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Theorem II.6.1

Theorem II.6.1

Theorem II.6.1. Suppose fn : (X , d) → (Ω, ρ) is continuous for each
n ∈ N and suppose f = u− lim(fn). Then f is continuous.
Proof. Let x0 ∈ X and let ε > 0. Since f = u− lim(fn), there is a
function fn with

ρ(f (x), fn(x)) < ε/3 for all x ∈ X . (∗)

Since fn is continuous at x0 there is δ > 0 such that

ρ(fn(x0), fn(x)) < ε/3 when d(x0, x) < δ. (∗∗)

So if d(x0, x) < δ, then we have

ρ(f (x0), f (x)) ≤ ρ(f (x0), fn(x0)) + ρ(fn(x0), fn(x)) + ρ(fn(x), f (x))

by the Triangle Inequality

< ε/3 + ε/3 + ε/3 by (∗), (∗∗), and (∗), respectively

= ε.

So f is continuous at x0. Since x0 is arbitrary, f is continuous on X .
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Theorem II.6.2. Weierstrass M-Test

Theorem II.6.2

Theorem II.6.2. Weierstrass M-Test.
Let un : X → C be a function such that |un(x)| ≤ Mn for all x ∈ X and
suppose the constants satisfy

∑∞
n=1 Mn < ∞. Then

∑∞
n=1 un is uniformly

convergent.

Proof. Let fn(x) = u1(x) + u2(x) + · · ·+ un(x). Then for n > m

|fn(x)− fm(x)| = |um+1(x) + um+2(x) + · · ·+ un(x)| ≤
n∑

k=m+1

Mk

for all x ∈ X .

Since
∑∞

n=1 Mk converges by hypothesis, then it is Cauchy.
So {fn(x)} is a Cauchy sequence for each x ∈ X . Since C is complete,
there is ξ ∈ C where ξ = lim fn(x). Define f (x) = ξ pointwise for each
x ∈ X . Then f : X → C.
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Theorem II.6.2. Weierstrass M-Test

Theorem II.6.2 (continued)

Proof (continued). Now

|f (x)− fn(x)| =

∣∣∣∣∣
∞∑

k=n+1

uk(x)

∣∣∣∣∣ by definition of f

≤
∞∑

k=n+1

|uk(x)| by the Triangle Inequality and limits

≤
∞∑

k=n+1

Mk since |uk(x)| ≤ Mk on X .

Since
∑∞

k=1 Mk is convergent, then for any ε > 0 there is N ∈ N such that
for n ≥ N we have

∑∞
k=n+1 Mk < ε. So for all n ≥ N, |f (x)− fn(x)| < ε

for all x ∈ X . That is, f = u− lim(fn) and so
∑∞

n=1 un(x) converges
uniformly on X .
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