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Proposition III.1.1

Proposition III.1.1

Proposition III.1.1. If
∑

an converges absolutely, then the series
converges.

Proof. Let ε > 0. Let zn be the partial sum of
∑∞

k=1 ak :
zn = a1 + a2 + · · ·+ an. Since

∑∞
n=1 |an| converges by hypothesis, then

there is N ∈ N such that∣∣∣∣∣
N−1∑
k=1

|ak | −
∞∑

n=1

|an|

∣∣∣∣∣ =
∞∑

n=N

|an| < ε.

So if m > k ≥ N then by the Triangle Inequality,

|zm − zk | =

∣∣∣∣∣
m∑

n=k+1

an

∣∣∣∣∣ ≤
m∑

n=k+1

|an| ≤
∞∑

n=N

|an| < ε,

and so {zn} is a Cauchy sequence of complex numbers. Since C is
complete by Proposition II.3.6, then zn → z for some z ∈ C. That is,
there is z ∈ C with

∑∞
n=1 an = z .
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Theorem III.1.3

Theorem III.1.3

Theorem III.1.3. If
∞∑

n=0

an(z − a)n, define the number R as

1
R = lim |an|1/n (so 0 ≤ R ≤ ∞). Then

(a) if |z − a| < R, the series converges absolutely,
(b) if |z − a| > R, the series diverges, and
(c) if 0 < r < R then the series converges uniformly on

|z − a| ≤ r . Moreover, R is the only number having
properties (a) and (b). R is called the radius of convergence
of the power series.

Proof. Without loss of generality, a = 0.

(a) If |z | < R, there is r with |z | < r < R. Then 1/R < 1/r and so there
exists N ∈ N such that for all n ≥ N, |an|1/n < 1/r (by definition of
lim|an|1/n). So for n ≥ N, |an| < 1/rn and |anz

n| < (|z |/r)n. Next,

∞∑
n=0

|anz
n| =

N−1∑
n=0

|anz
n|+

∞∑
n=N

|anz
n| <

N−1∑
n=0

|anz
n|+

∞∑
n=N

(
|z |
r

)n

.
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Theorem III.1.3

Theorem III.1.3 (continued 1)

Theorem III.1.3. If
∞∑

n=0

an(z − a)n, define the number R as

1
R = lim |an|1/n (so 0 ≤ R ≤ ∞). Then

(a) if |z − a| < R, the series converges absolutely,
(b) if |z − a| > R, the series diverges, and
(c) if 0 < r < R then the series converges uniformly on

|z − a| ≤ r . Moreover, R is the only number having
properties (a) and (b). R is called the radius of convergence
of the power series.

Proof (continued). Next,

∞∑
n=0

|anz
n| =

N−1∑
n=0

|anz
n|+

∞∑
n=N

|anz
n| <

N−1∑
n=0

|anz
n|+

∞∑
n=N

(
|z |
r

)n

.

Since |z |/r < 1, then
∑∞

n=N anz
n converges absolutely, and the power

series converges absolutely for |z | < R.
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Theorem III.1.3

Theorem III.1.3 (continued 2)

Theorem III.1.3. If
∞∑

n=0

an(z − a)n, define the number R as

1
R = lim |an|1/n (so 0 ≤ R ≤ ∞). Then

(c) if 0 < r < R then the series converges uniformly on
|z − a| ≤ r .

Proof (continued). (c) Suppose r < R and choose ρ such that
r < ρ < R. As in the proof of (a), let N ∈ N be such that |an| < 1/ρn for
all n ≥ N. Then if |z | ≤ r , we have |anz

n| < (r/ρ)n for all n ≥ N, and
(r/ρ) < 1. Now, the Weierstrass M-Test says (Theorem II.6.2 in Section
II.6. Uniform Convergence): “Let un : X → C be a function from a metric
space X to C such that |un(x)| ≤ Mn for all x ∈ X and suppose∑∞

n=1 Mn < ∞. Then
∑∞

n=1 un is uniformly convergent.” So with
Mn = (r/ρ)n, we see that the series

∑∞
n=N un =

∑∞
n=N anz

n converges
uniformly on {z | |z | ≤ r} (and so does

∑∞
n=0 anz

n), by the Weierstrass
M-Test.

() Complex Analysis October 17, 2023 6 / 9

https://faculty.etsu.edu/gardnerr/5510/notes/II-6.pdf
https://faculty.etsu.edu/gardnerr/5510/notes/II-6.pdf


Theorem III.1.3

Theorem III.1.3 (continued 2)

Theorem III.1.3. If
∞∑

n=0

an(z − a)n, define the number R as

1
R = lim |an|1/n (so 0 ≤ R ≤ ∞). Then

(c) if 0 < r < R then the series converges uniformly on
|z − a| ≤ r .

Proof (continued). (c) Suppose r < R and choose ρ such that
r < ρ < R. As in the proof of (a), let N ∈ N be such that |an| < 1/ρn for
all n ≥ N. Then if |z | ≤ r , we have |anz

n| < (r/ρ)n for all n ≥ N, and
(r/ρ) < 1. Now, the Weierstrass M-Test says (Theorem II.6.2 in Section
II.6. Uniform Convergence): “Let un : X → C be a function from a metric
space X to C such that |un(x)| ≤ Mn for all x ∈ X and suppose∑∞

n=1 Mn < ∞. Then
∑∞

n=1 un is uniformly convergent.” So with
Mn = (r/ρ)n, we see that the series

∑∞
n=N un =

∑∞
n=N anz

n converges
uniformly on {z | |z | ≤ r} (and so does

∑∞
n=0 anz

n), by the Weierstrass
M-Test.

() Complex Analysis October 17, 2023 6 / 9

https://faculty.etsu.edu/gardnerr/5510/notes/II-6.pdf
https://faculty.etsu.edu/gardnerr/5510/notes/II-6.pdf


Theorem III.1.3

Theorem III.1.3 (continued 3)

Theorem III.1.3. If
∞∑

n=0

an(z − a)n, define the number R as

1
R = lim |an|1/n (so 0 ≤ R ≤ ∞). Then

(b) if |z − a| > R, the series diverges, and

Proof (continued). (b) Let |z | > R and choose r with |z | > r > R.
Then 1/r < 1/R. So, by the definition of lim, there are infinitely many
n ∈ N such that 1/r < |an|1/n. For these n, |anz

n| > (|z |/r)n and since
|z |/r > 1, these terms are unbounded and hence the series diverges for
such z by the Test for Divergence (for complex series; for the real case, see
online Calculus 2 notes on Section 10.2. Infinite Series, Theorem 7).
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Proposition III.1.4

Proposition III.1.4

Proposition III.1.4. If
∞∑

n=0

an(z − a)n is a given power series with radius

of convergence R, then R = lim |an/an+1|, if the limit exists.

Proof. Without loss of generality, a = 0. Let α = lim |an/an+1| and
suppose |z | < r < α. Then (by the definition of limit of a sequence) there
exists N ∈ N such that for all n ≥ N, we have |an/an+1| > r .

Let
B = |aN |rN and then |aN+1|rN+1 = |aN+1|rrN < |aN |rN = B (since
|aN | > |aN+1|r), |aN+2|rrN+1 < |aN+1|rN+1 < B, . . . , and |anr

n| ≤ B for
all n ≥ N. This implies |anz

n| = |anr
n||z |n/rn ≤ B|z |n/rn for all n ≥ N.

Since
∑∞

n=1 B|z |n/rn is a convergent geometric series for |z | < r , then by
the Direct Comparison Test (see online Calculus 2 notes on Section 10.4.
Comparison Tests, Theorem 10), the series

∑∞
n=1 |anz

n| converges and the
original series converges absolutely. Since r < α is arbitrary, then α ≤ R.
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Proposition III.1.4

Proposition III.1.4 (continued)

Proposition III.1.4. If
∞∑

n=0

an(z − a)n is a given power series with radius

of convergence R, then R = lim |an/an+1|, if the limit exists.

Proof (continued). Next, suppose |z | > r > α. Then, as above, for some
N ∈ N, for all n ≥ N we have |an| < r |an+1|. Again, with B = |aN rN |, for
n ≥ N we get |anr

n| ≥ B = |aN rN | and |anz
n| ≥ B|z |n/rn which diverges

to ∞ as n →∞ since |z | > r . So anz
n 6→ 0 and by the Test for

Divergence (for complex series; for the real case, see online Calculus 2
notes on Section 10.2. Infinite Series, Theorem 7),

∑∞
n=0 anz

n diverges.
Since r > α is arbitrary, then R ≤ α. Therefore R = α.
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