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Proposition 11.5.3

Proposition 11.5.3. Let : (X, d) — (€, p) be a function. The following
are equivalent:

(a) f is continuous (on set X),
(b) if A is open in Q then f~1(A) is open in X, and
(c) if [ is closed in Q then f~1(T') is closed in X.
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Proposition 11.5.3

Proposition 11.5.3

Proposition 11.5.3. Let : (X, d) — (€, p) be a function. The following
are equivalent:

(a) f is continuous (on set X),
(b) if A is open in Q then f~1(A) is open in X, and
(c) if [ is closed in Q then f~1(T') is closed in X.

Proof. (a) implies (b): Let A be open in Q and let x € f~1(A). So

w = f(x) for some w € A. Since A is open, there is € > 0 such that
B(w,e) C A.
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Proposition 11.5.3

Proposition 11.5.3

Proposition 11.5.3. Let : (X, d) — (€, p) be a function. The following
are equivalent:

(a) f is continuous (on set X),
(b) if A is open in Q then f~1(A) is open in X, and
(c) if [ is closed in Q then f~1(T') is closed in X.

Proof. (a) implies (b): Let A be open in Q and let x € f~1(A). So
w = f(x) for some w € A. Since A is open, there is € > 0 such that
B(w,e) C A. Since f is continuous at x by hypothesis, by Proposition
11.5.2(b) there is 6 > 0 such that B(x;d) C f~}(B(w;¢)) C f~1(A). So
f~1(A) is open.
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Proposition 11.5.3

Proposition 11.5.3. Let : (X, d) — (€, p) be a function. The following
are equivalent:

(a) f is continuous (on set X),

(b) if A is open in Q then f~1(A) is open in X, and

(c) if Tis closed in Q then f~1(T) is closed in X.
Proof. (a) implies (b): Let A be open in Q and let x € f~1(A). So
w = f(x) for some w € A. Since A is open, there is € > 0 such that
B(w,e) C A. Since f is continuous at x by hypothesis, by Proposition
11.5.2(b) there is 6 > 0 such that B(x;d) C f~}(B(w;¢)) C f~1(A). So
f~1(A) is open.
(b) implies (c): If I C Q is closed then A = Q\ T is open. By hypothesis
f~1(A) = X\ f71(I') is open (recall that “f : X — Q" means that the
domain of f is X). So f~1(I") is closed.
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Proposition 11.5.3 (continued)

Proposition 11.5.3. Let f : (X, d) — (Q, p) be a function. The following
are equivalent:

(a) f is continuous (on set X),

(c) if T is closed in Q then f~1(I) is closed in X.

Proof (continued). (c) implies (a): ASSUME there is some x € X at
which f is not continuous. Then by Proposition 11.5.2(c), there is ¢ > 0
and a sequence {x,} C X such that p(f(x,), f(x)) > ¢ for all n € N and

yet x = limp_ o0 Xp.
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Proposition 11.5.3 (continued)

Proposition 11.5.3. Let f : (X, d) — (Q, p) be a function. The following
are equivalent:

(a) f is continuous (on set X),
(c) if T is closed in Q then f~1(I) is closed in X.

Proof (continued). (c) implies (a): ASSUME there is some x € X at
which f is not continuous. Then by Proposition 11.5.2(c), there is ¢ > 0
and a sequence {x,} C X such that p(f(x,), f(x)) > ¢ for all n € N and
yet x = lim,_.c Xn. (We are negating Proposition 11.5.2(c)
here—technically, negating o = lim,_,o. f(x,) would imply that

p(f(xn), f(x)) > € for some n > N and for all N € N. But this condition
allows us to construct a subsequence {x,, } where p(f(xn,), f(x)) > ¢ for
all ng, so the claim stands “for all n € N" without loss of generality.)
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Proposition 11.5.3

Proposition 11.5.3 (continued again)

Proposition 11.5.3. Let f : (X, d) — (R, p) be a function. The following
are equivalent:

(a) f is continuous (on set X),
(c) if T is closed in Q then f~1(I) is closed in X.

Proof (continued). Let [ = w \ B(f(x);e). Then I is closed (the

complement of an open set) and f(x,) € I for all n € N, so x, € f~1(I)
for all n € N.
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Proposition 11.5.3

Proposition 11.5.3 (continued again)

Proposition 11.5.3. Let f : (X, d) — (R, p) be a function. The following
are equivalent:

(a) f is continuous (on set X),
(c) if T is closed in Q then f~1(I) is closed in X.

Proof (continued). Let [ = w \ B(f(x);e). Then I is closed (the
complement of an open set) and f(x,) € I for all n € N, so x, € f~(I)
for all n € N. By hypothesis, f~1(I) is closed and so contains its limit
points by Proposition 11.3.2, so x = limp_oo x, € F1(). So

f(x) € '\ B(f(x);e), a CONTRADICTION.
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Proposition 11.5.3 (continued again)

Proposition 11.5.3. Let f : (X, d) — (R, p) be a function. The following
are equivalent:

(a) f is continuous (on set X),

(c) if T is closed in Q then f~1(I) is closed in X.

Proof (continued). Let [ = w \ B(f(x);e). Then I is closed (the
complement of an open set) and f(x,) € I for all n € N, so x, € f~(I)
for all n € N. By hypothesis, f~1(I) is closed and so contains its limit
points by Proposition 11.3.2, so x = limp_oo x, € F1(). So

f(x) € '\ B(f(x);e), a CONTRADICTION. So the assumption that f is
not continuous at some x € X is false. Hence f is continuous on X. O
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Proposition 11.5.5

Proposition 11.6.5. Let f : X — Y and g : Y — Z be continuous
functions. Then gof : X — Z, where g o f(x) = g(f(x)), is continuous.
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Proposition 11.5.5

Proposition 11.5.5

Proposition 11.6.5. Let f : X — Y and g : Y — Z be continuous
functions. Then gof : X — Z, where g o f(x) = g(f(x)), is continuous.

Proof. Let U C Z be open. Since g is continuous, then by Proposition
11.5.3(b), g (U) C Y is open.
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Proposition 11.5.5

Proposition 11.5.5

Proposition 11.6.5. Let f : X — Y and g : Y — Z be continuous
functions. Then gof : X — Z, where g o f(x) = g(f(x)), is continuous.

Proof. Let U C Z be open. Since g is continuous, then by Proposition
11.5.3(b), g~ }(U) C Y is open. Since f is continuous, then again by

Proposition 11.5.3(b), f~1(g=*(U)) = (g o f)"}(U) C X is open. So, by
Proposition 11.5.3, g o f is continuous on X. ]
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Proposition 11.5.7

Proposition 11.5.7

Proposition 11.5.7. Let A be a non-empty subset of X. Then:
() d(x, A) = d(x,A°),
(b) d(x,A)=0if and only if x € A=, and
() [d(x, A) — d(y, A)| < d(x,y) for all x,y € X.
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Proposition 11.5.7

Proposition 11.5.7

Proposition 11.5.7. Let A be a non-empty subset of X. Then:
(a) d(x,A) =d(x,A7),
(b) d(x,A)=0if and only if x € A=, and
(c) ld(x,A) —d(y,A)| < d(x,y) forall x,y € X.

Proof. (a) First, for general sets A, B with A C B we have
d(X, B) < d(x,A) by the infimum definition of distance. So
d(x,A”) < d(x,A). Now, let € > 0.
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Proposition 11.5.7

Proposition 11.5.7

Proposition 11.5.7. Let A be a non-empty subset of X. Then:
(a) d(x,A) =d(x,A7),
(b) d(x,A)=0if and only if x € A=, and
(c) ld(x,A) —d(y,A)| < d(x,y) forall x,y € X.

Proof. (a) First, for general sets A, B with A C B we have
d(X, B) < d(x,A) by the infimum definition of distance. So

d(x,A”) < d(x,A). Now, let € > 0. By the properties of infimum, there
is y € A” such that

d(X’A_) Z d(X7.y) - 8/2 (*)
Since y € A™, there is a € A such that d(y,a) < ¢/2.
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Proposition 11.5.7

Proposition 11.5.7. Let A be a non-empty subset of X. Then:
(a) d(x,A) =d(x,A7),
(b) d(x,A)=0if and only if x € A=, and
(c) ld(x,A) —d(y,A)| < d(x,y) forall x,y € X.

Proof. (a) First, for general sets A, B with A C B we have

d(X, B) < d(x,A) by the infimum definition of distance. So

d(x,A”) < d(x,A). Now, let € > 0. By the properties of infimum, there
is y € A” such that

d(x,A7) > d(x,y) —e/2. (*)

Since y € A7, there is a € A such that d(y, a) < £/2. But by the Triangle
Inequality, d(x,y) < d(x,a)+ d(a,y) and d(x,a) < d(x,y) + d(y, a),
which imply d(x,y) — d(x,a) < d(a,y) = d(y, a) and
—d(y,a) < d(x,y) — d(x, a), respectively. So
d(x.y) — d(x,a)| < d(y,a) < =/2.
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Proposition 11.5.7

Proposition 11.5.7 (continued)

Proposition 11.5.7. Let A be a non-empty subset of X. Then:
(a) d(x,A) =d(x,A7),
(b) d(x,A) =0 if and only if x € A™.
Proof (continued). In particular, d(x,a) — d(x,y) < ¢/2 and
d(x,y) > d(x,a) —e/2.
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Proposition 11.5.7 (continued)

Proposition 11.5.7. Let A be a non-empty subset of X. Then:

(a) d(x,A) =d(x,A7),

(b) d(x,A)=0if and only if x € A™.
Proof (continued). In particular, d(x,a) — d(x,y) < ¢/2 and
d(x,y) > d(x,a) — /2. So from (x),
d(x,A”) > d(x,y) —e/2 > d(x,z) —e > d(x,A) — ¢ by the infimum
definition and the fact that a € A. Since € > 0 is arbitrary, we have
d(x,A”) > d(x, A). Combining with the above observation, we have
d(x,A”) =d(x, A).
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Proposition 11.5.7 (continued)

Proposition 11.5.7. Let A be a non-empty subset of X. Then:

(a) d(x,A) =d(x,A7),

(b) d(x,A)=0if and only if x € A™.
Proof (continued). In particular, d(x,a) — d(x,y) < ¢/2 and
d(x,y) > d(x,a) — /2. So from (x),
d(x,A”) > d(x,y) —e/2 > d(x,z) —e > d(x,A) — ¢ by the infimum
definition and the fact that a € A. Since € > 0 is arbitrary, we have
d(x,A”) > d(x, A). Combining with the above observation, we have
d(x,A”) =d(x, A).
(b) If x € A~ then 0 = d(x,A™) = d(x, A) by (a). Conversely, for any
x € X there is a “minimizing sequence” {a,} C A such that
d(x,A) = lim,_o d(x, ap).
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Proposition 11.5.7 (continued)

Proposition 11.5.7. Let A be a non-empty subset of X. Then:

(a) d(x,A) =d(x,A7),

(b) d(x,A)=0if and only if x € A™.
Proof (continued). In particular, d(x,a) — d(x,y) < ¢/2 and
d(x,y) > d(x,a) — /2. So from (x),
d(x,A”) > d(x,y) —e/2 > d(x,z) —e > d(x,A) — ¢ by the infimum
definition and the fact that a € A. Since € > 0 is arbitrary, we have
d(x,A”) > d(x, A). Combining with the above observation, we have
d(x,A”) =d(x, A).
(b) If x € A~ then 0 = d(x,A™) = d(x, A) by (a). Conversely, for any
x € X there is a “minimizing sequence” {a,} C A such that
d(x,A) = lim,_ d(x, an). (This is a property of the infimum
definition—for each n € N, define € > 1/n and choose a, € A such that
d(x,A) +1/n < d(x,an). The sequence {a,} is then as desired.)
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Proposition 11.5.7 (continued)

Proposition 11.5.7. Let A be a non-empty subset of X. Then:

(a) d(x,A) =d(x,A7),

(b) d(x,A)=0if and only if x € A™.
Proof (continued). In particular, d(x,a) — d(x,y) < ¢/2 and
d(x,y) > d(x,a) — /2. So from (x),
d(x,A”) > d(x,y) —e/2 > d(x,z) —e > d(x,A) — ¢ by the infimum
definition and the fact that a € A. Since € > 0 is arbitrary, we have
d(x,A”) > d(x, A). Combining with the above observation, we have
d(x,A”) =d(x, A).
(b) If x € A~ then 0 = d(x,A™) = d(x, A) by (a). Conversely, for any
x € X there is a “minimizing sequence” {a,} C A such that
d(x,A) = lim,_ d(x, an). (This is a property of the infimum
definition—for each n € N, define € > 1/n and choose a, € A such that
d(x,A)+1/n < d(x,an). The sequence {a,} is then as desired.) So if
d(x,A) =0, then lim,_ d(x, a,) = 0. But then x = lim,_.» a,, and
x €A,
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Proposition 11.5.7 (continued)

Proposition 11.5.7. Let A be a non-empty subset of X. Then:
(c) 1d(x, A) — d(y, A)| < d(x,y) for all x,y € X.

Proof (continued). (c) For all a € A, d(x,a) < d(x,y) + d(y, a) by the
Triangle Inequality. Hence

d(x,A) = inf{d(x,a)|ac A}
< inf{d(x,y) +d(y,a) | ac A}
= d(x,y)+d(y,A).

So d(x,A) —d(y,a) < d(x,y).
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Proposition 11.5.7 (continued)

Proposition 11.5.7. Let A be a non-empty subset of X. Then:
(c) 1d(x, A) — d(y, A)| < d(x,y) for all x,y € X.

Proof (continued). (c) For all a € A, d(x,a) < d(x,y) + d(y, a) by the
Triangle Inequality. Hence

d(x,A) = inf{d(x,a)|ac A}
< inf{d(x,y) +d(y,a) | a € A}
= d(x,y)+d(y,A).

So d(x,A) — d(y,

a)
and y) gives d(y, A)
|d(x, A) = d(y, A)| < d(x,

< d(x,y). Similarly, interchanging X and Y (and x
- ( A)<d(y7 )_d(va) So
), as claimed. O
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Theorem 11.5.8

Theorem 11.5.8. Let f : (X,d) — (€, p) be a Continuous function.
(a) If X is Compact, then f(X) is compact in Q.
(b) If X is Connected, then f(X) is connected in Q.
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Theorem 11.5.8

Theorem 11.5.8. Let f : (X,d) — (€, p) be a Continuous function.
(a) If X is Compact, then f(X) is compact in Q.
(b) If X is Connected, then f(X) is connected in Q.

Proof. We may assume WLOG that f(X) = Q, since consideration of
compactness and connectedness are both dealt with in terms of open sets,
and if a set U is open relative to f(X) then there is open O C Q where
U=rf(X)noO.
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Theorem 11.5.8

Theorem 11.5.8. Let f : (X,d) — (€, p) be a Continuous function.
(a) If X is Compact, then f(X) is compact in Q.
(b) If X is Connected, then f(X) is connected in Q.

Proof. We may assume WLOG that f(X) = Q, since consideration of
compactness and connectedness are both dealt with in terms of open sets,
and if a set U is open relative to f(X) then there is open O C Q where
U=f(X)no.

(a) Let {wn} be a sequence in Q. Then there is, for each n € N, a point
xp € X with w, = f(x,).
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Theorem 11.5.8

Theorem 11.5.8. Let f : (X,d) — (€, p) be a Continuous function.
(a) If X is Compact, then f(X) is compact in Q.
(b) If X is Connected, then f(X) is connected in Q.

Proof. We may assume WLOG that f(X) = Q, since consideration of
compactness and connectedness are both dealt with in terms of open sets,
and if a set U is open relative to f(X) then there is open O C Q where
U=f(X)no.

(a) Let {wn} be a sequence in Q. Then there is, for each n € N, a point
xp € X with w, = f(x,). Since X is compact, then it is sequentially
compact by Theorem 11.4.9(c) and there is some subsequence {x,, } of
{xn} such that x = lim(x,, ) for an x € X. Define w € Q as w = f(x).
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Theorem 11.5.8

Theorem 11.5.8. Let f : (X,d) — (€, p) be a Continuous function.
(a) If X is Compact, then f(X) is compact in Q.
(b) If X is Connected, then f(X) is connected in Q.

Proof. We may assume WLOG that f(X) = Q, since consideration of
compactness and connectedness are both dealt with in terms of open sets,
and if a set U is open relative to f(X) then there is open O C Q where
U=f(X)no.

(a) Let {wn} be a sequence in Q. Then there is, for each n € N, a point
xp € X with w, = f(x,). Since X is compact, then it is sequentially
compact by Theorem 11.4.9(c) and there is some subsequence {x,, } of
{xn} such that x = lim(x,, ) for an x € X. Define w € Q as w = f(x).
Since f is continuous, then lim f(x,, ) = lim(wp, ) = f(x) = w, and so
sequence {wp} C Q has a convergent subsequence {wy, }. So Q is
sequentially compact, and by Theorem 11.4.9, Q is compact.
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Theorem 11.5.8 (continued)

Theorem 11.5.8. Let f: (X,d) — (R, p) be a Continuous function.
(b) If X is Connected, then f(X) is connected in Q.

Proof. (b) Suppose ¥ C Q is both open and closed and ¥ # &.
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Theorem 11.5.8 (continued)

Theorem 11.5.8. Let f: (X,d) — (R, p) be a Continuous function.
(b) If X is Connected, then f(X) is connected in Q.

Proof. (b) Suppose £ C Q is both open and closed and ¥ # &. Since
f(X)=Q (i.e., f is onto Q), then f~1(X) # @. By Proposition 11.5.3,
f~1(X) is both open and closed. But since X is connected by hypothesis,
then F~1(X) = X.
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Theorem 11.5.8 (continued)

Theorem 11.5.8. Let f: (X,d) — (R, p) be a Continuous function.
(b) If X is Connected, then f(X) is connected in Q.

Proof. (b) Suppose £ C Q is both open and closed and ¥ # &. Since
f(X)=Q (i.e., f is onto Q), then f~1(X) # @. By Proposition 11.5.3,
f~1(X) is both open and closed. But since X is connected by hypothesis,
then f~1(X) = X. But this implies F(X) = £ = Q, and so £ = Q and the
only sets in (£2, p) which are both open and closed are @ and Q. That is,
Q = f(X) is connected. O
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Theorem 11.5.15

Theorem 11.5.15. Suppose f : X — Q is continuous and X is compact.
Then f is uniformly continuous on X.
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Theorem 11.5.15

Theorem 11.5.15. Suppose f : X — Q is continuous and X is compact.
Then f is uniformly continuous on X.

Proof. Let € > 0. ASSUME f is not uniformly continuous on X.
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Theorem 11.5.15

Theorem 11.5.15

Theorem 11.5.15. Suppose f : X — Q is continuous and X is compact.
Then f is uniformly continuous on X.

Proof. Let € > 0. ASSUME f is not uniformly continuous on X. Then for

all n € N, with §, = 1/n there are points xp, y, € X with d(x,,y,) < 1/n
but

p(f(xa), fyn)) = €. (*)
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Theorem 11.5.15

Theorem 11.5.15. Suppose f : X — Q is continuous and X is compact.
Then f is uniformly continuous on X.

Proof. Let € > 0. ASSUME f is not uniformly continuous on X. Then for
all n € N, with §, = 1/n there are points xp, y, € X with d(x,,y,) < 1/n
but

p(f(xn), f(yn)) = €. (*)

Since X is compact then X is sequentially compact by Theorem 11.4.9. So
for the sequence {x,} there is a convergent subsequence {x,, } such that
Xp, — X for some x € X.
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Theorem 11.5.15

Theorem 11.5.15. Suppose f : X — Q is continuous and X is compact.
Then f is uniformly continuous on X.

Proof. Let € > 0. ASSUME f is not uniformly continuous on X. Then for
all n € N, with §, = 1/n there are points xp, y, € X with d(x,,y,) < 1/n
but

p(f(xa), fyn)) = €. (*)

Since X is compact then X is sequentially compact by Theorem 11.4.9. So
for the sequence {x,} there is a convergent subsequence {x,, } such that
Xp, — X for some x € X. Now by the Triangle Inequality

d(x,yn,) < d(x,%n,) + d(Xn, ¥Yn,) < d(X, Xn,) + 1/nk.

As k — o0, d(x,Xp,) — 0 and 1/n, — 0, so limy_,o d(x, ¥n,) =0 and
¥n, — x (this can also be shown with an /2 argument).
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Theorem 11.5.15 (continued)

Theorem 11.5.15. Suppose f : X — 2 is continuous and X is compact.
Then f is uniformly continuous on X.

Proof (continued). But then f(x) = lim f(x,,) = lim f(ys, ), so

p(f (xn,), () by ()
p(f(xn, ), F(x)) + p(f(x), f(yn,)) by the Triangle Inequality.

e <
<
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Theorem 11.5.15 (continued)

Theorem 11.5.15. Suppose f : X — 2 is continuous and X is compact.
Then f is uniformly continuous on X.

Proof (continued). But then f(x) = lim f(x,,) = lim f(ys, ), so

e < p(f(xa); f(yn)) by (%)
< p(f(xn,), F(x)) + p(f(x), f(yn,)) by the Triangle Inequality.

But each term of the right hand side can be made arbitrarily small (i.e.,
less than €). This CONTRADICTION implies that the assumption that f
is not uniformly continuous is false, and the result follows. O
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Theorem 11.5.17

Theorem 11.5.17. Let A and B be non-empty disjoint sets in X. If B is
closed and A is compact, then d(A, B) > 0.
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Theorem 11.5.17

Theorem 11.5.17

Theorem 11.5.17. Let A and B be non-empty disjoint sets in X. If B is
closed and A is compact, then d(A, B) > 0.

Proof. Define f : X — R by f(x) = d(x, B). Then as commented after

Proposition 11.5.7, f is Lipschitz and hence uniformly continuous and
continuous on X.
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Theorem 11.5.17

Theorem 11.5.17. Let A and B be non-empty disjoint sets in X. If B is
closed and A is compact, then d(A, B) > 0.

Proof. Define f : X — R by f(x) = d(x, B). Then as commented after
Proposition 11.5.7, f is Lipschitz and hence uniformly continuous and
continuous on X. Since AN B = @ and B is closed, then f(a) > 0 for all
a € Asince d(a, B) =0 if and only if a € B~ (by Proposition 11.5.7(b)).
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Theorem 11.5.17

Theorem 11.5.17. Let A and B be non-empty disjoint sets in X. If B is
closed and A is compact, then d(A, B) > 0.

Proof. Define f : X — R by f(x) = d(x, B). Then as commented after
Proposition 11.5.7, f is Lipschitz and hence uniformly continuous and
continuous on X. Since AN B = @ and B is closed, then f(a) > 0 for all
a € Asince d(a, B) =0 if and only if a € B~ (by Proposition 11.5.7(b)).
But since A is compact, by the Extreme Value Theorem (Corollary 11.5.12)
there is some a € A with f(a) = inf{f(x) | x € A} = d(A, B), and hence
0 < f(a) = d(A, B). O

Complex Analysis October 8, 2017 14 / 14



	Proposition II.5.3
	Proposition II.5.5
	Proposition II.5.7
	Theorem II.5.8
	Theorem II.5.15
	Theorem II.5.17

