Let $N \in \mathbb{N}$ be such that $d\left(x_{0} ; x_{n_{k}}\right)<\varepsilon / 2$ for all $n_{k} \geq N$. Next, let $n_{k}>\max \{N, 2 / \varepsilon\}$ and let $y \in B\left(x_{n_{k}} ; 1 / n_{k}\right)$ (see the image below).

Lemma II.4.8 (continued)

Then

$$
\begin{aligned}
d\left(x_{0}, y\right) & \leq d\left(x_{0}, x_{n_{k}}\right)+d\left(x_{n_{k}}, y\right) \text { by the Triangle Inequality } \\
& <\varepsilon / 2+1 / n_{k} \text { by the choices of } n_{k} \text { and } y \\
& <\varepsilon .
\end{aligned}
$$

But then $B\left(x_{n_{k}} ; 1 / n_{k}\right) \subset B\left(x_{0} ; \varepsilon\right) \subset G$. However, we originally chose x_{n} such that $B\left(x_{n} ; 1 / n\right)$ is not contained in any $G \in \mathcal{G}$, a CONTRADICTION for $n=n_{k}$. So the assumption that there is no $\varepsilon>0$ as described is false, and the result follows.

Proposition II.4.9

Proposition II.4.9. Let (X, d) be a metric space. The following are equivalent:
(a) X is compact,
(b) every infinite subset of X has a limit point,
(c) X is sequentially compact, and
(d) X is complete and for all $\varepsilon>0$ there are a finite number of points $x_{1}, x_{2}, \ldots, x_{n} \in X$ such that $X=\cup_{k=1}^{n} B\left(x_{k} ; \varepsilon\right)$. This property is called total boundedness.
Proof. (a) implies (b): This is Corollary II.4.6.

Proposition II.4.9

Proposition II.4.9. Let (X, d) be a metric space. The following are equivalent:
(a) X is compact,
(b) every infinite subset of X has a limit point,
(c) X is sequentially compact, and
(d) X is complete and for all $\varepsilon>0$ there are a finite number of points $x_{1}, x_{2}, \ldots, x_{n} \in X$ such that $X=\cup_{k=1}^{n} B\left(x_{k} ; \varepsilon\right)$. This property is called total boundedness.
Proof. (a) implies (b): This is Corollary II.4.6.
(b) implies (c): Let $\left\{x_{n}\right\}$ be a sequence in X. Without loss of generality, the x_{n} are distinct (if an element is repeated an infinite number of times then it is easy to produce a convergent subsequence; finite repetitions have no effect). By hypothesis, the set $\left\{x_{1}, x_{2}, \ldots\right\}$ has a limit point, say $x_{0} \in X$. So some $x_{n_{1}} \in B\left(x_{0} ; 1\right)$; some $x_{n_{2}} \in B\left(x_{0}, 1 / 2\right)$ where $n_{2}>n_{1}$; and in general $x_{n_{k}} \in B\left(x_{0} ; 1 / k\right)$ where $n_{k}>n_{k-1}>\cdots>n_{2}>n_{1}$.

Proposition II.4.9

Proposition II.4.9. Let (X, d) be a metric space. The following are equivalent:
(a) X is compact,
(b) every infinite subset of X has a limit point,
(c) X is sequentially compact, and
(d) X is complete and for all $\varepsilon>0$ there are a finite number of points $x_{1}, x_{2}, \ldots, x_{n} \in X$ such that $X=\cup_{k=1}^{n} B\left(x_{k} ; \varepsilon\right)$. This property is called total boundedness.
Proof. (a) implies (b): This is Corollary II.4.6.
(b) implies (c): Let $\left\{x_{n}\right\}$ be a sequence in X. Without loss of generality, the x_{n} are distinct (if an element is repeated an infinite number of times then it is easy to produce a convergent subsequence; finite repetitions have no effect). By hypothesis, the set $\left\{x_{1}, x_{2}, \ldots\right\}$ has a limit point, say $x_{0} \in X$. So some $x_{n_{1}} \in B\left(x_{0} ; 1\right)$; some $x_{n_{2}} \in B\left(x_{0}, 1 / 2\right)$ where $n_{2}>n_{1}$; and in general $x_{n_{k}} \in B\left(x_{0} ; 1 / k\right)$ where $n_{k}>n_{k-1}>\cdots>n_{2}>n_{1}$.

Proposition II.4.9 (continued 1)

Proposition II.4.9. Let (X, d) be a metric space. The following are equivalent:
(c) X is sequentially compact, and
(d) X is complete and for all $\varepsilon>0$ there are a finite number of points $x_{1}, x_{2}, \ldots, x_{n} \in X$ such that $X=\cup_{k=1}^{n} B\left(x_{k} ; \varepsilon\right)$. This property is called total boundedness.
Proof (continued). Then subsequence $\left\{x_{n_{k}}\right\}$ of $\left\{x_{n}\right\}$ has limit $x_{0} \in X$.
That is, every sequence has a convergent subsequence and X is sequentially compact.
(c) implies (d): Let $\left\{x_{n}\right\}$ be a Cauchy sequence. By hypothesis, $\left\{x_{n}\right\}$ has
a convergent subsequence which converges, say, to x_{0}. Then $\left\{x_{n}\right\} \rightarrow x_{0}$ (by Exercise II.3.8) and so X is complete. Now let $\varepsilon>0$. Fix $x_{1} \in X$. If $X=B\left(x_{1} ; \varepsilon\right)$ then we conclude (d) with $n=1$. Otherwise choose $x_{2} \in X \backslash B\left(x_{1} ; \varepsilon\right)$. If $X=B\left(x_{1} ; \varepsilon\right) \cup B\left(x_{2} ; \varepsilon\right)$ then we conclude (d) with $n=2$. Continue is this way and construct x_{3}, x_{4}, \ldots. If the process terminates at some n, then we conclude (d)

Proposition II.4.9 (continued 1)

Proposition II.4.9. Let (X, d) be a metric space. The following are equivalent:
(c) X is sequentially compact, and
(d) X is complete and for all $\varepsilon>0$ there are a finite number of points $x_{1}, x_{2}, \ldots, x_{n} \in X$ such that $X=\cup_{k=1}^{n} B\left(x_{k} ; \varepsilon\right)$. This property is called total boundedness.
Proof (continued). Then subsequence $\left\{x_{n_{k}}\right\}$ of $\left\{x_{n}\right\}$ has limit $x_{0} \in X$. That is, every sequence has a convergent subsequence and X is sequentially compact.
(c) implies (d): Let $\left\{x_{n}\right\}$ be a Cauchy sequence. By hypothesis, $\left\{x_{n}\right\}$ has a convergent subsequence which converges, say, to x_{0}. Then $\left\{x_{n}\right\} \rightarrow x_{0}$ (by Exercise II.3.8) and so X is complete. Now let $\varepsilon>0$. Fix $x_{1} \in X$. If $X=B\left(x_{1} ; \varepsilon\right)$ then we conclude (d) with $n=1$. Otherwise choose $x_{2} \in X \backslash B\left(x_{1} ; \varepsilon\right)$. If $X=B\left(x_{1} ; \varepsilon\right) \cup B\left(x_{2} ; \varepsilon\right)$ then we conclude (d) with $n=2$. Continue is this way and construct x_{3}, x_{4}, \ldots. If the process terminates at some n, then we conclude (d).

Proposition II.4.9 (continued 2)

Proposition II.4.9. Let (X, d) be a metric space. The following are equivalent:
(c) X is sequentially compact, and
(d) X is complete and for all $\varepsilon>0$ there are a finite number of points $x_{1}, x_{2}, \ldots, x_{n} \in X$ such that $X=\cup_{k=1}^{n} B\left(x_{k} ; \varepsilon\right)$. This property is called total boundedness.
Proof (continued.) If the process does not terminate then we have a sequence $\left\{x_{n}\right\}$ where for any $n \neq m$ we have $d\left(x_{n}, x_{m}\right) \geq \varepsilon$. But then sequence $\left\{x_{n}\right\}$ can have no convergent subsequence, violating the hypothesis. So the process must terminate and we have $X=\cup_{k=1}^{m} B\left(x_{k} ; \varepsilon\right)$ for some $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$.
(d) implies (c): Let $\left\{x_{n}\right\}$ be a sequence of distinct points (as in the proof of (b) implies (c) we may assume WLOG that the points are distinct). With $\varepsilon=1$, we can write X as a finite union of balls of radius 1 . Since $\left\{x_{n}\right\}$ is an infinite set, there is some $y_{1} \in X$ such that $B\left(y_{1} ; 1\right)$ contains an infinite number of the x_{n} 's, say $\left\{x_{n}^{(1)}\right\}_{n=1}^{\infty}$

Proposition II.4.9 (continued 2)

Proposition II.4.9. Let (X, d) be a metric space. The following are equivalent:
(c) X is sequentially compact, and
(d) X is complete and for all $\varepsilon>0$ there are a finite number of points $x_{1}, x_{2}, \ldots, x_{n} \in X$ such that $X=\cup_{k=1}^{n} B\left(x_{k} ; \varepsilon\right)$. This property is called total boundedness.
Proof (continued.) If the process does not terminate then we have a sequence $\left\{x_{n}\right\}$ where for any $n \neq m$ we have $d\left(x_{n}, x_{m}\right) \geq \varepsilon$. But then sequence $\left\{x_{n}\right\}$ can have no convergent subsequence, violating the hypothesis. So the process must terminate and we have $X=\cup_{k=1}^{m} B\left(x_{k} ; \varepsilon\right)$ for some $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$.
(d) implies (c): Let $\left\{x_{n}\right\}$ be a sequence of distinct points (as in the proof of (b) implies (c) we may assume WLOG that the points are distinct). With $\varepsilon=1$, we can write X as a finite union of balls of radius 1 . Since $\left\{x_{n}\right\}$ is an infinite set, there is some $y_{1} \in X$ such that $B\left(y_{1} ; 1\right)$ contains an infinite number of the x_{n} 's, say $\left\{x_{n}^{(1)}\right\}_{n=1}^{\infty}$.

Proposition II.4.9 (continued 3)

Proposition II.4.9. Let (X, d) be a metric space. The following are equivalent:
(c) X is sequentially compact, and
(d) X is complete and for all $\varepsilon>0$ there are a finite number of points $x_{1}, x_{2}, \ldots, x_{n} \in X$ such that $X=\cup_{k=1}^{n} B\left(x_{k} ; \varepsilon\right)$. This property is called total boundedness.

Proof (continued.) Similarly with $\varepsilon=1 / 2$, there is $y_{2} \in X$ and subsequence $\left\{x_{n}^{(2)}\right\}$ of $\left\{x_{n}^{(1)}\right\}$ with $\left\{x_{n}^{(2)}\right\} \subset B\left(y_{2} ; 1 / 2\right)$. In general, for each $k \in \mathbb{N}, k \geq 2$, there is $y_{k} \in X$ and subsequence $\left\{x_{n}^{(k)}\right\}$ of $\left\{x_{n}^{(k-1)}\right\}$ with $\left\{x_{n}^{(k)}\right\} \subset B\left(y_{k}, 1 / k\right)$. Define $F_{k}=\left\{x_{n}^{(k)}\right\}^{-}$.
and $F_{1} \supset F_{2} \supset \cdots$. Since X is complete by hypothesis, then by Theorem II.3.7, $\cap_{k=1}^{\infty} F_{k}=\left\{x_{0}\right\}$ for some $x_{0} \in X$. Consider the subsequence of $\left\{x_{n}\right\}$ defined as $\left\{x_{k}^{(k)}\right\}$ (by the recursive way the subsequences are constructed, we are insured that this is in fact a subsequence)

Proposition II.4.9 (continued 3)

Proposition II.4.9. Let (X, d) be a metric space. The following are equivalent:
(c) X is sequentially compact, and
(d) X is complete and for all $\varepsilon>0$ there are a finite number of points $x_{1}, x_{2}, \ldots, x_{n} \in X$ such that $X=\cup_{k=1}^{n} B\left(x_{k} ; \varepsilon\right)$. This property is called total boundedness.

Proof (continued.) Similarly with $\varepsilon=1 / 2$, there is $y_{2} \in X$ and subsequence $\left\{x_{n}^{(2)}\right\}$ of $\left\{x_{n}^{(1)}\right\}$ with $\left\{x_{n}^{(2)}\right\} \subset B\left(y_{2} ; 1 / 2\right)$. In general, for each $k \in \mathbb{N}, k \geq 2$, there is $y_{k} \in X$ and subsequence $\left\{x_{n}^{(k)}\right\}$ of $\left\{x_{n}^{(k-1)}\right\}$ with $\left\{x_{n}^{(k)}\right\} \subset B\left(y_{k}, 1 / k\right)$. Define $F_{k}=\left\{x_{n}^{(k)}\right\}^{-}$. Then $\operatorname{diam}\left(F_{k}\right) \leq 2 / k$ and $F_{1} \supset F_{2} \supset \cdots$. Since X is complete by hypothesis, then by Theorem II.3.7, $\cap_{k=1}^{\infty} F_{k}=\left\{x_{0}\right\}$ for some $x_{0} \in X$. Consider the subsequence of $\left\{x_{n}\right\}$ defined as $\left\{x_{k}^{(k)}\right\}$ (by the recursive way the subsequences are constructed, we are insured that this is in fact a subsequence).

Proposition II.4.9 (continued 4)

Proposition II.4.9. Let (X, d) be a metric space. The following are equivalent:
(a) X is compact,
(c) X is sequentially compact.

Proof (continued.) Notice that

$$
\begin{aligned}
d\left(x_{0}, x_{k}^{(k)}\right) & \leq \operatorname{diam}\left(F_{k}\right)\left(\text { since } x_{0}, x_{k}^{(k)} \in F_{k}\right) \\
& \leq 2 / k
\end{aligned}
$$

for all $k \in \mathbb{N}$. So $x_{k}^{(k)} \rightarrow x_{0} \in X$. So $\left\{x_{n}\right\}$ has a convergent subsequence and X is sequentially compact.
(c) implies (a): Let \mathcal{G} be an open cover of X. Since X is hypothesized to
be sequentially compact, then by Lebesgue's Covering Lemma (Lemma II.4.8), there is some $\varepsilon>0$ such that for every $x \in X$, there is a $G \in \mathcal{G}$ where $B(x ; \varepsilon) \subset G$.

Proposition II.4.9 (continued 4)

Proposition II.4.9. Let (X, d) be a metric space. The following are equivalent:
(a) X is compact,
(c) X is sequentially compact.

Proof (continued.) Notice that

$$
\begin{aligned}
d\left(x_{0}, x_{k}^{(k)}\right) & \leq \operatorname{diam}\left(F_{k}\right)\left(\text { since } x_{0}, x_{k}^{(k)} \in F_{k}\right) \\
& \leq 2 / k
\end{aligned}
$$

for all $k \in \mathbb{N}$. So $x_{k}^{(k)} \rightarrow x_{0} \in X$. So $\left\{x_{n}\right\}$ has a convergent subsequence and X is sequentially compact.
(c) implies (a): Let \mathcal{G} be an open cover of X. Since X is hypothesized to be sequentially compact, then by Lebesgue's Covering Lemma (Lemma II.4.8), there is some $\varepsilon>0$ such that for every $x \in X$, there is a $G \in \mathcal{G}$ where $B(x ; \varepsilon) \subset G$.

Proposition II.4.9 (continued 5)

Proposition II.4.9. Let (X, d) be a metric space. The following are equivalent:
(a) X is compact,
(c) X is sequentially compact.

Proof (continued.) From above, we have that (c) implies (d), so there are points $x_{1}, x_{2}, \ldots, x_{n} \in X$ such that $X=\cup_{k=1}^{n} B\left(x_{k} ; \varepsilon\right)$. Again, by Lebesgue's Covering Lemma, for $k=1,2, \ldots, n$ we have some $G_{k} \in \mathcal{G}$ such that $B\left(x_{k} ; \varepsilon\right) \subset G_{k}$. Then $X=\cup_{k=1}^{n} G_{k}$ and $\left\{G_{1}, G_{2}, \ldots, G_{n}\right\}$ is a finite subcover of \mathcal{G}. So X is compact and (a) follows.

Heine-Borel Theorem

Theorem II.4.10. Heine-Borel Theorem.
A subset K of $\mathbb{R}^{n}(n \geq 1)$ is compact if and only if K is closed and bounded.
Proof. Suppose K is compact. Then K is closed by Proposition II.4.3(a). By Theorem II.4.9(d), X is totally bounded. So there is $\varepsilon>0$ and $x_{1}, x_{2}, \ldots, x_{n}$ such that $X=\cup_{k=1}^{n} B\left(x_{k} ; \varepsilon\right)$. We then have that $d\left(x_{1}, y\right)<2 n \varepsilon$ for all $y \in X$ and so X is bounded.

Heine-Borel Theorem

Theorem II.4.10. Heine-Borel Theorem.

A subset K of $\mathbb{R}^{n}(n \geq 1)$ is compact if and only if K is closed and bounded.
Proof. Suppose K is compact. Then K is closed by Proposition II.4.3(a). By Theorem II.4.9(d), X is totally bounded. So there is $\varepsilon>0$ and $x_{1}, x_{2}, \ldots, x_{n}$ such that $X=\cup_{k=1}^{n} B\left(x_{k} ; \varepsilon\right)$. We then have that $d\left(x_{1}, y\right)<2 n \varepsilon$ for all $y \in X$ and so X is bounded.
Now suppose K is closed and bounded. Since $K \subset \mathbb{R}^{n}$ is bounded, then
for some $a_{1}, a_{2}, \ldots, a_{n}$ and $b_{1}, b_{2}, \ldots, b_{n}$ we have
$K \subset\left[a_{1}, b_{1}\right] \times\left[a_{2}, b_{2}\right] \times \cdots \times\left[a_{n}, b_{n}\right]=F$. Now F is closed (consider
$\mathbb{R}^{n} \backslash F$) and \mathbb{R}^{n} is complete (here is where completeness is used-showing \mathbb{R}^{n} is complete based on the completeness of \mathbb{R} is similar to the proof that \mathbb{C} is complete in Proposition II.3.6). So F is complete by Proposition II.3.8. By Lemma, F is totally bounded. So by Proposition II.4.9(d), set F is compact. Now by Proposition II.4.3(b), since set K is closed, set K is compact.

Heine-Borel Theorem

Theorem II.4.10. Heine-Borel Theorem.

A subset K of $\mathbb{R}^{n}(n \geq 1)$ is compact if and only if K is closed and bounded.
Proof. Suppose K is compact. Then K is closed by Proposition II.4.3(a). By Theorem II.4.9(d), X is totally bounded. So there is $\varepsilon>0$ and $x_{1}, x_{2}, \ldots, x_{n}$ such that $X=\cup_{k=1}^{n} B\left(x_{k} ; \varepsilon\right)$. We then have that $d\left(x_{1}, y\right)<2 n \varepsilon$ for all $y \in X$ and so X is bounded. Now suppose K is closed and bounded. Since $K \subset \mathbb{R}^{n}$ is bounded, then for some $a_{1}, a_{2}, \ldots, a_{n}$ and $b_{1}, b_{2}, \ldots, b_{n}$ we have $K \subset\left[a_{1}, b_{1}\right] \times\left[a_{2}, b_{2}\right] \times \cdots \times\left[a_{n}, b_{n}\right]=F$. Now F is closed (consider $\mathbb{R}^{n} \backslash F$) and \mathbb{R}^{n} is complete (here is where completeness is used-showing \mathbb{R}^{n} is complete based on the completeness of \mathbb{R} is similar to the proof that \mathbb{C} is complete in Proposition II.3.6). So F is complete by Proposition II.3.8. By Lemma, F is totally bounded. So by Proposition II.4.9(d), set F is compact. Now by Proposition II.4.3(b), since set K is closed, set K is compact.

