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Proposition II.4.3

Proposition II.4.3

Proposition II.4.3. Let K be a compact subset of X . Then

(a) K is closed, and

(b) if F is closed and F ⊂ K then F is compact.

Proof. (a) Let x0 ∈ K−. We show that x0 ∈ K and K = K− (so K is
closed). Let ε > 0. Then

B(x0; ε) ∩ K 6= ∅ (1)

by Theorem 1.13(f). For each n ∈ N, define (open) Gn = X \B(x0; 1/n)−.

ASSUME x0 6∈ K . Then each Gn is open and K ⊂ ∪∞n=1Gn = X \ {x0}.
Since K is compact (by hypothesis), then K ⊂ ∪m

n=1Gn for some m ∈ N
(with possible relabeling of the Gn’s) where G1 ⊂ G2 ⊂ · · · ⊂ Gm. Then
K ⊂ Gm = X \ B(x0, 1/m)−. This implies that B(x0; 1/m)− ∩ K = ∅,
CONTRADICTING (1). So x0 ∈ K , K = K− and K is closed.
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Proposition II.4.3

Proposition II.4.3. Let K be a compact subset of X . Then

(a) K is closed, and

(b) if F is closed and F ⊂ K then F is compact.

Proof. (b) Let G be an open cover of F . Since F is closed, then X \ F is
open. So G ∪ {X \ F} is an open cover of K . Since K is compact, there
are G1,G2, . . . ,Gn in G such that K ⊂ G1 ∪ G2 ∪ · · · ∪ Gn ∪ (X \ F ). Since
F ⊂ K , then F ⊂ G1 ∪ G2 ∪ · · · ∪ Gn and so F is compact.
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Proposition II.4.4

Proposition II.4.4

Proposition II.4.4. A set K ⊂ X is compact if and only if every collection
F of closed subsets of K with the finite intersection property satisfies
∩F∈FF 6= ∅.
Proof. Suppose K is compact and F is a collection of closed subsets of K
having the finite intersection property. ASSUME ∩F∈FF = ∅ and let
G = ∪F∈F (X \ F ). Then

∪F∈F (X \ F ) = X \ ∩F∈FF by DeMorgan’s Laws

= X by assumption.

So G is an open cover of K . Thus, there are F1,F2, . . . ,Fn ∈ F such that
K ⊂ ∪n

k=1(X \ Fk) = X \ ∩n
k=1Fk by DeMorgan. But then

∩n
k=1Fk ⊂ X \ K .

Since for each k, we have Fk ⊂ K by definition of F , it
must be that ∩n

k=1Fk = ∅ (the only subset of K which is a subset of
X \ K is ∅). But this CONTRADICTS the finite intersection property. So
the assumption that ∩F∈FF = ∅ is false and hence ∩F∈FF 6= ∅.
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Proposition II.4.4

Proposition II.4.4 (continued)

Proposition II.4.4. A set K ⊂ X is compact if and only if every collection
F of closed subsets of K with the finite intersection property satisfies
∩F∈FF 6= ∅.
Proof (continued). Now suppose every collection F of closed subsets of
K with the finite intersection property satisfies ∩F∈FF 6= ∅. ASSUME K
is not compact. Let G be an open cover of K with no finite subcover and
define F = {K \ G | G ∈ G}. Then F consists of sets closed in K and for
any F1,F2, . . . ,Fn ∈ F we have

F1 ∩ F2 ∩ · · · ∩ Fn = (K \ G1) ∩ (K \ G2) ∩ · · · ∩ (K \ Gn) = K \ ∪n
k=1Gk .

Since K is not compact, then ∪n
k=1Gk does not cover K and hence

K \ ∪n
k=1Gk 6= ∅. So F satisfies the finite intersection property. However,

∩F∈FF = K \ ∪G∈GG = ∅ since G is an open cover of K , a
CONTRADICTION. So the assumption that K is not compact is false and
K is compact.
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Corollary II.4.5

Corollary II.4.5

Corollary II.4.5. Every compact metric space is complete.

Proof. We use Cantor’s Theorem (Theorem II.3.7). Let {Fn} be a
sequence of non-empty closed sets with F1 ⊃ F2 ⊃ · · · and diam(Fn) → 0.
Since the F ’s are nested, any finite collection satisfies
Fn1 ∩ Fn2 ∩ · · · ∩ Fnk

6= ∅ (where n1 < n2 < · · · nk), so {Fn} has the finite
intersection property.

By Proposition II.4.4, since the metric space is
complete, ∩n∈NFn 6= ∅. So there is some x ∈ ∩n∈NFn. Since
diam(Fn) → 0, there is a unique such x (as argued in the proof of Cantor’s
Theorem) and so by Cantor’s Theorem, the metric space is complete.
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Corollary II.4.6

Corollary II.4.6

Corollary II.4.6. If X is a compact set in a metric space, then every
infinite set has a limit point in X .

Proof. Let S be an infinite subset of X . ASSUME S has no limit points
in X . Let {a1, a2, . . .} be a sequence of distinct points in S . Define
Fn = {an, an+1, . . .}. Then since S has no limit points, set Fn has no limit
points for all n ∈ N.

So Fn contains all of its limit points (it has none!)
and Fn is closed for all n ∈ N by Proposition II.3.4(a). As in the proof of
Corollary II.4.5, since the Fn are nested, they satisfy the finite intersection
property. But the an’s are distinct and so ∩n∈NFn = ∅. By Proposition
II.4.4, this implies that X is not compact, a CONTRADICTION. So the
assumption that S has no limit points in X is false.

() Complex Analysis February 24, 2022 8 / 17



Corollary II.4.6

Corollary II.4.6

Corollary II.4.6. If X is a compact set in a metric space, then every
infinite set has a limit point in X .

Proof. Let S be an infinite subset of X . ASSUME S has no limit points
in X . Let {a1, a2, . . .} be a sequence of distinct points in S . Define
Fn = {an, an+1, . . .}. Then since S has no limit points, set Fn has no limit
points for all n ∈ N. So Fn contains all of its limit points (it has none!)
and Fn is closed for all n ∈ N by Proposition II.3.4(a). As in the proof of
Corollary II.4.5, since the Fn are nested, they satisfy the finite intersection
property. But the an’s are distinct and so ∩n∈NFn = ∅. By Proposition
II.4.4, this implies that X is not compact, a CONTRADICTION. So the
assumption that S has no limit points in X is false.

() Complex Analysis February 24, 2022 8 / 17



Corollary II.4.6

Corollary II.4.6

Corollary II.4.6. If X is a compact set in a metric space, then every
infinite set has a limit point in X .

Proof. Let S be an infinite subset of X . ASSUME S has no limit points
in X . Let {a1, a2, . . .} be a sequence of distinct points in S . Define
Fn = {an, an+1, . . .}. Then since S has no limit points, set Fn has no limit
points for all n ∈ N. So Fn contains all of its limit points (it has none!)
and Fn is closed for all n ∈ N by Proposition II.3.4(a). As in the proof of
Corollary II.4.5, since the Fn are nested, they satisfy the finite intersection
property. But the an’s are distinct and so ∩n∈NFn = ∅. By Proposition
II.4.4, this implies that X is not compact, a CONTRADICTION. So the
assumption that S has no limit points in X is false.

() Complex Analysis February 24, 2022 8 / 17



Lemma II.4.8. Lebesgue’s Covering Lemma

Lemma II.4.8

Lemma II.4.8. Lebesgue’s Covering Lemma.
If (X , d) is sequentially compact and G is an open cover of X then there is
an ε > 0 such that if x ∈ X , there is a set G ∈ G with B(x ; ε) ⊂ G .

Proof. Suppose G is an open cover of X . ASSUME there is no such ε.
Then for each n ∈ N there is a point xn ∈ X such that B(xn; 1/n) is not
contained in any set G ∈ G. Consider the sequence {xn}. Since X is
sequentially compact, then there is a subsequence {xnk

} of {xn} such that
xnk

→ x0 for some x0 ∈ X .

Since G is a covering of X then x0 ∈ G0 for
some G0 ∈ G and since G0 is open, for some ε > 0 we have B(x0; ε) ⊂ G0.
Let N ∈ N be such that d(x0; xnk

) < ε/2 for all nk ≥ N. Next, let
nk > max{N, 2/ε} and let y ∈ B(xnk

; 1/nk) (see the image below).
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Lemma II.4.8. Lebesgue’s Covering Lemma

Lemma II.4.8 (continued)

Then

d(x0, y) ≤ d(x0, xnk
) + d(xnk

, y) by the Triangle Inequality

< ε/2 + 1/nk by the choices of nk and y

< ε.

But then B(xnk
; 1/nk) ⊂ B(x0; ε) ⊂ G . However, we originally chose xn

such that B(xn; 1/n) is not contained in any G ∈ G, a CONTRADICTION
for n = nk . So the assumption that there is no ε > 0 as described is false,
and the result follows.
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Proposition II.4.9

Proposition II.4.9

Proposition II.4.9. Let (X , d) be a metric space. The following are
equivalent:

(a) X is compact,

(b) every infinite subset of X has a limit point,

(c) X is sequentially compact, and

(d) X is complete and for all ε > 0 there are a finite number of
points x1, x2, . . . , xn ∈ X such that X = ∪n

k=1B(xk ; ε). This
property is called total boundedness.

Proof. (a) implies (b): This is Corollary II.4.6.

(b) implies (c): Let {xn} be a sequence in X . Without loss of generality,
the xn are distinct (if an element is repeated an infinite number of times
then it is easy to produce a convergent subsequence; finite repetitions have
no effect). By hypothesis, the set {x1, x2, . . .} has a limit point, say
x0 ∈ X . So some xn1 ∈ B(x0; 1); some xn2 ∈ B(x0, 1/2) where n2 > n1;
and in general xnk

∈ B(x0; 1/k) where nk > nk−1 > · · · > n2 > n1.
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Proposition II.4.9

Proposition II.4.9 (continued 1)

Proposition II.4.9. Let (X , d) be a metric space. The following are
equivalent:

(c) X is sequentially compact, and
(d) X is complete and for all ε > 0 there are a finite number of

points x1, x2, . . . , xn ∈ X such that X = ∪n
k=1B(xk ; ε). This

property is called total boundedness.

Proof (continued). Then subsequence {xnk
} of {xn} has limit x0 ∈ X .

That is, every sequence has a convergent subsequence and X is
sequentially compact.
(c) implies (d): Let {xn} be a Cauchy sequence. By hypothesis, {xn} has
a convergent subsequence which converges, say, to x0. Then {xn} → x0

(by Exercise II.3.8) and so X is complete. Now let ε > 0. Fix x1 ∈ X . If
X = B(x1; ε) then we conclude (d) with n = 1. Otherwise choose
x2 ∈ X \ B(x1; ε). If X = B(x1; ε) ∪ B(x2; ε) then we conclude (d) with
n = 2. Continue is this way and construct x3, x4, . . .. If the process
terminates at some n, then we conclude (d).
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Proposition II.4.9

Proposition II.4.9 (continued 2)

Proposition II.4.9. Let (X , d) be a metric space. The following are
equivalent:

(c) X is sequentially compact, and
(d) X is complete and for all ε > 0 there are a finite number of

points x1, x2, . . . , xn ∈ X such that X = ∪n
k=1B(xk ; ε). This

property is called total boundedness.

Proof (continued.) If the process does not terminate then we have a
sequence {xn} where for any n 6= m we have d(xn, xm) ≥ ε. But then
sequence {xn} can have no convergent subsequence, violating the
hypothesis. So the process must terminate and we have X = ∪m

k=1B(xk ; ε)
for some {x1, x2, . . . , xn}.
(d) implies (c): Let {xn} be a sequence of distinct points (as in the proof
of (b) implies (c) we may assume WLOG that the points are distinct).
With ε = 1, we can write X as a finite union of balls of radius 1. Since
{xn} is an infinite set, there is some y1 ∈ X such that B(y1; 1) contains an

infinite number of the xn’s, say {x (1)
n }∞n=1.
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k=1B(xk ; ε). This

property is called total boundedness.

Proof (continued.) If the process does not terminate then we have a
sequence {xn} where for any n 6= m we have d(xn, xm) ≥ ε. But then
sequence {xn} can have no convergent subsequence, violating the
hypothesis. So the process must terminate and we have X = ∪m

k=1B(xk ; ε)
for some {x1, x2, . . . , xn}.
(d) implies (c): Let {xn} be a sequence of distinct points (as in the proof
of (b) implies (c) we may assume WLOG that the points are distinct).
With ε = 1, we can write X as a finite union of balls of radius 1. Since
{xn} is an infinite set, there is some y1 ∈ X such that B(y1; 1) contains an

infinite number of the xn’s, say {x (1)
n }∞n=1.
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Proposition II.4.9 (continued 3)

Proposition II.4.9. Let (X , d) be a metric space. The following are
equivalent:

(c) X is sequentially compact, and

(d) X is complete and for all ε > 0 there are a finite number of
points x1, x2, . . . , xn ∈ X such that X = ∪n

k=1B(xk ; ε). This
property is called total boundedness.

Proof (continued.) Similarly with ε = 1/2, there is y2 ∈ X and

subsequence {x (2)
n } of {x (1)

n } with {x (2)
n } ⊂ B(y2; 1/2). In general, for

each k ∈ N, k ≥ 2, there is yk ∈ X and subsequence {x (k)
n } of {x (k−1)

n }
with {x (k)

n } ⊂ B(yk , 1/k). Define Fk = {x (k)
n }−. Then diam(Fk) ≤ 2/k

and F1 ⊃ F2 ⊃ · · · . Since X is complete by hypothesis, then by Theorem
II.3.7, ∩∞k=1Fk = {x0} for some x0 ∈ X . Consider the subsequence of {xn}
defined as {x (k)

k } (by the recursive way the subsequences are constructed,
we are insured that this is in fact a subsequence).
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Proposition II.4.9 (continued 4)

Proposition II.4.9. Let (X , d) be a metric space. The following are
equivalent:

(a) X is compact,

(c) X is sequentially compact.

Proof (continued.) Notice that

d(x0, x
(k)
k ) ≤ diam(Fk) (since x0, x

(k)
k ∈ Fk)

≤ 2/k

for all k ∈ N. So x
(k)
k → x0 ∈ X . So {xn} has a convergent subsequence

and X is sequentially compact.
(c) implies (a): Let G be an open cover of X . Since X is hypothesized to
be sequentially compact, then by Lebesgue’s Covering Lemma (Lemma
II.4.8), there is some ε > 0 such that for every x ∈ X , there is a G ∈ G
where B(x ; ε) ⊂ G .
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Proposition II.4.9 (continued 4)

Proposition II.4.9. Let (X , d) be a metric space. The following are
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(c) X is sequentially compact.
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(c) implies (a): Let G be an open cover of X . Since X is hypothesized to
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Proposition II.4.9 (continued 5)

Proposition II.4.9. Let (X , d) be a metric space. The following are
equivalent:

(a) X is compact,

(c) X is sequentially compact.

Proof (continued.) From above, we have that (c) implies (d), so there
are points x1, x2, . . . , xn ∈ X such that X = ∪n

k=1B(xk ; ε). Again, by
Lebesgue’s Covering Lemma, for k = 1, 2, . . . , n we have some Gk ∈ G
such that B(xk ; ε) ⊂ Gk . Then X = ∪n

k=1Gk and {G1,G2, . . . ,Gn} is a
finite subcover of G. So X is compact and (a) follows.

() Complex Analysis February 24, 2022 16 / 17



Heine-Borel Theorem

Heine-Borel Theorem

Theorem II.4.10. Heine-Borel Theorem.
A subset K of Rn (n ≥ 1) is compact if and only if K is closed and
bounded.
Proof. Suppose K is compact. Then K is closed by Proposition II.4.3(a).
By Theorem II.4.9(d), X is totally bounded. So there is ε > 0 and
x1, x2, . . . , xn such that X = ∪n

k=1B(xk ; ε). We then have that
d(x1, y) < 2nε for all y ∈ X and so X is bounded.

Now suppose K is closed and bounded. Since K ⊂ Rn is bounded, then
for some a1, a2, . . . , an and b1, b2, . . . , bn we have
K ⊂ [a1, b1]× [a2, b2]× · · · × [an, bn] = F . Now F is closed (consider
Rn \ F ) and Rn is complete (here is where completeness is used—showing
Rn is complete based on the completeness of R is similar to the proof that
C is complete in Proposition II.3.6). So F is complete by Proposition
II.3.8. By Lemma, F is totally bounded. So by Proposition II.4.9(d), set F
is compact. Now by Proposition II.4.3(b), since set K is closed, set K is
compact.
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