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Proposition 111.2.2. Differentiable implies Continuous

Proposition 111.2.2

Proposition 111.2.2. If f : G — C is differentiable at a € G, then f is
continuous at a.
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Proposition 111.2.2. Differentiable implies Continuous

Proposition 111.2.2

Proposition 111.2.2. If f :
continuous at a.

Proof. We have

lim |f(z) — f(a)] =

zZ—a

G — C is differentiable at a € G, then f is

|f(z) — (a)]

lim |z — a
z—a |z — 4|
f(z)—f
lim f(z) = f(a) lim |z — a| since the limit
z—a Z—a z—a

of a product is the product of the limits
(provided the component limits exist)
|f'(a)| -0 = 0.

Therefore lim,_,, f(z) = f(a) and f is continuous at a, as claimed.
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Chain Rule

Chain Rule

Chain Rule. Let f and g be analytic on G and 2 respectively and
suppose f(G) C Q. Then go f is analytic on G and

(gof)(z) =g'(f(2)f'(z) forall z € G.
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Chain Rule

Chain Rule. Let f and g be analytic on G and 2 respectively and
suppose f(G) C Q. Then go f is analytic on G and
(gof)(z) =g'(f(2)f'(z) forall z € G.

Proof. Fix zy € G and choose r > 0 such that

B(zp;r) ={z€ C||z—2z]| < r} C G. Since g of is continuous at zy by
Proposition 111.2.2 (and properties of continuous functions), it is sufficient
to show that if 0 < |h,| < r and lim h, = 0, then

lim, oo ((8(f(20 + hn)) — &(f(20))/hn) exists and equals g'(f(20))f'(z0).
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Chain Rule

Chain Rule. Let f and g be analytic on G and 2 respectively and
suppose f(G) C Q. Then go f is analytic on G and
(gof)(z) =g'(f(2)f'(z) forall z € G.

Proof. Fix zy € G and choose r > 0 such that

B(zo;r) ={z€ C||z—2z]| <r} C G. Since g of is continuous at zy by
Proposition 111.2.2 (and properties of continuous functions), it is sufficient
to show that if 0 < |h,| < r and lim h, = 0, then

limy—oo((g(f(20 + hn)) — g(f(20))/hn) exists and equals g'(f(z0))f'(z0).
Case 1. Suppose f(zy) # f(zo + h,) for all n. Then

gof(zo+hn) —gof(z) _ g(f(z0+ hn)) — g(f(20)) f(z0 + hn) — f(20)

hn f(Zo + hn) — f(ZQ) hn,

By Proposition 111.2.2, lim,_.(f(z0 + hp) — f(20)) = 0, so the limit is
g'(f(20))f'(20)-
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Chain Rule (continued)

Chain Rule. Let f and g be analytic on G and €2 respectively and
suppose f(G) C Q. Then go f is analytic on G and
(gof)(z)=g'(f(2))f'(z) for all z € G.

Proof (continued). Case 2. Suppose f(z9) = f(zo + hp) for infinitely
many n. Then write {h,} as the union of two sequences {k,} and {¢,}
where f(zy) # f(z0 + kn) and f(zp) = (20 + ¢5) for all n. Since f is

differentiable, f'(zp) = limp_o w
gof(zo+€Z)—gof(zo)

= limp—oo % = 0. Also,

n

. . 0
lim, oo =limy—eo 7= 0.
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Chain Rule (continued)

Chain Rule. Let f and g be analytic on G and €2 respectively and
suppose f(G) C Q. Then go f is analytic on G and
(gof)(z)=g'(f(2))f'(z) for all z € G.

Proof (continued). Case 2. Suppose f(z9) = f(zo + hp) for infinitely
many n. Then write {h,} as the union of two sequences {k,} and {¢,}

where f(zy) # f(z0 + kn) and f(zp) = (20 + ¢5) for all n. Since f is

differentiable, f/(z9) = lim_o, "Ztn)=f(z0)

gof(zo+4n)—gof(zp)

= limp—oo % = 0. Also,

n

. = limp—oo % = 0. By Case 1,
lim 00 gd(zﬁkzg_go'c(zo) = g'(f(20))f'(20). Since f(zy) = f(zo + hy) for
infinitely many h, and f is continuous at zp, then f'(z)) = 0. Therefore
limp oo gOf(Z°+k,"7)_g°f(z°) =0=g/'(f(z))f'(z0). Combining Case 1 and

case 2, the result follows. O

Iimn—»oo
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Proposition 111.2.5

Proposition 111.2.5. Let f(z Zan z — a)" have radius of

n=0
convergence R > 0. Then:

(a) for k > 1 the series
Z (n—1)---(n— k+1)ap(z — a)"*

has radius of convergence R,

(b) The function f is infinitely differentiable on B(a; R) and the
series of (a) equals f(¥)(z) for all k > 1 and |z —a| < R, and

(c) forn>0, a, = %f(")(a).
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Proposition 111.2.5

Proposition 111.2.5. Let f(z Zan z — a)" have radius of

n=0
convergence R > 0. Then:

(a) for k > 1 the series
Z (n—1)---(n— k+1)ap(z — a)"*

has radius of convergence R,

(b) The function f is infinitely differentiable on B(a; R) and the
series of (a) equals f(K)(z) for all k > 1 and |z — a| < R, and

(c) for n >0, a,,——f(")()

Proof. Without loss of generallty, assume a = 0. (a) We prove (a) for
k =1 and the result follows in general by induction. By definition,
1/R = limsup|ap|*/".
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Proposition 111.2.5

Proposition 111.2.5 (continued 1)

Proposition 111.2.5. Let f(z Zan z — a)" have radius of

n=0
convergence R > 0. Then:

(a) for k > 1 the series

S, n(n—1)---(n—k+1)a,(z — a)" ¥ has radius of
convergence R.

Proof (continued). With k = 1, we consider >.°° ; na,z"~! and need to
show that 1/R = limsup |na,|*/("=1). By L'Hopital’s Rule,
limp—oe n¥/ ("1 = 1. So, by Exercise 111.2.2,

lim sup |na| Y"1 = lim n*/("=Y lim sup |a, |V "V = lim sup | a,|*/ (")

We now need to show that 1/R = limsup |a,|"/("~1).
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Proposition 111.2.5 (continued 1)

Proposition 111.2.5. Let f(z Zan z — a)" have radius of

n=0
convergence R > 0. Then:

(a) for k > 1 the series
S, n(n—1)---(n—k+1)a,(z — a)" ¥ has radius of
convergence R.
Proof (continued). With k = 1, we consider >.°° ; na,z"~! and need to
show that 1/R = limsup |na,|*/("=1). By L'Hopital’s Rule,
limp—oe n¥/ ("1 = 1. So, by Exercise 111.2.2,

1/(n-1)

limsup | nay| /("D = lim 0/ "~V fim sup |a,| = limsup |a,[V/(""1).

We now need to show that 1/R = limsup |a,|"/("~1). Let
1/R' = limsup |a,|"/("=1). Then R’ is the radius of convergence of

o0 o
g a,z" 1 = E ant12".
n=1 n=0
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Proposition 111.2.5

Proposition 111.2.5 (continued 2)

Proposition 111.2.5. Let f(z Za,, z — a)" have radius of

n=0
convergence R > 0. Then:

(a) for k > 1 the series
S, n(n—1)---(n—k+1)a,(z — a)"~* has radius of
convergence R.
Proof (continued). Now, z> 2 japi 12"+ a9 = > .-y anz" and so if
|z] < R then Y 7° o |anz"| = |ao| + || > oo lan+12"] < 0. So R’ < R.
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Proposition 111.2.5

Proposition 111.2.5 (continued 2)

Proposition 111.2.5. Let f(z Za,, z — a)" have radius of

n=0
convergence R > 0. Then:

(a) for k > 1 the series
S, n(n—1)---(n—k+1)a,(z — a)"~* has radius of
convergence R.
Proof (continued). Now, z> 2 japi 12"+ a9 = > .-y anz" and so if
|z] < R then Y72 anz"| = |ao| + |z| > opeg lant12"] < 0. So R < R. If
|z| < R and z # 0 then )7 ;|apz"| < oo and

00 00

1 1
D lani12"l = =D |anz"| -
n=0 |Z‘n:0

-7laol < oo
|z|
and so R < R'. Therefore R=R'. O
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Proposition 111.2.5 (continued 3)

Proposition 111.2.5. Let f(z) = Z an(z — a)" have radius of
n=0
convergence R > 0. Then:

(b) The function f is infinitely differentiable on B(a; R) and the
series of (a) equals f(¥)(z) for all k > 1 and |z — a| < R.
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Proposition 111.2.5 (continued 3)

Proposition 111.2.5. Let f(z) = Z an(z — a)" have radius of
convergence R > 0. Then: "
(b) The function f is infinitely differentiable on B(a; R) and the

series of (a) equals f(¥)(z) for all k > 1 and |z — a| < R.
Proof. (b) For |z| < R put g(z) = Y00 nanz" 1, sp(z) = S_0_o akz”
and Rn(z) = 302,11 akz® (so f(z) = sp(2) + Ra(2)). Fix
w € B(0; R) ={z | |z — 0| < R} and fix r with |w| < r < R. We will
show f'(w) = g(w).
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Proposition 111.2.5 (continued 3)

Proposition 111.2.5. Let f(z) = Z an(z — a)" have radius of
n=0
convergence R > 0. Then:
(b) The function f is infinitely differentiable on B(a; R) and the

series of (a) equals f(¥)(z) for all k > 1 and |z — a| < R.
Proof. (b) For |z| < R put g(z) = Y00 nanz" 1, sp(z) = S_0_o akz”
and Rn(z) = 302,11 akz® (so f(z) = sp(2) + Ra(2)). Fix
w € B(0; R) ={z | |z — 0| < R} and fix r with |w| < r < R. We will
show f'(w) = g(w). Let 6; > 0 be such that
B(w,61)={z||w—z| <8} CB0;r)={z]||z—0] < r}. Let
z € B(w; d1). Then

f(z) — f(w sn(z) — sp(w

D10y, (2] _y,))

z—w zZ—w

Rn B Rn
(Z)(W)> (28)

zZ— W
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Proposition 111.2.5

Proposition 111.2.5 (continued 4)

Proposition 111.2.5. Let f(z) = Z an(z — a)" have radius of

n=0
convergence R > 0. Then:

(b) The function f is infinitely differentiable on B(a; R) and the
series of (a) equals f(K)(z) for all k > 1 and |z — a| < R.
Proof (continued). (b) Now

R,,(zi:VR;n(W) _ 2_1 ~ ( i a(ZF — Wk)> = f: ak (zk_ Wk)_

k=n+1

k k
zZ — W _ _ _ _ _ .
But‘ ‘:|zk Ly 2572w 4o 2wk 2 4wk < krk T (since
|z —w|
w,z < r).
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Proposition 111.2.5

Proposition 111.2.5 (continued 4)

Proposition 111.2.5. Let f(z Zan z — a)" have radius of

n=0
convergence R > 0. Then:

(b) The function f is infinitely differentiable on B(a; R) and the
series of (a) equals f(K)(z) for all k > 1 and |z — a| < R.
Proof (continued). (b) Now

R,,(zi:VR;n(W) _ 2_1 ~ ( i a(ZF — Wk)> = f: ak (zk_ Wk)_

zZ— W
k=n+1 k=n+1

|2X — wh| k=1 k-2 k—2 k—1 k=1 (g
Butﬁ:|2_+2_w—|—---+zw_—|—W‘|§kr_ (since
z—w

w,z < r). Hence,

Ry(z
—”( ) g |ay | krk—1L.
zZ— W
k=n+1
Complex Analysis October 10, 2023 10 / 26



Proposition 111.2.5

Proposition 111.2.5 (continued 5)

Proposition 111.2.5. Let f(z) = Z an(z — a)" have radius of
convergence R > 0. Then: e
(b) The function f is infinitely differentiable on B(a; R) and the
series of (a) equals f(K)(z) for all k > 1 and |z — a| < R.
Proof (continued). (b) Since r < R, then > °°  |ax|krk~1 converges
(consider part (a) with |z| = r < R). So for any € > 0 there is N; € N

such that for all n > Ny, we have W‘ < 5 (here, z € B(w; 01)).

Complex Analysis October 10, 2023 11 / 26



Proposition 111.2.5 (continued 5)

Proposition 111.2.5. Let f(z Za,, z — a)" have radius of

n=0
convergence R > 0. Then:

(b) The function f is infinitely differentiable on B(a; R) and the
series of (a) equals f(K)(z) for all k > 1 and |z — a| < R.

Proof (continued). (b) Since r < R, then > °°  |ax|krk~1 converges
(consider part (a) with |z| = r < R). So for any € > 0 there is N; € N
such that for all n > Ny, we have ‘W‘ < 5 (here, z € B(w; 01)).
By the definitions of s, and g, lim,_ s,(w) = g(w), so there exists
N> € N such that for all n > N, we have |s),(w) — g(w)| < ¢/3. Let
n = max{Ny, Na}. Then there is 6, > 0 such that

M—s’( )| < 5 whenever 0 < |z — w| < d2. With z € B(w; ),

z—w
z # w, where 6 = min{d1, 62} we have from (2.8) that )w‘ < e.
That is, f'(w) = g(w). O
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Proposition 111.2.5

Proposition 111.2.5 (continued 6)

Proposition 111.2.5. Let f(z) = Zan z — a)" have radius of

n=0
convergence R > 0. Then:

(c) Forn>0, a, = %f(”)(a).

Proof. From part (a), we have f(K)(0) = klay and the result follows.

Complex Analysis October 10, 2023
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Proposition 111.2.10.

Proposition 111.2.10. If G is open and connected and f : G — C is
differentiable with '(z) = 0 for all a € C, then f is constant.
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Proposition 111.2.10.

Proposition 111.2.10. If G is open and connected and f : G — C is
differentiable with '(z) = 0 for all a € C, then f is constant.

Proof. Fix zp € G and denote wy = f(zp). Let A={z€ G | f(z) = wo}.
Let z € G and {z,} C A where z = lim z,. Since f(z,) = wp for n € N
(each z, € A) and f is continuous (since f is differentiable; Proposition
[11.2.2) then f(z) = f(limz,) = lim f(z,) = wp, and so z € A. So A
contains all of its limit points and by Proposition 11.3.4 A is closed in G.
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Proposition 111.2.10.

Proposition 111.2.10. If G is open and connected and f : G — C is
differentiable with '(z) = 0 for all a € C, then f is constant.

Proof. Fix zp € G and denote wy = f(zp). Let A={z€ G | f(z) = wo}.
Let z € G and {z,} C A where z = lim z,. Since f(z,) = wp for n € N
(each z, € A) and f is continuous (since f is differentiable; Proposition
[11.2.2) then f(z) = f(limz,) = lim f(z,) = wp, and so z € A. So A
contains all of its limit points and by Proposition 11.3.4 A is closed in G.
Next, fix a € A and let £ > 0 be such that B(a;e) C G (since G is open).
If x € B(a;e), set g(t) = f(tz+ (1 — t)a) for t € [0, 1]:

mTTS

7/
. ./ B(a;e)
~ -

~—— -
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Proposition 111.2.10.

Proposition 111.2.10. If G is open and connected and f : G — C is
differentiable with '(z) = 0 for all a € C, then f is constant.

Proof. Fix zp € G and denote wy = f(zp). Let A={z€ G | f(z) = wo}.
Let z € G and {z,} C A where z = lim z,. Since f(z,) = wp for n € N
(each z, € A) and f is continuous (since f is differentiable; Proposition
[11.2.2) then f(z) = f(limz,) = lim f(z,) = wp, and so z € A. So A
contains all of its limit points and by Proposition 11.3.4 A is closed in G.
Next, fix a € A and let £ > 0 be such that B(a;e) C G (since G is open).
If x € B(a;e), set g(t) = f(tz+ (1 — t)a) for t € [0, 1]:

mTTS

7/
. ./ B(a;e)
~ -

~—— -
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Proposition 111.2.10

Proposition 111.2.10 (continued).

Proposition 111.2.10 (continued). If G is open and connected and
f : G — Cis differentiable with f/(z) = 0 for all a € C, then f is constant.

Proof (continued). Now g : [0,1] — C is a composition of differentiable
f:G— Cwith h:[0,1] — G where h(t) = tz+ (1 — t)a. To differentiate
g, we need a version of the Chain Rule which is applicable to this
setting—this is given in Appendix A on page 304 in Proposition A.4.
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Proposition 111.2.10 (continued).

Proposition 111.2.10 (continued). If G is open and connected and
f : G — Cis differentiable with f/(z) = 0 for all a € C, then f is constant.

Proof (continued). Now g : [0,1] — C is a composition of differentiable
f:G— Cwith h:[0,1] — G where h(t) = tz+ (1 — t)a. To differentiate
g, we need a version of the Chain Rule which is applicable to this
setting—this is given in Appendix A on page 304 in Proposition A.4.

So

g'(t)= tILrnsg(ti_f(s) =f(tz+(1—t)a)(z—a)=0
since f'(z) =0 for z € G. So g'(t) = 0 for t € [0,1] and hence (by
Proposition A.3 of Appendix A on page 303, as applied to g : [0,1] — C)
we have that g is constant. Therefore, f(z) = g(1) = g(0) = f(a) = wo.
Hence B(a;e) C A and A is open in G.
Since A is both open and closed in G, a # & (since a € A), and G is
connected, then A = G. That is, f is constant on G. O

Complex Analysis October 10, 2023 14 / 26



Lemma IIl.2.A

Lemma I11.2.A. Properties of e include:

( ) a+b — eaeb
(b) e* #0 forall z€ C,
(c) e = €%, and
(d) |ez| Re(z)

Complex Analysis
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Lemma IIl.2.A

Lemma I11.2.A. Properties of e include:

(a) a+b _ eaeb
(b) e* #0 forall z€ C,
(c) e = €%, and
@) e = R

Proof.

(a) Define g(z) = e?e®*=Z for given a,b € C. Then

g'(z) = e?e*P=7 4 e?(—e?T57%) = 0. So by Proposition 2.10, g(z) is
constant for all z € C. With z =0, we have g(0) = e%e?™> = 75, 5o

eZe?th=z — @ath for all z € C. With z = b we have ePe? = e?1?, as
claimed.
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Lemma IIl.2.A

Lemma I11.2.A. Properties of e include:

(a) a+b _ eaeb
(b) e* #0 forall z€ C,
(c) e = €%, and
@) e = R

Proof.

(a) Define g(z) = e?e®*=Z for given a,b € C. Then

g'(z) = e?e*P=7 4 e?(—e?T57%) = 0. So by Proposition 2.10, g(z) is
constant for all z € C. With z =0, we have g(0) = e%e?™> = 75, 5o

eZe?th=z — @ath for all z € C. With z = b we have ePe? = e?1?, as
claimed.

(b) By part (a) we have 1 = e = e?e~Z for all z € C, and so e* # 0 for
all z € C, as claimed.
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Lemma I11.2.A (continued 1)

Lemma I11.2.A. Properties of e” include:
(c) e = €%, and
(d) le*| = eRet2),

Proof (continued).
(c) Since 7 = 3% Z1 then

n=0 nl’

N ————
. zm\ . . . .
= lim (I) since conjugation Is continuous,
and Theorem |.2.A

—2)" _ -
= E = ¢%, as claimed.
n!
n=0

Complex Analysis October 10, 2023
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Lemma IIl.2.A. Properties of e*

Lemma I11.2.A (continued 2)

Lemma I11.2.A. Properties of e? include:
a+b a b

(a) e?P =e%e

(b) e* #0 forall z € C,
(c) e = €%, and

(@) [ef] = eFe),

Proof (continued).
(d) By (c) we have

|€%|? = e*eZ = ee? = e* 17 by (a)

and so |e?|2 = e2Re(2) and |e?| = eRe(?), as claimed.
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Proposition 111.2.19

Proposition 111.2.19

Proposition 111.2.19. If G C C is open and connected and f is a branch

of log z on G, then the totality of branches of log z are the functions
{f(z) + 2kmi | k € Z}.
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Proposition 111.2.19

Proposition 111.2.19

Proposition 111.2.19. If G C C is open and connected and f is a branch

of log z on G, then the totality of branches of log z are the functions
{f(z) + 2kmi | k € Z}.

Proof. First, if g(z) = f(z) + 2kmi, then
exp(g(z)) = exp(f(z) + 2kni) = exp(f(z)) exp(2kni) = exp(f(z)) = z,

so g is a branch of log z.
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Proposition 111.2.19

Proposition 111.2.19. If G C C is open and connected and f is a branch
of log z on G, then the totality of branches of log z are the functions
{f(z) + 2kmi | k € Z}.

Proof. First, if g(z) = f(z) + 2kmi, then
exp(g(z)) = exp(f(z) + 2kni) = exp(f(z)) exp(2kni) = exp(f(z)) = z,

so g is a branch of log z. Secondly, if z € G and f and g are both branches
of log z, then exp(f(z) — g(z)) = exp(f(z))/ exp(g(z)) = z/z =1 and so
f(z) — g(z) = 2kmi for some k € Z. Notice that by defining

h(z) = 5=(f(z) — g(z)), we now have that h(z) C Z (it's the “k" above).
Since h is continuous and G is connected, then h(G) is a connected subset
of Z. Therefore h(G) = {k} for some fixed k € Z and the same k “works”

for each z € G. ]
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Proposition 111.2.20

Proposition 111.2.20

Proposition 111.2.20. Let G and Q be open subsets of C. Let f : G — C
and g : Q2 — C be continuous where f(G) C Q and g(f(z)) = z for all
z € G. If g is differentiable and g’(z) = 0, then f is differentiable and

1
f'(z) = o

———. If g is analytic, then f is analytic.
(f(2))
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Proposition 111.2.20

Proposition 111.2.20

Proposition 111.2.20. Let G and Q be open subsets of C. Let f : G — C
and g : Q2 — C be continuous where f(G) C Q and g(f(z)) = z for all
z € G. If g is differentiable and g’(z) = 0, then f is differentiable and

f'(z) = g’(fl(z)) If g is analytic, then f is analytic.

Proof. Fix a € G and let h € C such that h# 0 and a+ h€ G. Then
a=g(f(a)) (since g(f(z)) = z) and a+ h = g(f(a+ h)) implies

g(f(a)) # g(f(a+ h)) and so f(a) # f(a+ h) (or else these two would be
equal since it would be g evaluated at the same point). So

- (@t h)—(a) _g(f(ath)—g(f(a))

g(f(a+h)) —g(f(a)) fla+ h) — f(a)
f(a+ h) —f(a) h '

Complex Analysis October 10, 2023 19 / 26



Proposition 111.2.20 (continued)

Proposition 111.2.20. Let G and € be open subsets of C. Let f: G — C
and g : Q2 — C be continuous where f(G) C Q and g(f(z)) = z for all
z € G. If g is differentiable and g’(z) = 0, then f is differentiable and
1

f'(z) =

FIGE)
Proof (continued). The limit is of course 1, and since
limp—o(f(a+ h) —f(a)) =0, then

. If g is analytic, then f is analytic.

Hence limp_o M = f’(a) exists and f'(a) = 1/g'(f(a)). So
f'(z) =1/g'(f(2)) for z € G. If g is analytic, then g’ is continuous, and
g'(f(2)) is continuous. Therefore, f is analytic. O
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Theorem 111.2.29

Theorem 111.2.29

Theorem 111.2.29. Let u and v be real-valued functions defined on a
region G and suppose u and v have continuous partial derivatives (so we
view u and v as functions of x and y where z=x+iy). Then f: G — C
defined by f(z) = u(z) + iv(z) is analytic if and only if the
Cauchy-Riemann equations are satisfied.
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Theorem 111.2.29

Theorem 111.2.29. Let v and v be real-valued functions defined on a
region G and suppose u and v have continuous partial derivatives (so we
view u and v as functions of x and y where z=x+iy). Then f: G — C
defined by f(z) = u(z) + iv(z) is analytic if and only if the
Cauchy-Riemann equations are satisfied.
Proof. (Analytic implies Cauchy-Riemann) Let f : G — C be analytic and
forz=x+1iy € G, f(z) = f(x +iy) = u(x,y) + iv(x, y). We know
f'(z) = limp_g M exists. We consider the limit along two paths.
We have for h e R

f(z+h)—f(z) f(x+h+iy)—Ff(x+iy)

h h
u(x+h,y) —u(x,y)\ . (vix+hy)—vixy)
= + /
h h
and when h € R and h — 0 we see that. ..
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e — <o ]l | 22Ol
Theorem 111.2.29 (continued 1)

Proof (continued).

du ov

f/(z) = a(xvy) + Ia(xﬁ/)

Next, let h € R and th — 0. Then

f(z+ iiizi)7— f(z) _ <u(x,y+ /37— u(x,y)) L <v(x,y+ /37— v(x,y)>

_4(w&y+2—4&m>+<W&y+2—4&n)

and so f'(z) = —ig;(x,y) + g;(x,y).
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Theorem 111.2.29

Theorem 111.2.29 (continued 1)
Proof (continued).

0 0
f(2) = 5o (cy) iz

Next, let h € R and th — 0. Then

flz+ih) — f(z) _ <U(X,y+h_)— U(X,y)> +,.<V(X,y+h_) - V(X,y)>

o V)

ih ih ih

. <u(x,y+hz— u(x,y)) . (v(x,y—i—h/))— v(x,y))

and so f'(z) = —ig;(x,y) - g;(x,y). Therefore, %(X,y) = g;(x,y)

and g;(x,y) = —g:(x,y). That is, the Cauchy-Riemann equations are
necessary. (We have only used differentiability here!)
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Theorem 111.2.29 (continued 2)

Proof (continued). (Cauchy-Riemann implies analytic) Let G be a region
and let v and v be functions defined on G with continuous partial
derivatives which satisfy the Cauchy-Riemann equations on G. Let
z=x+iy€ Gandlet B(z;r) C G. If h=s+ it € B(0; r) then

Re(F(z + h) — £(2)) = u(x + 5,y + £) — u(x.¥)

=[u(x+s,y+1t)—ulx,y+t)]+[ulx,y +t) — u(x,y)]

23 / 26
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Theorem 111.2.29 (continued 2)

Proof (continued). (Cauchy-Riemann implies analytic) Let G be a region
and let v and v be functions defined on G with continuous partial
derivatives which satisfy the Cauchy-Riemann equations on G. Let
z=x+iy€ Gandlet B(z;r) C G. If h=s+ it € B(0; r) then

Re(f(z+ h) — f(2)) = u(x+ s,y + t) — u(x,y)

= [U(X+ s,y + t) - U(X7y+ t)] + [U(X7y+ t) - U(va)]‘
Treating the first bracketed quantity as a function of the first variable and
the second bracketed quantity as a function of the second variable, we
have by the Mean Value Theorem that for some s1, t; where s; is between
0 and s and t; is between 0 and t:

U(X+ S,y + t) — U(X,y + t)
s—0 ’
ulx,y +t) — u(x,y)
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ug(x +s1,y +t)=




Theorem 111.2.29 (continued 3)

Proof (continued). Define
o(s,t) = [ulx+ s,y + 1) —ulx, y)] = [ux(x,y)s + uy(x,y)t] (%)
and then

©(s, t) s
- X ) t)—ux y
o s+it[u (x+s1, y+t)—ux(x, ¥)]+

t
s+ I-t[”y(X7Y+tl)_”y(X7)/)]-

Since |s| < s+ it and [t] < [s + it], then | 75 %

Since |s1| < |s| and |t;| < |t|, and the fact that uy and u, are continuous

7t JE—
i(Jiit) =0.

are bounded.

and

[the continuity of the partials is used here!], then lims4jr—0
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Theorem 111.2.29 (continued 3)

Proof (continued). Define

p(s,t) = [ulx+ s,y +t) —u(x, y)] = [ux(x,y)s + uy(x, )t] - (%)

and then
(s, t) t

- X ) t X ) B ) t1)— y .
s+ it s—k/t“[u (xts1, y41) —uix(x y)]+5+,t[”y(x y+t1)—uy(x, y)]
Since |s| < |s + it and |t| < |s +it[, then | 75| and | 5| are bounded.

Since |s1| < |s| and |t;| < |t|, and the fact that uy and u, are continuous

[the continuity of the partials is used here!], then lims4jr—0 S(j,? =0. So
by (*),
u(x + s,y +1t) = u(x,y) = ux(x,y)s + uy(x, y)t + (s, t)

where limsi 0 ‘F;(j_l? =0. (*x%)
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Theorem 111.2.29 (continued 4)
Proof (continued). Similarly

vix + s,y + 1) = v(x,y) = v(x,y)s + vy (x, y)t + (s, t)
1 . ¢(svt) —
where limgy 0 =0. (*xx)

s+it
Now
f(z+s+it)—f(z) Re(f(z+s+it)— f(z)) + ilm(f(z+ s+ it) — f(z))
s+ it B s+ it
_ulxts,y+t)—ulxy) +i(vix+s,y+1t) —vx,y))
s+ it
_ (ux(x,y)s + uy(x, y)t + (s, t)) + i(vi(x, ¥)s + vy (x, y)t + (s, t))
s+ it

by () and (x * x)
@l s )0 + il Vs + ()0 | els ) + (s, )
S+ it s+ it
by the Cauchy-Riemann equations
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Theorem 111.2.29 (continued 5)

Proof (continued).

Pv(x, )t + ivi(x,y)s | (s, t) + iv(s, t)
s+ it s+ it

_ , ©(s, t) +iY(s, t)

= ux(x,y) + ivx(x, y) + P :

With s + it — 0 and since f is differentiable,

= UX(X,)/) +

Fi(2) = ux(x, y) + iv(x, y)-

Since uy and vy are continuous, then f’ is continuous and so f is analytic
(i.e., continuously differentiable). O
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