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Proposition II.5.3

Proposition II.5.3

Proposition II.5.3. Let f : (X , d) → (Ω, ρ) be a function. The following
are equivalent:

(a) f is continuous (on set X ),

(b) if ∆ is open in Ω then f −1(∆) is open in X , and

(c) if Γ is closed in Ω then f −1(Γ) is closed in X .

Proof. (a) implies (b): Let ∆ be open in Ω and let x ∈ f −1(∆). So
ω = f (x) for some ω ∈ ∆. Since ∆ is open, there is ε > 0 such that
B(ω, ε) ⊂ ∆.

Since f is continuous at x by hypothesis, by Proposition
II.5.2(b) there is δ > 0 such that B(x ; δ) ⊂ f −1(B(ω; ε)) ⊂ f −1(∆). So
f −1(∆) is open.
(b) implies (c): If Γ ⊂ Ω is closed then ∆ = Ω \ Γ is open. By hypothesis
f −1(∆) = X \ f −1(Γ) is open (recall that “f : X → Ω” means that the
domain of f is X ). So f −1(Γ) is closed.
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Proposition II.5.3

Proposition II.5.3 (continued)

Proposition II.5.3. Let f : (X , d) → (Ω, ρ) be a function. The following
are equivalent:

(a) f is continuous (on set X ),

(c) if Γ is closed in Ω then f −1(Γ) is closed in X .

Proof (continued). (c) implies (a): ASSUME there is some x ∈ X at
which f is not continuous. Then by Proposition II.5.2(c), there is ε > 0
and a sequence {xn} ⊂ X such that ρ(f (xn), f (x)) ≥ ε for all n ∈ N and
yet x = limn→∞ xn. (We are negating Proposition II.5.2(c)
here—technically, negating α = limn→∞ f (xn) would imply that
ρ(f (xn), f (x)) ≥ ε for some n ≥ N and for all N ∈ N. But this condition
allows us to construct a subsequence {xnk

} where ρ(f (xnk
), f (x)) ≥ ε for

all nk , so the claim stands “for all n ∈ N” without loss of generality.)
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Proposition II.5.3 (continued)
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Proposition II.5.3

Proposition II.5.3 (continued again)

Proposition II.5.3. Let f : (X , d) → (Ω, ρ) be a function. The following
are equivalent:

(a) f is continuous (on set X ),

(c) if Γ is closed in Ω then f −1(Γ) is closed in X .

Proof (continued). Let Γ = ω \ B(f (x); ε). Then Γ is closed (the
complement of an open set) and f (xn) ∈ Γ for all n ∈ N, so xn ∈ f −1(Γ)
for all n ∈ N. By hypothesis, f −1(Γ) is closed and so contains its limit
points by Proposition II.3.2, so x = limn→∞ xn ∈ f −1(Γ). So
f (x) ∈ Γ \ B(f (x); ε), a CONTRADICTION.

So the assumption that f is
not continuous at some x ∈ X is false. Hence f is continuous on X .

() Complex Analysis October 8, 2017 5 / 14



Proposition II.5.3

Proposition II.5.3 (continued again)

Proposition II.5.3. Let f : (X , d) → (Ω, ρ) be a function. The following
are equivalent:

(a) f is continuous (on set X ),

(c) if Γ is closed in Ω then f −1(Γ) is closed in X .

Proof (continued). Let Γ = ω \ B(f (x); ε). Then Γ is closed (the
complement of an open set) and f (xn) ∈ Γ for all n ∈ N, so xn ∈ f −1(Γ)
for all n ∈ N. By hypothesis, f −1(Γ) is closed and so contains its limit
points by Proposition II.3.2, so x = limn→∞ xn ∈ f −1(Γ). So
f (x) ∈ Γ \ B(f (x); ε), a CONTRADICTION. So the assumption that f is
not continuous at some x ∈ X is false. Hence f is continuous on X .

() Complex Analysis October 8, 2017 5 / 14



Proposition II.5.3

Proposition II.5.3 (continued again)
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Proposition II.5.5

Proposition II.5.5

Proposition II.5.5. Let f : X → Y and g : Y → Z be continuous
functions. Then g ◦ f : X → Z , where g ◦ f (x) = g(f (x)), is continuous.

Proof. Let U ⊂ Z be open. Since g is continuous, then by Proposition
II.5.3(b), g−1(U) ⊂ Y is open.

Since f is continuous, then again by
Proposition II.5.3(b), f −1(g−1(U)) = (g ◦ f )−1(U) ⊂ X is open. So, by
Proposition II.5.3, g ◦ f is continuous on X .
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Proposition II.5.7

Proposition II.5.7

Proposition II.5.7. Let A be a non-empty subset of X . Then:

(a) d(x ,A) = d(x ,A−),

(b) d(x ,A) = 0 if and only if x ∈ A−, and

(c) |d(x ,A)− d(y ,A)| ≤ d(x , y) for all x , y ∈ X .

Proof. (a) First, for general sets A,B with A ⊂ B we have
d(X ,B) ≤ d(x ,A) by the infimum definition of distance. So
d(x ,A−) ≤ d(x ,A). Now, let ε > 0.

By the properties of infimum, there
is y ∈ A− such that

d(x ,A−) ≥ d(x , y)− ε/2. (∗)

Since y ∈ A−, there is a ∈ A such that d(y , a) < ε/2. But by the Triangle
Inequality, d(x , y) ≤ d(x , a) + d(a, y) and d(x , a) ≤ d(x , y) + d(y , a),
which imply d(x , y)− d(x , a) ≤ d(a, y) = d(y , a) and
−d(y , a) ≤ d(x , y)− d(x , a), respectively. So
|d(x , y)− d(x , a)| ≤ d(y , a) < ε/2.
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Proposition II.5.7

Proposition II.5.7 (continued)

Proposition II.5.7. Let A be a non-empty subset of X . Then:

(a) d(x ,A) = d(x ,A−),

(b) d(x ,A) = 0 if and only if x ∈ A−.

Proof (continued). In particular, d(x , a)− d(x , y) < ε/2 and
d(x , y) > d(x , a)− ε/2. So from (∗),
d(x ,A−) ≥ d(x , y)− ε/2 > d(x , z)− ε ≥ d(x ,A)− ε by the infimum
definition and the fact that a ∈ A. Since ε > 0 is arbitrary, we have
d(x ,A−) ≥ d(x ,A). Combining with the above observation, we have
d(x ,A−) = d(x ,A).

(b) If x ∈ A− then 0 = d(x ,A−) = d(x ,A) by (a). Conversely, for any
x ∈ X there is a “minimizing sequence” {an} ⊂ A such that
d(x ,A) = limn→∞ d(x , an). (This is a property of the infimum
definition—for each n ∈ N, define ε ≥ 1/n and choose an ∈ A such that
d(x ,A) + 1/n < d(x , an). The sequence {an} is then as desired.) So if
d(x ,A) = 0, then limn→∞ d(x , an) = 0. But then x = limn→∞ an, and
x ∈ A−.
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Proposition II.5.7

Proposition II.5.7 (continued)

Proposition II.5.7. Let A be a non-empty subset of X . Then:

(c) |d(x ,A)− d(y ,A)| ≤ d(x , y) for all x , y ∈ X .

Proof (continued). (c) For all a ∈ A, d(x , a) ≤ d(x , y) + d(y , a) by the
Triangle Inequality. Hence

d(x ,A) = inf{d(x , a) | a ∈ A}
≤ inf{d(x , y) + d(y , a) | a ∈ A}
= d(x , y) + d(y ,A).

So d(x ,A)− d(y , a) ≤ d(x , y). Similarly, interchanging X and Y (and x
and y) gives d(y ,A)− d(x ,A) ≤ d(y , x) = d(x , y). So
|d(x ,A)− d(y ,A)| ≤ d(x , y), as claimed.
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Theorem II.5.8

Theorem II.5.8. Let f : (X , d) → (Ω, ρ) be a Continuous function.

(a) If X is Compact, then f (X ) is compact in Ω.

(b) If X is Connected, then f (X ) is connected in Ω.

Proof. We may assume WLOG that f (X ) = Ω, since consideration of
compactness and connectedness are both dealt with in terms of open sets,
and if a set U is open relative to f (X ) then there is open O ⊂ Ω where
U = f (X ) ∩ O.

(a) Let {ωn} be a sequence in Ω. Then there is, for each n ∈ N, a point
xn ∈ X with ωn = f (xn). Since X is compact, then it is sequentially
compact by Theorem II.4.9(c) and there is some subsequence {xnk

} of
{xn} such that x = lim(xnk

) for an x ∈ X . Define ω ∈ Ω as ω = f (x).
Since f is continuous, then lim f (xnk

) = lim(ωnk
) = f (x) = ω, and so

sequence {ωn} ⊂ Ω has a convergent subsequence {ωnk
}. So Ω is

sequentially compact, and by Theorem II.4.9, Ω is compact.
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Theorem II.5.8

Theorem II.5.8 (continued)

Theorem II.5.8. Let f : (X , d) → (Ω, ρ) be a Continuous function.

(b) If X is Connected, then f (X ) is connected in Ω.

Proof. (b) Suppose Σ ⊂ Ω is both open and closed and Σ 6= ∅. Since
f (X ) = Ω (i.e., f is onto Ω), then f −1(Σ) 6= ∅. By Proposition II.5.3,
f −1(Σ) is both open and closed. But since X is connected by hypothesis,
then f −1(Σ) = X .

But this implies F (X ) = Σ = Ω, and so Σ = Ω and the
only sets in (Ω, ρ) which are both open and closed are ∅ and Ω. That is,
Ω = f (X ) is connected.
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Theorem II.5.8 (continued)
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Theorem II.5.15

Theorem II.5.15

Theorem II.5.15. Suppose f : X → Ω is continuous and X is compact.
Then f is uniformly continuous on X .

Proof. Let ε > 0. ASSUME f is not uniformly continuous on X .

Then for
all n ∈ N, with δn = 1/n there are points xn, yn ∈ X with d(xn, yn) < 1/n
but

ρ(f (xn), f (yn)) ≥ ε. (∗)

Since X is compact then X is sequentially compact by Theorem II.4.9. So
for the sequence {xn} there is a convergent subsequence {xnk

} such that
xnk

→ x for some x ∈ X . Now by the Triangle Inequality

d(x , ynk
) ≤ d(x , xnk

) + d(xnk
, ynk

) < d(x , xnk
) + 1/nk .

As k →∞, d(x , xnk
) → 0 and 1/nk → 0, so limk→∞ d(x , ynk

) = 0 and
ynk

→ x (this can also be shown with an ε/2 argument).
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Theorem II.5.15

Theorem II.5.15 (continued)

Theorem II.5.15. Suppose f : X → Ω is continuous and X is compact.
Then f is uniformly continuous on X .

Proof (continued). But then f (x) = lim f (xnk
) = lim f (ynk

), so

ε ≤ ρ(f (xnk
), f (ynk

)) by (∗)
≤ ρ(f (xnk

), f (x)) + ρ(f (x), f (ynk
)) by the Triangle Inequality.

But each term of the right hand side can be made arbitrarily small (i.e.,
less than ε). This CONTRADICTION implies that the assumption that f
is not uniformly continuous is false, and the result follows.
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Theorem II.5.17

Theorem II.5.17

Theorem II.5.17. Let A and B be non-empty disjoint sets in X . If B is
closed and A is compact, then d(A,B) > 0.

Proof. Define f : X → R by f (x) = d(x ,B). Then as commented after
Proposition II.5.7, f is Lipschitz and hence uniformly continuous and
continuous on X .

Since A ∩ B = ∅ and B is closed, then f (a) > 0 for all
a ∈ A since d(a,B) = 0 if and only if a ∈ B− (by Proposition II.5.7(b)).
But since A is compact, by the Extreme Value Theorem (Corollary II.5.12)
there is some a ∈ A with f (a) = inf{f (x) | x ∈ A} = d(A,B), and hence
0 < f (a) = d(A,B).
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