Complex Analysis

Chapter II. Metric Spaces and the Topology of \mathbb{C} II.5. Continuity-Proofs of Theorems

Table of contents

(1) Proposition II.5.3
(2) Proposition II.5.5
(3) Proposition II.5.7
(4) Theorem II.5.8
(5) Theorem II.5.15
(6) Theorem II.5.17

Proposition II.5.3

Proposition II.5.3. Let $f:(X, d) \rightarrow(\Omega, \rho)$ be a function. The following are equivalent:
(a) f is continuous (on set X),
(b) if Δ is open in Ω then $f^{-1}(\Delta)$ is open in X, and
(c) if Γ is closed in Ω then $f^{-1}(\Gamma)$ is closed in X.

Proof. (a) implies (b): Let Δ be open in Ω and let $x \in f^{-1}(\Delta)$. So $\omega=f(x)$ for some $\omega \in \Delta$. Since Δ is open, there is $\varepsilon>0$ such that $B(\omega, \varepsilon) \subset \Delta$.

Proposition II.5.3

Proposition II.5.3. Let $f:(X, d) \rightarrow(\Omega, \rho)$ be a function. The following are equivalent:
(a) f is continuous (on set X),
(b) if Δ is open in Ω then $f^{-1}(\Delta)$ is open in X, and
(c) if Γ is closed in Ω then $f^{-1}(\Gamma)$ is closed in X.

Proof. (a) implies (b): Let Δ be open in Ω and let $x \in f^{-1}(\Delta)$. So $\omega=f(x)$ for some $\omega \in \Delta$. Since Δ is open, there is $\varepsilon>0$ such that $B(\omega, \varepsilon) \subset \Delta$. Since f is continuous at x by hypothesis, by Proposition II.5.2(b) there is $\delta>0$ such that $B(x ; \delta) \subset f^{-1}(B(\omega ; \varepsilon)) \subset f^{-1}(\Delta)$. So $f^{-1}(\Delta)$ is open.

Proposition II.5.3

Proposition II.5.3. Let $f:(X, d) \rightarrow(\Omega, \rho)$ be a function. The following are equivalent:
(a) f is continuous (on set X),
(b) if Δ is open in Ω then $f^{-1}(\Delta)$ is open in X, and
(c) if Γ is closed in Ω then $f^{-1}(\Gamma)$ is closed in X.

Proof. (a) implies (b): Let Δ be open in Ω and let $x \in f^{-1}(\Delta)$. So $\omega=f(x)$ for some $\omega \in \Delta$. Since Δ is open, there is $\varepsilon>0$ such that $B(\omega, \varepsilon) \subset \Delta$. Since f is continuous at x by hypothesis, by Proposition II.5.2(b) there is $\delta>0$ such that $B(x ; \delta) \subset f^{-1}(B(\omega ; \varepsilon)) \subset f^{-1}(\Delta)$. So $f^{-1}(\Delta)$ is open.
(b) implies (c): If $\Gamma \subset \Omega$ is closed then $\Delta=\Omega \backslash \Gamma$ is open. By hypothesis $f^{-1}(\Delta)=X \backslash f^{-1}(\Gamma)$ is open (recall that " $f: X \rightarrow \Omega$ " means that the domain of f is X). So $f^{-1}(\Gamma)$ is closed.

Proposition II.5.3

Proposition II.5.3. Let $f:(X, d) \rightarrow(\Omega, \rho)$ be a function. The following are equivalent:
(a) f is continuous (on set X),
(b) if Δ is open in Ω then $f^{-1}(\Delta)$ is open in X, and
(c) if Γ is closed in Ω then $f^{-1}(\Gamma)$ is closed in X.

Proof. (a) implies (b): Let Δ be open in Ω and let $x \in f^{-1}(\Delta)$. So $\omega=f(x)$ for some $\omega \in \Delta$. Since Δ is open, there is $\varepsilon>0$ such that $B(\omega, \varepsilon) \subset \Delta$. Since f is continuous at x by hypothesis, by Proposition II.5.2(b) there is $\delta>0$ such that $B(x ; \delta) \subset f^{-1}(B(\omega ; \varepsilon)) \subset f^{-1}(\Delta)$. So $f^{-1}(\Delta)$ is open.
(b) implies (c): If $\Gamma \subset \Omega$ is closed then $\Delta=\Omega \backslash \Gamma$ is open. By hypothesis $f^{-1}(\Delta)=X \backslash f^{-1}(\Gamma)$ is open (recall that " $f: X \rightarrow \Omega$ " means that the domain of f is X). So $f^{-1}(\Gamma)$ is closed.

Proposition II.5.3 (continued)

Proposition II.5.3. Let $f:(X, d) \rightarrow(\Omega, \rho)$ be a function. The following are equivalent:
(a) f is continuous (on set X),
(c) if Γ is closed in Ω then $f^{-1}(\Gamma)$ is closed in X.

Proof (continued). (c) implies (a): ASSUME there is some $x \in X$ at which f is not continuous. Then by Proposition II.5.2(c), there is $\varepsilon>0$ and a sequence $\left\{x_{n}\right\} \subset X$ such that $\rho\left(f\left(x_{n}\right), f(x)\right) \geq \varepsilon$ for all $n \in \mathbb{N}$ and yet $x=\lim _{n \rightarrow \infty} x_{n}$. (We are negating Proposition II.5.2(c)
here-technically, negating $\alpha=\lim _{n \rightarrow \infty} f\left(x_{n}\right)$ would imply that $\rho\left(f\left(x_{n}\right), f(x)\right) \geq \varepsilon$ for some $n \geq N$ and for all $N \in \mathbb{N}$. But this condition allows us to construct a subsequence $\left\{x_{n_{k}}\right\}$ where $\rho\left(f\left(x_{n_{k}}\right), f(x)\right) \geq \varepsilon$ for all n_{k}, so the claim stands "for all $n \in \mathbb{N}$ " without loss of generality.)

Proposition II.5.3 (continued)

Proposition II.5.3. Let $f:(X, d) \rightarrow(\Omega, \rho)$ be a function. The following are equivalent:
(a) f is continuous (on set X),
(c) if Γ is closed in Ω then $f^{-1}(\Gamma)$ is closed in X.

Proof (continued). (c) implies (a): ASSUME there is some $x \in X$ at which f is not continuous. Then by Proposition II.5.2(c), there is $\varepsilon>0$ and a sequence $\left\{x_{n}\right\} \subset X$ such that $\rho\left(f\left(x_{n}\right), f(x)\right) \geq \varepsilon$ for all $n \in \mathbb{N}$ and yet $x=\lim _{n \rightarrow \infty} x_{n}$. (We are negating Proposition II.5.2(c) here-technically, negating $\alpha=\lim _{n \rightarrow \infty} f\left(x_{n}\right)$ would imply that $\rho\left(f\left(x_{n}\right), f(x)\right) \geq \varepsilon$ for some $n \geq N$ and for all $N \in \mathbb{N}$. But this condition allows us to construct a subsequence $\left\{x_{n_{k}}\right\}$ where $\rho\left(f\left(x_{n_{k}}\right), f(x)\right) \geq \varepsilon$ for all n_{k}, so the claim stands "for all $n \in \mathbb{N}$ " without loss of generality.)

Proposition II.5.3 (continued again)

Proposition II.5.3. Let $f:(X, d) \rightarrow(\Omega, \rho)$ be a function. The following are equivalent:
(a) f is continuous (on set X),
(c) if Γ is closed in Ω then $f^{-1}(\Gamma)$ is closed in X.

Proof (continued). Let $\Gamma=\omega \backslash B(f(x) ; \varepsilon)$. Then Γ is closed (the complement of an open set) and $f\left(x_{n}\right) \in \Gamma$ for all $n \in \mathbb{N}$, so $x_{n} \in f^{-1}(\Gamma)$ for all $n \in \mathbb{N}$. By hypothesis, $f^{-1}(\Gamma)$ is closed and so contains its limit points by Proposition II.3.2, so $x=\lim _{n \rightarrow \infty} x_{n} \in f^{-1}(\Gamma)$. So $f(x) \in \Gamma \backslash B(f(x) ; \varepsilon)$, a CONTRADICTION.

Proposition II.5.3 (continued again)

Proposition II.5.3. Let $f:(X, d) \rightarrow(\Omega, \rho)$ be a function. The following are equivalent:
(a) f is continuous (on set X),
(c) if Γ is closed in Ω then $f^{-1}(\Gamma)$ is closed in X.

Proof (continued). Let $\Gamma=\omega \backslash B(f(x) ; \varepsilon)$. Then Γ is closed (the complement of an open set) and $f\left(x_{n}\right) \in \Gamma$ for all $n \in \mathbb{N}$, so $x_{n} \in f^{-1}(\Gamma)$ for all $n \in \mathbb{N}$. By hypothesis, $f^{-1}(\Gamma)$ is closed and so contains its limit points by Proposition II.3.2, so $x=\lim _{n \rightarrow \infty} x_{n} \in f^{-1}(\Gamma)$. So $f(x) \in \Gamma \backslash B(f(x) ; \varepsilon)$, a CONTRADICTION. So the assumption that f is not continuous at some $x \in X$ is false. Hence f is continuous on X.

Proposition II.5.3 (continued again)

Proposition II.5.3. Let $f:(X, d) \rightarrow(\Omega, \rho)$ be a function. The following are equivalent:
(a) f is continuous (on set X),
(c) if Γ is closed in Ω then $f^{-1}(\Gamma)$ is closed in X.

Proof (continued). Let $\Gamma=\omega \backslash B(f(x) ; \varepsilon)$. Then Γ is closed (the complement of an open set) and $f\left(x_{n}\right) \in \Gamma$ for all $n \in \mathbb{N}$, so $x_{n} \in f^{-1}(\Gamma)$ for all $n \in \mathbb{N}$. By hypothesis, $f^{-1}(\Gamma)$ is closed and so contains its limit points by Proposition II.3.2, so $x=\lim _{n \rightarrow \infty} x_{n} \in f^{-1}(\Gamma)$. So $f(x) \in \Gamma \backslash B(f(x) ; \varepsilon)$, a CONTRADICTION. So the assumption that f is not continuous at some $x \in X$ is false. Hence f is continuous on X.

Proposition II.5.5

Proposition II.5.5. Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be continuous functions. Then $g \circ f: X \rightarrow Z$, where $g \circ f(x)=g(f(x))$, is continuous.

Proof. Let $U \subset Z$ be open. Since g is continuous, then by Proposition II.5.3(b), $g^{-1}(U) \subset Y$ is open.

Proposition II.5.5

Proposition II.5.5. Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be continuous functions. Then $g \circ f: X \rightarrow Z$, where $g \circ f(x)=g(f(x))$, is continuous.

Proof. Let $U \subset Z$ be open. Since g is continuous, then by Proposition II.5.3(b), $g^{-1}(U) \subset Y$ is open. Since f is continuous, then again by Proposition II.5.3(b), $f^{-1}\left(g^{-1}(U)\right)=(g \circ f)^{-1}(U) \subset X$ is open. So, by Proposition II.5.3, $g \circ f$ is continuous on X.

Proposition II.5.5

Proposition II.5.5. Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be continuous functions. Then $g \circ f: X \rightarrow Z$, where $g \circ f(x)=g(f(x))$, is continuous.

Proof. Let $U \subset Z$ be open. Since g is continuous, then by Proposition II.5.3(b), $g^{-1}(U) \subset Y$ is open. Since f is continuous, then again by Proposition II.5.3(b), $f^{-1}\left(g^{-1}(U)\right)=(g \circ f)^{-1}(U) \subset X$ is open. So, by Proposition II.5.3, $g \circ f$ is continuous on X.

Proposition II.5.7

Proposition II.5.7. Let A be a non-empty subset of X. Then:
(a) $d(x, A)=d\left(x, A^{-}\right)$,
(b) $d(x, A)=0$ if and only if $x \in A^{-}$, and
(c) $|d(x, A)-d(y, A)| \leq d(x, y)$ for all $x, y \in X$.

Proof. (a) First, for general sets A, B with $A \subset B$ we have $d(X, B) \leq d(x, A)$ by the infimum definition of distance. So $d\left(x, A^{-}\right) \leq d(x, A)$. Now, let $\varepsilon>0$.

Proposition II.5.7

Proposition II.5.7. Let A be a non-empty subset of X. Then:
(a) $d(x, A)=d\left(x, A^{-}\right)$,
(b) $d(x, A)=0$ if and only if $x \in A^{-}$, and
(c) $|d(x, A)-d(y, A)| \leq d(x, y)$ for all $x, y \in X$.

Proof. (a) First, for general sets A, B with $A \subset B$ we have $d(X, B) \leq d(x, A)$ by the infimum definition of distance. So $d\left(x, A^{-}\right) \leq d(x, A)$. Now, let $\varepsilon>0$. By the properties of infimum, there is $y \in A^{-}$such that

$$
\begin{equation*}
d\left(x, A^{-}\right) \geq d(x, y)-\varepsilon / 2 \tag{*}
\end{equation*}
$$

Since $y \in A^{-}$, there is $a \in A$ such that $d(y, a)<\varepsilon / 2$.

Proposition II.5.7

Proposition II.5.7. Let A be a non-empty subset of X. Then:
(a) $d(x, A)=d\left(x, A^{-}\right)$,
(b) $d(x, A)=0$ if and only if $x \in A^{-}$, and
(c) $|d(x, A)-d(y, A)| \leq d(x, y)$ for all $x, y \in X$.

Proof. (a) First, for general sets A, B with $A \subset B$ we have $d(X, B) \leq d(x, A)$ by the infimum definition of distance. So $d\left(x, A^{-}\right) \leq d(x, A)$. Now, let $\varepsilon>0$. By the properties of infimum, there is $y \in A^{-}$such that

$$
\begin{equation*}
d\left(x, A^{-}\right) \geq d(x, y)-\varepsilon / 2 \tag{*}
\end{equation*}
$$

Since $y \in A^{-}$, there is $a \in A$ such that $d(y, a)<\varepsilon / 2$. But by the Triangle Inequality, $d(x, y) \leq d(x, a)+d(a, y)$ and $d(x, a) \leq d(x, y)+d(y, a)$, which imply $d(x, y)-d(x, a) \leq d(a, y)=d(y, a)$ and $-d(y, a) \leq d(x, y)-d(x, a)$, respectively. So

Proposition II.5.7

Proposition II.5.7. Let A be a non-empty subset of X. Then:
(a) $d(x, A)=d\left(x, A^{-}\right)$,
(b) $d(x, A)=0$ if and only if $x \in A^{-}$, and
(c) $|d(x, A)-d(y, A)| \leq d(x, y)$ for all $x, y \in X$.

Proof. (a) First, for general sets A, B with $A \subset B$ we have $d(X, B) \leq d(x, A)$ by the infimum definition of distance. So $d\left(x, A^{-}\right) \leq d(x, A)$. Now, let $\varepsilon>0$. By the properties of infimum, there is $y \in A^{-}$such that

$$
\begin{equation*}
d\left(x, A^{-}\right) \geq d(x, y)-\varepsilon / 2 \tag{*}
\end{equation*}
$$

Since $y \in A^{-}$, there is $a \in A$ such that $d(y, a)<\varepsilon / 2$. But by the Triangle Inequality, $d(x, y) \leq d(x, a)+d(a, y)$ and $d(x, a) \leq d(x, y)+d(y, a)$,
which imply $d(x, y)-d(x, a) \leq d(a, y)=d(y, a)$ and
$-d(y, a) \leq d(x, y)-d(x, a)$, respectively. So
$|d(x, y)-d(x, a)| \leq d(y, a)<\varepsilon / 2$.

Proposition II.5.7 (continued)

Proposition II.5.7. Let A be a non-empty subset of X. Then:
(a) $d(x, A)=d\left(x, A^{-}\right)$,
(b) $d(x, A)=0$ if and only if $x \in A^{-}$.

Proof (continued). In particular, $d(x, a)-d(x, y)<\varepsilon / 2$ and $d(x, y)>d(x, a)-\varepsilon / 2$. So from $(*)$,
$d\left(x, A^{-}\right) \geq d(x, y)-\varepsilon / 2>d(x, z)-\varepsilon \geq d(x, A)-\varepsilon$ by the infimum definition and the fact that $a \in A$. Since $\varepsilon>0$ is arbitrary, we have $d\left(x, A^{-}\right) \geq d(x, A)$. Combining with the above observation, we have $d\left(x, A^{-}\right)=d(x, A)$.

Proposition II.5.7 (continued)

Proposition II.5.7. Let A be a non-empty subset of X. Then:
(a) $d(x, A)=d\left(x, A^{-}\right)$,
(b) $d(x, A)=0$ if and only if $x \in A^{-}$.

Proof (continued). In particular, $d(x, a)-d(x, y)<\varepsilon / 2$ and $d(x, y)>d(x, a)-\varepsilon / 2$. So from $(*)$, $d\left(x, A^{-}\right) \geq d(x, y)-\varepsilon / 2>d(x, z)-\varepsilon \geq d(x, A)-\varepsilon$ by the infimum definition and the fact that $a \in A$. Since $\varepsilon>0$ is arbitrary, we have $d\left(x, A^{-}\right) \geq d(x, A)$. Combining with the above observation, we have $d\left(x, A^{-}\right)=d(x, A)$.
(b) If $x \in A^{-}$then $0=d\left(x, A^{-}\right)=d(x, A)$ by (a). Conversely, for any $x \in X$ there is a "minimizing sequence" $\left\{a_{n}\right\} \subset A$ such that
$d(x, A)=\lim _{n \rightarrow \infty} d\left(x, a_{n}\right)$.

Proposition II.5.7 (continued)

Proposition II.5.7. Let A be a non-empty subset of X. Then:
(a) $d(x, A)=d\left(x, A^{-}\right)$,
(b) $d(x, A)=0$ if and only if $x \in A^{-}$.

Proof (continued). In particular, $d(x, a)-d(x, y)<\varepsilon / 2$ and $d(x, y)>d(x, a)-\varepsilon / 2$. So from $(*)$, $d\left(x, A^{-}\right) \geq d(x, y)-\varepsilon / 2>d(x, z)-\varepsilon \geq d(x, A)-\varepsilon$ by the infimum definition and the fact that $a \in A$. Since $\varepsilon>0$ is arbitrary, we have $d\left(x, A^{-}\right) \geq d(x, A)$. Combining with the above observation, we have $d\left(x, A^{-}\right)=d(x, A)$.
(b) If $x \in A^{-}$then $0=d\left(x, A^{-}\right)=d(x, A)$ by (a). Conversely, for any $x \in X$ there is a "minimizing sequence" $\left\{a_{n}\right\} \subset A$ such that $d(x, A)=\lim _{n \rightarrow \infty} d\left(x, a_{n}\right)$. (This is a property of the infimum definition-for each $n \in \mathbb{N}$, define $\varepsilon \geq 1 / n$ and choose $a_{n} \in A$ such that $d(x, A)+1 / n<d\left(x, a_{n}\right)$. The sequence $\left\{a_{n}\right\}$ is then as desired.)

Proposition II.5.7 (continued)

Proposition II.5.7. Let A be a non-empty subset of X. Then:
(a) $d(x, A)=d\left(x, A^{-}\right)$,
(b) $d(x, A)=0$ if and only if $x \in A^{-}$.

Proof (continued). In particular, $d(x, a)-d(x, y)<\varepsilon / 2$ and $d(x, y)>d(x, a)-\varepsilon / 2$. So from $(*)$, $d\left(x, A^{-}\right) \geq d(x, y)-\varepsilon / 2>d(x, z)-\varepsilon \geq d(x, A)-\varepsilon$ by the infimum definition and the fact that $a \in A$. Since $\varepsilon>0$ is arbitrary, we have $d\left(x, A^{-}\right) \geq d(x, A)$. Combining with the above observation, we have $d\left(x, A^{-}\right)=d(x, A)$.
(b) If $x \in A^{-}$then $0=d\left(x, A^{-}\right)=d(x, A)$ by (a). Conversely, for any $x \in X$ there is a "minimizing sequence" $\left\{a_{n}\right\} \subset A$ such that $d(x, A)=\lim _{n \rightarrow \infty} d\left(x, a_{n}\right)$. (This is a property of the infimum definition-for each $n \in \mathbb{N}$, define $\varepsilon \geq 1 / n$ and choose $a_{n} \in A$ such that $d(x, A)+1 / n<d\left(x, a_{n}\right)$. The sequence $\left\{a_{n}\right\}$ is then as desired.) So if $d(x, A)=0$, then $\lim _{n \rightarrow \infty} d\left(x, a_{n}\right)=0$. But then $x=\lim _{n \rightarrow \infty} a_{n}$, and $x \in A^{-}$

Proposition II.5.7 (continued)

Proposition II.5.7. Let A be a non-empty subset of X. Then:
(a) $d(x, A)=d\left(x, A^{-}\right)$,
(b) $d(x, A)=0$ if and only if $x \in A^{-}$.

Proof (continued). In particular, $d(x, a)-d(x, y)<\varepsilon / 2$ and $d(x, y)>d(x, a)-\varepsilon / 2$. So from $(*)$, $d\left(x, A^{-}\right) \geq d(x, y)-\varepsilon / 2>d(x, z)-\varepsilon \geq d(x, A)-\varepsilon$ by the infimum definition and the fact that $a \in A$. Since $\varepsilon>0$ is arbitrary, we have $d\left(x, A^{-}\right) \geq d(x, A)$. Combining with the above observation, we have $d\left(x, A^{-}\right)=d(x, A)$.
(b) If $x \in A^{-}$then $0=d\left(x, A^{-}\right)=d(x, A)$ by (a). Conversely, for any $x \in X$ there is a "minimizing sequence" $\left\{a_{n}\right\} \subset A$ such that $d(x, A)=\lim _{n \rightarrow \infty} d\left(x, a_{n}\right)$. (This is a property of the infimum definition-for each $n \in \mathbb{N}$, define $\varepsilon \geq 1 / n$ and choose $a_{n} \in A$ such that $d(x, A)+1 / n<d\left(x, a_{n}\right)$. The sequence $\left\{a_{n}\right\}$ is then as desired.) So if $d(x, A)=0$, then $\lim _{n \rightarrow \infty} d\left(x, a_{n}\right)=0$. But then $x=\lim _{n \rightarrow \infty} a_{n}$, and $x \in A^{-}$.

Proposition II.5.7 (continued)

Proposition II.5.7. Let A be a non-empty subset of X. Then:

$$
\text { (c) }|d(x, A)-d(y, A)| \leq d(x, y) \text { for all } x, y \in X \text {. }
$$

Proof (continued). (c) For all $a \in A, d(x, a) \leq d(x, y)+d(y, a)$ by the Triangle Inequality. Hence

$$
\begin{aligned}
d(x, A) & =\inf \{d(x, a) \mid a \in A\} \\
& \leq \inf \{d(x, y)+d(y, a) \mid a \in A\} \\
& =d(x, y)+d(y, A) .
\end{aligned}
$$

So $d(x, A)-d(y, a) \leq d(x, y)$. Similarly, interchanging X and Y (and x
and $y)$ gives $d(y, A)-d(x, A) \leq d(y, x)=d(x, y)$. So
$|d(x, A)-d(y, A)| \leq d(x, y)$, as claimed.

Proposition II.5.7 (continued)

Proposition II.5.7. Let A be a non-empty subset of X. Then:

$$
\text { (c) }|d(x, A)-d(y, A)| \leq d(x, y) \text { for all } x, y \in X \text {. }
$$

Proof (continued). (c) For all $a \in A, d(x, a) \leq d(x, y)+d(y, a)$ by the Triangle Inequality. Hence

$$
\begin{aligned}
d(x, A) & =\inf \{d(x, a) \mid a \in A\} \\
& \leq \inf \{d(x, y)+d(y, a) \mid a \in A\} \\
& =d(x, y)+d(y, A)
\end{aligned}
$$

So $d(x, A)-d(y, a) \leq d(x, y)$. Similarly, interchanging X and Y (and x and y) gives $d(y, A)-d(x, A) \leq d(y, x)=d(x, y)$. So $|d(x, A)-d(y, A)| \leq d(x, y)$, as claimed.

Theorem II.5.8

Theorem II.5.8. Let $f:(X, d) \rightarrow(\Omega, \rho)$ be a Continuous function.
(a) If X is Compact, then $f(X)$ is compact in Ω.
(b) If X is Connected, then $f(X)$ is connected in Ω.

Proof. We may assume WLOG that $f(X)=\Omega$, since consideration of compactness and connectedness are both dealt with in terms of open sets, and if a set U is open relative to $f(X)$ then there is open $O \subset \Omega$ where $U=f(X) \cap O$.

Theorem II.5.8

Theorem II.5.8. Let $f:(X, d) \rightarrow(\Omega, \rho)$ be a Continuous function.
(a) If X is Compact, then $f(X)$ is compact in Ω.
(b) If X is Connected, then $f(X)$ is connected in Ω.

Proof. We may assume WLOG that $f(X)=\Omega$, since consideration of compactness and connectedness are both dealt with in terms of open sets, and if a set U is open relative to $f(X)$ then there is open $O \subset \Omega$ where $U=f(X) \cap O$.
(a) Let $\left\{\omega_{n}\right\}$ be a sequence in Ω. Then there is, for each $n \in \mathbb{N}$, a point $x_{n} \in X$ with $\omega_{n}=f\left(x_{n}\right)$.

Theorem II.5.8

Theorem II.5.8. Let $f:(X, d) \rightarrow(\Omega, \rho)$ be a Continuous function.
(a) If X is Compact, then $f(X)$ is compact in Ω.
(b) If X is Connected, then $f(X)$ is connected in Ω.

Proof. We may assume WLOG that $f(X)=\Omega$, since consideration of compactness and connectedness are both dealt with in terms of open sets, and if a set U is open relative to $f(X)$ then there is open $O \subset \Omega$ where $U=f(X) \cap O$.
(a) Let $\left\{\omega_{n}\right\}$ be a sequence in Ω. Then there is, for each $n \in \mathbb{N}$, a point $x_{n} \in X$ with $\omega_{n}=f\left(x_{n}\right)$. Since X is compact, then it is sequentially compact by Theorem II.4.9(c) and there is some subsequence $\left\{x_{n_{k}}\right\}$ of $\left\{x_{n}\right\}$ such that $x=\lim \left(x_{n_{k}}\right)$ for an $x \in X$. Define $\omega \in \Omega$ as $\omega=f(x)$.

Theorem II.5.8

Theorem II.5.8. Let $f:(X, d) \rightarrow(\Omega, \rho)$ be a Continuous function.
(a) If X is Compact, then $f(X)$ is compact in Ω.
(b) If X is Connected, then $f(X)$ is connected in Ω.

Proof. We may assume WLOG that $f(X)=\Omega$, since consideration of compactness and connectedness are both dealt with in terms of open sets, and if a set U is open relative to $f(X)$ then there is open $O \subset \Omega$ where $U=f(X) \cap O$.
(a) Let $\left\{\omega_{n}\right\}$ be a sequence in Ω. Then there is, for each $n \in \mathbb{N}$, a point $x_{n} \in X$ with $\omega_{n}=f\left(x_{n}\right)$. Since X is compact, then it is sequentially compact by Theorem II.4.9(c) and there is some subsequence $\left\{x_{n_{k}}\right\}$ of $\left\{x_{n}\right\}$ such that $x=\lim \left(x_{n_{k}}\right)$ for an $x \in X$. Define $\omega \in \Omega$ as $\omega=f(x)$. Since f is continuous, then $\lim f\left(x_{n_{k}}\right)=\lim \left(\omega_{n_{k}}\right)=f(x)=\omega$, and so sequence $\left\{\omega_{n}\right\} \subset \Omega$ has a convergent subsequence $\left\{\omega_{n_{k}}\right\}$. So Ω is sequentially compact, and by Theorem II.4.9, Ω is compact.

Theorem II.5.8

Theorem II.5.8. Let $f:(X, d) \rightarrow(\Omega, \rho)$ be a Continuous function.
(a) If X is Compact, then $f(X)$ is compact in Ω.
(b) If X is Connected, then $f(X)$ is connected in Ω.

Proof. We may assume WLOG that $f(X)=\Omega$, since consideration of compactness and connectedness are both dealt with in terms of open sets, and if a set U is open relative to $f(X)$ then there is open $O \subset \Omega$ where $U=f(X) \cap O$.
(a) Let $\left\{\omega_{n}\right\}$ be a sequence in Ω. Then there is, for each $n \in \mathbb{N}$, a point $x_{n} \in X$ with $\omega_{n}=f\left(x_{n}\right)$. Since X is compact, then it is sequentially compact by Theorem II.4.9(c) and there is some subsequence $\left\{x_{n_{k}}\right\}$ of $\left\{x_{n}\right\}$ such that $x=\lim \left(x_{n_{k}}\right)$ for an $x \in X$. Define $\omega \in \Omega$ as $\omega=f(x)$. Since f is continuous, then $\lim f\left(x_{n_{k}}\right)=\lim \left(\omega_{n_{k}}\right)=f(x)=\omega$, and so sequence $\left\{\omega_{n}\right\} \subset \Omega$ has a convergent subsequence $\left\{\omega_{n_{k}}\right\}$. So Ω is sequentially compact, and by Theorem II.4.9, Ω is compact.

Theorem II.5.8 (continued)

Theorem II.5.8. Let $f:(X, d) \rightarrow(\Omega, \rho)$ be a Continuous function. (b) If X is Connected, then $f(X)$ is connected in Ω.

Proof. (b) Suppose $\Sigma \subset \Omega$ is both open and closed and $\Sigma \neq \varnothing$. Since $f(X)=\Omega$ (i.e., f is onto Ω), then $f^{-1}(\Sigma) \neq \varnothing$. By Proposition II.5.3, $f^{-1}(\Sigma)$ is both open and closed. But since X is connected by hypothesis, then $f^{-1}(\Sigma)=X$.

Theorem II.5.8 (continued)

Theorem II.5.8. Let $f:(X, d) \rightarrow(\Omega, \rho)$ be a Continuous function. (b) If X is Connected, then $f(X)$ is connected in Ω.

Proof. (b) Suppose $\Sigma \subset \Omega$ is both open and closed and $\Sigma \neq \varnothing$. Since $f(X)=\Omega$ (i.e., f is onto Ω), then $f^{-1}(\Sigma) \neq \varnothing$. By Proposition II.5.3, $f^{-1}(\Sigma)$ is both open and closed. But since X is connected by hypothesis, then $f^{-1}(\Sigma)=X$. But this implies $F(X)=\Sigma=\Omega$, and so $\Sigma=\Omega$ and the only sets in (Ω, ρ) which are both open and closed are \varnothing and Ω. That is, $\Omega=f(X)$ is connected .

Theorem II.5.8 (continued)

Theorem II.5.8. Let $f:(X, d) \rightarrow(\Omega, \rho)$ be a Continuous function.
(b) If X is Connected, then $f(X)$ is connected in Ω.

Proof. (b) Suppose $\Sigma \subset \Omega$ is both open and closed and $\Sigma \neq \varnothing$. Since $f(X)=\Omega$ (i.e., f is onto Ω), then $f^{-1}(\Sigma) \neq \varnothing$. By Proposition II.5.3, $f^{-1}(\Sigma)$ is both open and closed. But since X is connected by hypothesis, then $f^{-1}(\Sigma)=X$. But this implies $F(X)=\Sigma=\Omega$, and so $\Sigma=\Omega$ and the only sets in (Ω, ρ) which are both open and closed are \varnothing and Ω. That is, $\Omega=f(X)$ is connected.

Theorem II.5.15

Theorem II.5.15. Suppose $f: X \rightarrow \Omega$ is continuous and X is compact. Then f is uniformly continuous on X.

Proof. Let $\varepsilon>0$. ASSUME f is not uniformly continuous on X.

Theorem II.5.15

Theorem II.5.15. Suppose $f: X \rightarrow \Omega$ is continuous and X is compact. Then f is uniformly continuous on X.

Proof. Let $\varepsilon>0$. ASSUME f is not uniformly continuous on X. Then for all $n \in \mathbb{N}$, with $\delta_{n}=1 / n$ there are points $x_{n}, y_{n} \in X$ with $d\left(x_{n}, y_{n}\right)<1 / n$ but

$$
\rho\left(f\left(x_{n}\right), f\left(y_{n}\right)\right) \geq \varepsilon .
$$

Theorem II.5.15

Theorem II.5.15. Suppose $f: X \rightarrow \Omega$ is continuous and X is compact. Then f is uniformly continuous on X.

Proof. Let $\varepsilon>0$. ASSUME f is not uniformly continuous on X. Then for all $n \in \mathbb{N}$, with $\delta_{n}=1 / n$ there are points $x_{n}, y_{n} \in X$ with $d\left(x_{n}, y_{n}\right)<1 / n$ but

$$
\begin{equation*}
\rho\left(f\left(x_{n}\right), f\left(y_{n}\right)\right) \geq \varepsilon . \tag{*}
\end{equation*}
$$

Since X is compact then X is sequentially compact by Theorem II.4.9. So for the sequence $\left\{x_{n}\right\}$ there is a convergent subsequence $\left\{x_{n_{k}}\right\}$ such that $x_{n_{k}} \rightarrow x$ for some $x \in X$.

Theorem II.5.15

Theorem II.5.15. Suppose $f: X \rightarrow \Omega$ is continuous and X is compact. Then f is uniformly continuous on X.

Proof. Let $\varepsilon>0$. ASSUME f is not uniformly continuous on X. Then for all $n \in \mathbb{N}$, with $\delta_{n}=1 / n$ there are points $x_{n}, y_{n} \in X$ with $d\left(x_{n}, y_{n}\right)<1 / n$ but

$$
\begin{equation*}
\rho\left(f\left(x_{n}\right), f\left(y_{n}\right)\right) \geq \varepsilon . \tag{*}
\end{equation*}
$$

Since X is compact then X is sequentially compact by Theorem II.4.9. So for the sequence $\left\{x_{n}\right\}$ there is a convergent subsequence $\left\{x_{n_{k}}\right\}$ such that $x_{n_{k}} \rightarrow x$ for some $x \in X$. Now by the Triangle Inequality

$$
d\left(x, y_{n_{k}}\right) \leq d\left(x, x_{n_{k}}\right)+d\left(x_{n_{k}}, y_{n_{k}}\right)<d\left(x, x_{n_{k}}\right)+1 / n_{k} .
$$

As $k \rightarrow \infty, d\left(x, x_{n_{k}}\right) \rightarrow 0$ and $1 / n_{k} \rightarrow 0$, so $\lim _{k \rightarrow \infty} d\left(x, y_{n_{k}}\right)=0$ and $y_{n_{k}} \rightarrow x$ (this can also be shown with an $\varepsilon / 2$ argument).

Theorem II.5.15

Theorem II.5.15. Suppose $f: X \rightarrow \Omega$ is continuous and X is compact. Then f is uniformly continuous on X.

Proof. Let $\varepsilon>0$. ASSUME f is not uniformly continuous on X. Then for all $n \in \mathbb{N}$, with $\delta_{n}=1 / n$ there are points $x_{n}, y_{n} \in X$ with $d\left(x_{n}, y_{n}\right)<1 / n$ but

$$
\begin{equation*}
\rho\left(f\left(x_{n}\right), f\left(y_{n}\right)\right) \geq \varepsilon . \tag{*}
\end{equation*}
$$

Since X is compact then X is sequentially compact by Theorem II.4.9. So for the sequence $\left\{x_{n}\right\}$ there is a convergent subsequence $\left\{x_{n_{k}}\right\}$ such that $x_{n_{k}} \rightarrow x$ for some $x \in X$. Now by the Triangle Inequality

$$
d\left(x, y_{n_{k}}\right) \leq d\left(x, x_{n_{k}}\right)+d\left(x_{n_{k}}, y_{n_{k}}\right)<d\left(x, x_{n_{k}}\right)+1 / n_{k} .
$$

As $k \rightarrow \infty, d\left(x, x_{n_{k}}\right) \rightarrow 0$ and $1 / n_{k} \rightarrow 0$, so $\lim _{k \rightarrow \infty} d\left(x, y_{n_{k}}\right)=0$ and $y_{n_{k}} \rightarrow x$ (this can also be shown with an $\varepsilon / 2$ argument).

Theorem II.5.15 (continued)

Theorem II.5.15. Suppose $f: X \rightarrow \Omega$ is continuous and X is compact. Then f is uniformly continuous on X.

Proof (continued). But then $f(x)=\lim f\left(x_{n_{k}}\right)=\lim f\left(y_{n_{k}}\right)$, so

$$
\begin{aligned}
\varepsilon & \leq \rho\left(f\left(x_{n_{k}}\right), f\left(y_{n_{k}}\right)\right) \text { by }(*) \\
& \leq \rho\left(f\left(x_{n_{k}}\right), f(x)\right)+\rho\left(f(x), f\left(y_{n_{k}}\right)\right) \text { by the Triangle Inequality. }
\end{aligned}
$$

But each term of the right hand side can be made arbitrarily small (i.e., less than ε). This CONTRADICTION implies that the assumption that f is not uniformly continuous is false, and the result follows.

Theorem II.5.15 (continued)

Theorem II.5.15. Suppose $f: X \rightarrow \Omega$ is continuous and X is compact. Then f is uniformly continuous on X.

Proof (continued). But then $f(x)=\lim f\left(x_{n_{k}}\right)=\lim f\left(y_{n_{k}}\right)$, so

$$
\begin{aligned}
\varepsilon & \leq \rho\left(f\left(x_{n_{k}}\right), f\left(y_{n_{k}}\right)\right) \text { by }(*) \\
& \leq \rho\left(f\left(x_{n_{k}}\right), f(x)\right)+\rho\left(f(x), f\left(y_{n_{k}}\right)\right) \text { by the Triangle Inequality. }
\end{aligned}
$$

But each term of the right hand side can be made arbitrarily small (i.e., less than ε). This CONTRADICTION implies that the assumption that f is not uniformly continuous is false, and the result follows.

Theorem II.5.17

Theorem II.5.17. Let A and B be non-empty disjoint sets in X. If B is closed and A is compact, then $d(A, B)>0$.

Proof. Define $f: X \rightarrow \mathbb{R}$ by $f(x)=d(x, B)$. Then as commented after Proposition II.5.7, f is Lipschitz and hence uniformly continuous and continuous on X.

Theorem II.5.17

Theorem II.5.17. Let A and B be non-empty disjoint sets in X. If B is closed and A is compact, then $d(A, B)>0$.

Proof. Define $f: X \rightarrow \mathbb{R}$ by $f(x)=d(x, B)$. Then as commented after Proposition II.5.7, f is Lipschitz and hence uniformly continuous and continuous on X. Since $A \cap B=\varnothing$ and B is closed, then $f(a)>0$ for all $a \in A$ since $d(a, B)=0$ if and only if $a \in B^{-}$(by Proposition II.5.7(b)),

Theorem II.5.17

Theorem II.5.17. Let A and B be non-empty disjoint sets in X. If B is closed and A is compact, then $d(A, B)>0$.

Proof. Define $f: X \rightarrow \mathbb{R}$ by $f(x)=d(x, B)$. Then as commented after Proposition II.5.7, f is Lipschitz and hence uniformly continuous and continuous on X. Since $A \cap B=\varnothing$ and B is closed, then $f(a)>0$ for all $a \in A$ since $d(a, B)=0$ if and only if $a \in B^{-}$(by Proposition II.5.7(b)). But since A is compact, by the Extreme Value Theorem (Corollary II.5.12) there is some $a \in A$ with $f(a)=\inf \{f(x) \mid x \in A\}=d(A, B)$, and hence $0<f(a)=d(A, B)$.

Theorem II.5.17

Theorem II.5.17. Let A and B be non-empty disjoint sets in X. If B is closed and A is compact, then $d(A, B)>0$.

Proof. Define $f: X \rightarrow \mathbb{R}$ by $f(x)=d(x, B)$. Then as commented after Proposition II.5.7, f is Lipschitz and hence uniformly continuous and continuous on X. Since $A \cap B=\varnothing$ and B is closed, then $f(a)>0$ for all $a \in A$ since $d(a, B)=0$ if and only if $a \in B^{-}$(by Proposition II.5.7(b)). But since A is compact, by the Extreme Value Theorem (Corollary II.5.12) there is some $a \in A$ with $f(a)=\inf \{f(x) \mid x \in A\}=d(A, B)$, and hence $0<f(a)=d(A, B)$.

