Complex Analysis

Chapter III. Elementary Properties and Examples of Analytic Functions
III.2. Analytic Functions—Proofs of Theorems

Table of contents

(1) Proposition III.2.2. Differentiable implies Continuous
(2) Chain Rule
(3) Proposition III.2.5
(4) Proposition III.2.10
(5) Lemma III.2.A. Properties of e^{z}
(6) Proposition III.2.19
(7) Proposition III.2.20
(8) Theorem III.2.29

Proposition III.2.2

Proposition III.2.2. If $f: G \rightarrow \mathbb{C}$ is differentiable at $a \in G$, then f is continuous at a.

Proof. We have

$$
\begin{aligned}
\lim _{z \rightarrow a}|f(z)-f(a)|= & \lim _{z \rightarrow a} \frac{|f(z)-f(a)|}{|z-a|}|z-a| \\
= & \lim _{z \rightarrow a}\left|\frac{f(z)-f(a)}{z-a}\right| \lim _{z \rightarrow a}|z-a| \text { since the limit } \\
& \text { of a product is the product of the limits } \\
& \text { (provided the component limits exist) } \\
= & \left|f^{\prime}(a)\right| \cdot 0=0 .
\end{aligned}
$$

Therefore $\lim _{z \rightarrow a} f(z)=f(a)$ and f is continuous at a, as claimed.

Proposition III.2.2

Proposition III.2.2. If $f: G \rightarrow \mathbb{C}$ is differentiable at $a \in G$, then f is continuous at a.

Proof. We have

$$
\begin{aligned}
\lim _{z \rightarrow a}|f(z)-f(a)|= & \lim _{z \rightarrow a} \frac{|f(z)-f(a)|}{|z-a|}|z-a| \\
= & \lim _{z \rightarrow a}\left|\frac{f(z)-f(a)}{z-a}\right| \lim _{z \rightarrow a}|z-a| \text { since the limit } \\
& \text { of a product is the product of the limits } \\
& \text { (provided the component limits exist) } \\
= & \left|f^{\prime}(a)\right| \cdot 0=0 .
\end{aligned}
$$

Therefore $\lim _{z \rightarrow a} f(z)=f(a)$ and f is continuous at a, as claimed.

Chain Rule

Chain Rule. Let f and g be analytic on G and Ω respectively and suppose $f(G) \subset \Omega$. Then $g \circ f$ is analytic on G and $(g \circ f)^{\prime}(z)=g^{\prime}(f(z)) f^{\prime}(z)$ for all $z \in G$.

Proof. Fix $z_{0} \in G$ and choose $r>0$ such that
$B\left(z_{0} ; r\right)=\left\{z \in \mathbb{C}| | z-z_{0} \mid<r\right\} \subset G$. Since $g \circ f$ is continuous at z_{0} by Proposition III.2.2 (and properties of continuous functions), it is sufficient to show that if $0<\left|h_{n}\right|<r$ and $\lim h_{n}=0$, then $\lim _{n \rightarrow \infty}\left(\left(g\left(f\left(z_{0}+h_{n}\right)\right)-g\left(f\left(z_{0}\right)\right) / h_{n}\right)\right.$ exists and equals $g^{\prime}\left(f\left(z_{0}\right)\right) f^{\prime}\left(z_{0}\right)$.

Chain Rule

Chain Rule. Let f and g be analytic on G and Ω respectively and suppose $f(G) \subset \Omega$. Then $g \circ f$ is analytic on G and $(g \circ f)^{\prime}(z)=g^{\prime}(f(z)) f^{\prime}(z)$ for all $z \in G$.

Proof. Fix $z_{0} \in G$ and choose $r>0$ such that $B\left(z_{0} ; r\right)=\left\{z \in \mathbb{C}| | z-z_{0} \mid<r\right\} \subset G$. Since $g \circ f$ is continuous at z_{0} by Proposition III.2.2 (and properties of continuous functions), it is sufficient to show that if $0<\left|h_{n}\right|<r$ and $\lim h_{n}=0$, then $\lim _{n \rightarrow \infty}\left(\left(g\left(f\left(z_{0}+h_{n}\right)\right)-g\left(f\left(z_{0}\right)\right) / h_{n}\right)\right.$ exists and equals $g^{\prime}\left(f\left(z_{0}\right)\right) f^{\prime}\left(z_{0}\right)$. Case 1. Suppose $f\left(z_{0}\right) \neq f\left(z_{0}+h_{n}\right)$ for all n. Then
$\frac{g \circ f\left(z_{0}+h_{n}\right)-g \circ f\left(z_{0}\right)}{h_{n}}=\frac{g\left(f\left(z_{0}+h_{n}\right)\right)-g\left(f\left(z_{0}\right)\right)}{f\left(z_{0}+h_{n}\right)-f\left(z_{0}\right)} \frac{f\left(z_{0}+h_{n}\right)-f\left(z_{0}\right)}{h_{n}}$
By Proposition III.2.2, $\lim _{n \rightarrow \infty}\left(f\left(z_{0}+h_{n}\right)-f\left(z_{0}\right)\right)=0$, so the limit is $g^{\prime}\left(f\left(z_{0}\right)\right) f^{\prime}\left(z_{0}\right)$.

Chain Rule

Chain Rule. Let f and g be analytic on G and Ω respectively and suppose $f(G) \subset \Omega$. Then $g \circ f$ is analytic on G and $(g \circ f)^{\prime}(z)=g^{\prime}(f(z)) f^{\prime}(z)$ for all $z \in G$.

Proof. Fix $z_{0} \in G$ and choose $r>0$ such that $B\left(z_{0} ; r\right)=\left\{z \in \mathbb{C}| | z-z_{0} \mid<r\right\} \subset G$. Since $g \circ f$ is continuous at z_{0} by Proposition III.2.2 (and properties of continuous functions), it is sufficient to show that if $0<\left|h_{n}\right|<r$ and $\lim h_{n}=0$, then $\lim _{n \rightarrow \infty}\left(\left(g\left(f\left(z_{0}+h_{n}\right)\right)-g\left(f\left(z_{0}\right)\right) / h_{n}\right)\right.$ exists and equals $g^{\prime}\left(f\left(z_{0}\right)\right) f^{\prime}\left(z_{0}\right)$.
Case 1. Suppose $f\left(z_{0}\right) \neq f\left(z_{0}+h_{n}\right)$ for all n. Then
$\frac{g \circ f\left(z_{0}+h_{n}\right)-g \circ f\left(z_{0}\right)}{h_{n}}=\frac{g\left(f\left(z_{0}+h_{n}\right)\right)-g\left(f\left(z_{0}\right)\right)}{f\left(z_{0}+h_{n}\right)-f\left(z_{0}\right)} \frac{f\left(z_{0}+h_{n}\right)-f\left(z_{0}\right)}{h_{n}}$.
By Proposition III.2.2, $\lim _{n \rightarrow \infty}\left(f\left(z_{0}+h_{n}\right)-f\left(z_{0}\right)\right)=0$, so the limit is $g^{\prime}\left(f\left(z_{0}\right)\right) f^{\prime}\left(z_{0}\right)$.

Chain Rule (continued)

Chain Rule. Let f and g be analytic on G and Ω respectively and suppose $f(G) \subset \Omega$. Then $g \circ f$ is analytic on G and $(g \circ f)^{\prime}(z)=g^{\prime}(f(z)) f^{\prime}(z)$ for all $z \in G$.

Proof (continued). Case 2. Suppose $f\left(z_{0}\right)=f\left(z_{0}+h_{n}\right)$ for infinitely many n. Then write $\left\{h_{n}\right\}$ as the union of two sequences $\left\{k_{n}\right\}$ and $\left\{\ell_{n}\right\}$ where $f\left(z_{0}\right) \neq f\left(z_{0}+k_{n}\right)$ and $f\left(z_{0}\right)=f\left(z_{0}+\ell_{n}\right)$ for all n. Since f is differentiable, $f^{\prime}\left(z_{0}\right)=\lim _{n \rightarrow \infty} \frac{f\left(z_{0}+\ell_{n}\right)-f\left(z_{0}\right)}{\ell_{n}}=\lim _{n \rightarrow \infty} \frac{0}{\ell_{n}}=0$. Also, $\lim _{n \rightarrow \infty} \frac{g \circ f\left(z_{0}+\ell_{n}\right)-g \circ f\left(z_{0}\right)}{\ell_{n}}=\lim _{n \rightarrow \infty} \frac{0}{\ell_{n}}=0$. By Case 1 ,
$\lim _{n \rightarrow \infty} \frac{\operatorname{gof}\left(z_{0}+k_{n}\right)-\operatorname{gof}\left(z_{0}\right)}{k_{n}}=g^{\prime}\left(f\left(z_{0}\right)\right) f^{\prime}\left(z_{0}\right)$. Since $f\left(z_{0}\right)=f\left(z_{0}+h_{n}\right)$ for infinitely many h_{n} and f is continuous at z_{0}, then $f^{\prime}\left(z_{0}\right)=0$. Therefore $\lim _{n \rightarrow \infty} \frac{g \circ f\left(z_{0}+k_{n}\right)-g \circ f\left(z_{0}\right)}{h_{n}}=0=g^{\prime}\left(f\left(z_{0}\right)\right) f^{\prime}\left(z_{0}\right)$. Combining Case 1 and case 2 , the result follows.

Chain Rule (continued)

Chain Rule. Let f and g be analytic on G and Ω respectively and suppose $f(G) \subset \Omega$. Then $g \circ f$ is analytic on G and $(g \circ f)^{\prime}(z)=g^{\prime}(f(z)) f^{\prime}(z)$ for all $z \in G$.

Proof (continued). Case 2. Suppose $f\left(z_{0}\right)=f\left(z_{0}+h_{n}\right)$ for infinitely many n. Then write $\left\{h_{n}\right\}$ as the union of two sequences $\left\{k_{n}\right\}$ and $\left\{\ell_{n}\right\}$ where $f\left(z_{0}\right) \neq f\left(z_{0}+k_{n}\right)$ and $f\left(z_{0}\right)=f\left(z_{0}+\ell_{n}\right)$ for all n. Since f is differentiable, $f^{\prime}\left(z_{0}\right)=\lim _{n \rightarrow \infty} \frac{f\left(z_{0}+\ell_{n}\right)-f\left(z_{0}\right)}{\ell_{n}}=\lim _{n \rightarrow \infty} \frac{0}{\ell_{n}}=0$. Also, $\lim _{n \rightarrow \infty} \frac{g \circ f\left(z_{0}+\ell_{n}\right)-g \circ f\left(z_{0}\right)}{\ell_{n}}=\lim _{n \rightarrow \infty} \frac{0}{\ell_{n}}=0$. By Case 1, $\lim _{n \rightarrow \infty} \frac{\operatorname{gof}\left(z_{0}+k_{n}\right)-g \circ f\left(z_{0}\right)}{k_{n}}=g^{\prime}\left(f\left(z_{0}\right)\right) f^{\prime}\left(z_{0}\right)$. Since $f\left(z_{0}\right)=f\left(z_{0}+h_{n}\right)$ for infinitely many h_{n} and f is continuous at z_{0}, then $f^{\prime}\left(z_{0}\right)=0$. Therefore $\lim _{n \rightarrow \infty} \frac{g \circ f\left(z_{0}+k_{n}\right)-g \circ f\left(z_{0}\right)}{h_{n}}=0=g^{\prime}\left(f\left(z_{0}\right)\right) f^{\prime}\left(z_{0}\right)$. Combining Case 1 and case 2 , the result follows.

Proposition III.2.5

Proposition III.2.5. Let $f(z)=\sum_{n=0}^{\infty} a_{n}(z-a)^{n}$ have radius of convergence $R>0$. Then:
(a) for $k \geq 1$ the series

$$
\sum_{n=k}^{\infty} n(n-1) \cdots(n-k+1) a_{n}(z-a)^{n-k}
$$

has radius of convergence R,
(b) The function f is infinitely differentiable on $B(a ; R)$ and the series of (a) equals $f^{(k)}(z)$ for all $k \geq 1$ and $|z-a|<R$, and
(c) for $n \geq 0, a_{n}=\frac{1}{n!} f^{(n)}(a)$.

Proof. Without loss of generality, assume $a=0$. (a) We prove (a) for $k=1$ and the result follows in general by induction. By definition, $1 / R=\limsup \left|a_{n}\right|^{1 / n}$

Proposition III.2.5

Proposition III.2.5. Let $f(z)=\sum_{n=0}^{\infty} a_{n}(z-a)^{n}$ have radius of convergence $R>0$. Then:
(a) for $k \geq 1$ the series

$$
\sum_{n=k}^{\infty} n(n-1) \cdots(n-k+1) a_{n}(z-a)^{n-k}
$$

has radius of convergence R,
(b) The function f is infinitely differentiable on $B(a ; R)$ and the series of (a) equals $f^{(k)}(z)$ for all $k \geq 1$ and $|z-a|<R$, and
(c) for $n \geq 0, a_{n}=\frac{1}{n!} f^{(n)}(a)$.

Proof. Without loss of generality, assume $a=0$. (a) We prove (a) for $k=1$ and the result follows in general by induction. By definition, $1 / R=\lim \sup \left|a_{n}\right|^{1 / n}$.

Proposition III.2.5 (continued 1)

Proposition III.2.5. Let $f(z)=\sum_{n=0}^{\infty} a_{n}(z-a)^{n}$ have radius of convergence $R>0$. Then:
(a) for $k \geq 1$ the series
$\sum_{n=k}^{\infty} n(n-1) \cdots(n-k+1) a_{n}(z-a)^{n-k}$ has radius of convergence R.
Proof (continued). With $k=1$, we consider $\sum_{n=1}^{\infty} n a_{n} z^{n-1}$ and need to show that $1 / R=\lim \sup \left|n a_{n}\right|^{1 /(n-1)}$. By L'Hopital's Rule, $\lim _{n \rightarrow \infty} n^{1 /(n-1)}=1$. So, by Exercise III.2.2,
$\lim \sup \left|n a_{n}\right|^{1 /(n-1)}=\lim n^{1 /(n-1)} \lim \sup \left|a_{n}\right|^{1 /(n-1)}=\lim \sup \left|a_{n}\right|^{1 /(n-1)}$.
We now need to show that $1 / R=\lim \sup \left|a_{n}\right|^{1 /(n-1)}$. Let $1 / R^{\prime}=\limsup \left|a_{n}\right|^{1 /(n-1)}$. Then R^{\prime} is the radius of convergence of

Proposition III.2.5 (continued 1)

Proposition III.2.5. Let $f(z)=\sum_{n=0}^{\infty} a_{n}(z-a)^{n}$ have radius of convergence $R>0$. Then:
(a) for $k \geq 1$ the series
$\sum_{n=k}^{\infty} n(n-1) \cdots(n-k+1) a_{n}(z-a)^{n-k}$ has radius of convergence R.
Proof (continued). With $k=1$, we consider $\sum_{n=1}^{\infty} n a_{n} z^{n-1}$ and need to show that $1 / R=\lim \sup \left|n a_{n}\right|^{1 /(n-1)}$. By L'Hopital's Rule, $\lim _{n \rightarrow \infty} n^{1 /(n-1)}=1$. So, by Exercise III.2.2,
$\lim \sup \left|n a_{n}\right|^{1 /(n-1)}=\lim n^{1 /(n-1)} \lim \sup \left|a_{n}\right|^{1 /(n-1)}=\lim \sup \left|a_{n}\right|^{1 /(n-1)}$.
We now need to show that $1 / R=\lim \sup \left|a_{n}\right|^{1 /(n-1)}$. Let $1 / R^{\prime}=\lim \sup \left|a_{n}\right|^{1 /(n-1)}$. Then R^{\prime} is the radius of convergence of

$$
\sum_{n=1}^{\infty} a_{n} z^{n-1}=\sum_{n=0}^{\infty} a_{n+1} z^{n}
$$

Proposition III.2.5 (continued 2)

Proposition III.2.5. Let $f(z)=\sum_{n=0}^{\infty} a_{n}(z-a)^{n}$ have radius of convergence $R>0$. Then:
(a) for $k \geq 1$ the series $\sum_{n=k}^{\infty} n(n-1) \cdots(n-k+1) a_{n}(z-a)^{n-k}$ has radius of convergence R.
Proof (continued). Now, $z \sum_{n=0}^{\infty} a_{n+1} z^{n}+a_{0}=\sum_{n=0}^{\infty} a_{n} z^{n}$ and so if $|z|<R^{\prime}$ then $\sum_{n=0}^{\infty}\left|a_{n} z^{n}\right|=\left|a_{0}\right|+|z| \sum_{n=0}^{\infty}\left|a_{n+1} z^{n}\right|<\infty$. So $R^{\prime} \leq R$. $|z|<R$ and $z \neq 0$ then $\sum_{n=0}^{\infty}\left|a_{n} z^{n}\right|<\infty$ and

and so $R \leq R^{\prime}$. Therefore $R=R^{\prime}$. \square

Proposition III.2.5 (continued 2)

Proposition III.2.5. Let $f(z)=\sum_{n=0}^{\infty} a_{n}(z-a)^{n}$ have radius of convergence $R>0$. Then:
(a) for $k \geq 1$ the series $\sum_{n=k}^{\infty} n(n-1) \cdots(n-k+1) a_{n}(z-a)^{n-k}$ has radius of convergence R.
Proof (continued). Now, $z \sum_{n=0}^{\infty} a_{n+1} z^{n}+a_{0}=\sum_{n=0}^{\infty} a_{n} z^{n}$ and so if $|z|<R^{\prime}$ then $\sum_{n=0}^{\infty}\left|a_{n} z^{n}\right|=\left|a_{0}\right|+|z| \sum_{n=0}^{\infty}\left|a_{n+1} z^{n}\right|<\infty$. So $R^{\prime} \leq R$. If $|z|<R$ and $z \neq 0$ then $\sum_{n=0}^{\infty}\left|a_{n} z^{n}\right|<\infty$ and

$$
\sum_{n=0}^{\infty}\left|a_{n+1} z^{n}\right|=\frac{1}{|z|} \sum_{n=0}^{\infty}\left|a_{n} z^{n}\right|-\frac{1}{|z|}\left|a_{0}\right|<\infty
$$

and so $R \leq R^{\prime}$. Therefore $R=R^{\prime}$. \square

Proposition III.2.5 (continued 3)

Proposition III.2.5. Let $f(z)=\sum_{n=0}^{\infty} a_{n}(z-a)^{n}$ have radius of convergence $R>0$. Then:
(b) The function f is infinitely differentiable on $B(a ; R)$ and the series of (a) equals $f^{(k)}(z)$ for all $k \geq 1$ and $|z-a|<R$.
Proof. (b) For $|z|<R$ put $g(z)=\sum_{n=1}^{\infty} n a_{n} z^{n-1}, s_{n}(z)=\sum_{k=0}^{n} a_{k} z^{k}$ and $R_{n}(z)=\sum_{k=n+1}^{\infty} a_{k} z^{k}$ (so $f(z)=s_{n}(z)+R_{n}(z)$). Fix
$w \in B(0 ; R)=\{z| | z-0 \mid<R\}$ and fix r with $|w|<r<R$. We will show $f^{\prime}(w)=g(w)$.

Proposition III.2.5 (continued 3)

Proposition III.2.5. Let $f(z)=\sum_{n=0}^{\infty} a_{n}(z-a)^{n}$ have radius of convergence $R>0$. Then:
(b) The function f is infinitely differentiable on $B(a ; R)$ and the series of (a) equals $f^{(k)}(z)$ for all $k \geq 1$ and $|z-a|<R$. Proof. (b) For $|z|<R$ put $g(z)=\sum_{n=1}^{\infty} n a_{n} z^{n-1}, s_{n}(z)=\sum_{k=0}^{n} a_{k} z^{k}$ and $R_{n}(z)=\sum_{k=n+1}^{\infty} a_{k} z^{k}$ (so $f(z)=s_{n}(z)+R_{n}(z)$). Fix $w \in B(0 ; R)=\{z| | z-0 \mid<R\}$ and fix r with $|w|<r<R$. We will show $f^{\prime}(w)=g(w)$. Let $\delta_{1}>0$ be such that
$\bar{B}\left(w, \delta_{1}\right)=\left\{z| | w-z \mid \leq \delta_{1}\right\} \subset B(0 ; r)=\{z| | z-0 \mid<r\}$. Let $z \in B\left(w ; \delta_{1}\right)$. Then

Proposition III.2.5 (continued 3)

Proposition III.2.5. Let $f(z)=\sum_{n=0}^{\infty} a_{n}(z-a)^{n}$ have radius of convergence $R>0$. Then:
(b) The function f is infinitely differentiable on $B(a ; R)$ and the series of (a) equals $f^{(k)}(z)$ for all $k \geq 1$ and $|z-a|<R$. Proof. (b) For $|z|<R$ put $g(z)=\sum_{n=1}^{\infty} n a_{n} z^{n-1}, s_{n}(z)=\sum_{k=0}^{n} a_{k} z^{k}$ and $R_{n}(z)=\sum_{k=n+1}^{\infty} a_{k} z^{k}$ (so $f(z)=s_{n}(z)+R_{n}(z)$). Fix $w \in B(0 ; R)=\{z| | z-0 \mid<R\}$ and fix r with $|w|<r<R$. We will show $f^{\prime}(w)=g(w)$. Let $\delta_{1}>0$ be such that $\bar{B}\left(w, \delta_{1}\right)=\left\{z| | w-z \mid \leq \delta_{1}\right\} \subset B(0 ; r)=\{z| | z-0 \mid<r\}$. Let $z \in B\left(w ; \delta_{1}\right)$. Then

$$
\begin{gather*}
\frac{f(z)-f(w)}{z-w}-g(w)=\left(\frac{s_{n}(z)-s_{n}(w)}{z-w}-s_{n}^{\prime}(w)\right) \\
\quad+\left(s_{n}^{\prime}(w)-g(w)\right)+\left(\frac{R_{n}(z)-R_{n}(w)}{z-w}\right) \tag{2.8}
\end{gather*}
$$

Proposition III.2.5 (continued 4)

Proposition III.2.5. Let $f(z)=\sum_{n=0}^{\infty} a_{n}(z-a)^{n}$ have radius of convergence $R>0$. Then:
(b) The function f is infinitely differentiable on $B(a ; R)$ and the series of (a) equals $f^{(k)}(z)$ for all $k \geq 1$ and $|z-a|<R$.
Proof (continued). (b) Now
$\frac{R_{n}(z)-R_{n}(w)}{z-w}=\frac{1}{z-w}\left(\sum_{k=n+1}^{\infty} a_{k}\left(z^{k}-w^{k}\right)\right)=\sum_{k=n+1}^{\infty} a_{k}\left(\frac{z^{k}-w^{k}}{z-w}\right)$.
But $\frac{\left|z^{k}-w^{k}\right|}{|z-w|}=\left|z^{k-1}+z^{k-2} w+\cdots+z w^{k-2}+w^{k-1}\right| \leq k r^{k-1}$ (since $w, z<r)$.

Proposition III.2.5 (continued 4)

Proposition III.2.5. Let $f(z)=\sum_{n=0}^{\infty} a_{n}(z-a)^{n}$ have radius of convergence $R>0$. Then:
(b) The function f is infinitely differentiable on $B(a ; R)$ and the series of (a) equals $f^{(k)}(z)$ for all $k \geq 1$ and $|z-a|<R$.
Proof (continued). (b) Now
$\frac{R_{n}(z)-R_{n}(w)}{z-w}=\frac{1}{z-w}\left(\sum_{k=n+1}^{\infty} a_{k}\left(z^{k}-w^{k}\right)\right)=\sum_{k=n+1}^{\infty} a_{k}\left(\frac{z^{k}-w^{k}}{z-w}\right)$.
But $\frac{\left|z^{k}-w^{k}\right|}{|z-w|}=\left|z^{k-1}+z^{k-2} w+\cdots+z w^{k-2}+w^{k-1}\right| \leq k r^{k-1}$ (since $w, z<r)$. Hence,

$$
\left|\frac{R_{n}(z)-R_{n}(w)}{z-w}\right| \leq \sum_{k=n+1}^{\infty}\left|a_{k}\right| k r^{k-1}
$$

Proposition III.2.5 (continued 5)

Proposition III.2.5. Let $f(z)=\sum_{n=0}^{\infty} a_{n}(z-a)^{n}$ have radius of convergence $R>0$. Then:
(b) The function f is infinitely differentiable on $B(a ; R)$ and the series of (a) equals $f^{(k)}(z)$ for all $k \geq 1$ and $|z-a|<R$.
Proof (continued). (b) Since $r<R$, then $\sum_{n=1}^{\infty}\left|a_{k}\right| k r^{k-1}$ converges (consider part (a) with $|z|=r<R$). So for any $\varepsilon>0$ there is $N_{1} \in \mathbb{N}$ such that for all $n \geq N_{1}$, we have $\left|\frac{R_{n}(z)-R_{n}(w)}{z-w}\right|<\frac{\varepsilon}{3}$ (here, $z \in B\left(w ; \delta_{1}\right)$). By the definitions of s_{n} and $g, \lim _{n \rightarrow \infty} s_{n}^{\prime}(w)=g(w)$, so there exists $N_{2} \in \mathbb{N}$ such that for all $n \geq N_{2}$ we have $\left|s_{n}^{\prime}(w)-g(w)\right|<\varepsilon / 3$. Let $n=\max \left\{N_{1}, N_{2}\right\}$. Then there is $\delta_{2}>0$ such that $\left.\frac{s_{n}(z)-s_{n}(w)}{z-w}-s_{n}^{\prime}(w) \right\rvert\,<\frac{\varepsilon}{3}$ whenever $0<|z-w|<\delta_{2}$. With $z \in B(w ; \delta)$, $z \neq w$, where $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$ we have from (2.8) that $\left|\frac{f(z)-f(w)}{z-w}\right|$ That is, $f^{\prime}(w)=g(w) . \square$

Proposition III.2.5 (continued 5)

Proposition III.2.5. Let $f(z)=\sum_{n=0}^{\infty} a_{n}(z-a)^{n}$ have radius of convergence $R>0$. Then:
(b) The function f is infinitely differentiable on $B(a ; R)$ and the series of (a) equals $f^{(k)}(z)$ for all $k \geq 1$ and $|z-a|<R$.
Proof (continued). (b) Since $r<R$, then $\sum_{n=1}^{\infty}\left|a_{k}\right| k r^{k-1}$ converges (consider part (a) with $|z|=r<R$). So for any $\varepsilon>0$ there is $N_{1} \in \mathbb{N}$ such that for all $n \geq N_{1}$, we have $\left|\frac{R_{n}(z)-R_{n}(w)}{z-w}\right|<\frac{\varepsilon}{3}$ (here, $z \in B\left(w ; \delta_{1}\right)$). By the definitions of s_{n} and $g, \lim _{n \rightarrow \infty} s_{n}^{\prime}(w)=g(w)$, so there exists $N_{2} \in \mathbb{N}$ such that for all $n \geq N_{2}$ we have $\left|s_{n}^{\prime}(w)-g(w)\right|<\varepsilon / 3$. Let $n=\max \left\{N_{1}, N_{2}\right\}$. Then there is $\delta_{2}>0$ such that
$\left|\frac{s_{n}(z)-s_{n}(w)}{z-w}-s_{n}^{\prime}(w)\right|<\frac{\varepsilon}{3}$ whenever $0<|z-w|<\delta_{2}$. With $z \in B(w ; \delta)$,
$z \neq w$, where $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$ we have from (2.8) that $\left|\frac{f(z)-f(w)}{z-w}\right|<\varepsilon$.
That is, $f^{\prime}(w)=g(w) . \square$

Proposition III.2.5 (continued 6)

Proposition III.2.5. Let $f(z)=\sum_{n=0}^{\infty} a_{n}(z-a)^{n}$ have radius of convergence $R>0$. Then:
(c) For $n \geq 0, a_{n}=\frac{1}{n!} f^{(n)}(a)$.

Proof. From part (a), we have $f^{(k)}(0)=k!a_{k}$ and the result follows.

Proposition III.2.10.

Proposition III.2.10. If G is open and connected and $f: G \rightarrow \mathbb{C}$ is differentiable with $f^{\prime}(z)=0$ for all $a \in \mathbb{C}$, then f is constant.

Proof. Fix $z_{0} \in G$ and denote $\omega_{0}=f\left(z_{0}\right)$. Let $A=\left\{z \in G \mid f(z)=\omega_{0}\right\}$ Let $z \in G$ and $\left\{z_{n}\right\} \subset A$ where $z=\lim z_{n}$. Since $f\left(z_{n}\right)=\omega_{0}$ for $n \in \mathbb{N}$ (each $z_{n} \in A$) and f is continuous (since f is differentiable; Proposition III.2.2) then $f(z)=f\left(\lim z_{n}\right)=\lim f\left(z_{n}\right)=\omega_{0}$, and so $z \in A$. So A contains all of its limit points and by Proposition II.3.4 A is closed in G.

Proposition III.2.10.

Proposition III.2.10. If G is open and connected and $f: G \rightarrow \mathbb{C}$ is differentiable with $f^{\prime}(z)=0$ for all $a \in \mathbb{C}$, then f is constant.

Proof. Fix $z_{0} \in G$ and denote $\omega_{0}=f\left(z_{0}\right)$. Let $A=\left\{z \in G \mid f(z)=\omega_{0}\right\}$. Let $z \in G$ and $\left\{z_{n}\right\} \subset A$ where $z=\lim z_{n}$. Since $f\left(z_{n}\right)=\omega_{0}$ for $n \in \mathbb{N}$ (each $z_{n} \in A$) and f is continuous (since f is differentiable; Proposition III.2.2) then $f(z)=f\left(\lim z_{n}\right)=\lim f\left(z_{n}\right)=\omega_{0}$, and so $z \in A$. So A contains all of its limit points and by Proposition II.3.4 A is closed in G. Next, fix $a \in A$ and let $\varepsilon>0$ be such that $B(a ; \varepsilon) \subset G$ (since G is open). If $x \in B(a ; \varepsilon)$, set $g(t)=f(t z+(1-t) a)$ for $t \in[0,1]$:

Proposition III.2.10.

Proposition III.2.10. If G is open and connected and $f: G \rightarrow \mathbb{C}$ is differentiable with $f^{\prime}(z)=0$ for all $a \in \mathbb{C}$, then f is constant.

Proof. Fix $z_{0} \in G$ and denote $\omega_{0}=f\left(z_{0}\right)$. Let $A=\left\{z \in G \mid f(z)=\omega_{0}\right\}$. Let $z \in G$ and $\left\{z_{n}\right\} \subset A$ where $z=\lim z_{n}$. Since $f\left(z_{n}\right)=\omega_{0}$ for $n \in \mathbb{N}$ (each $z_{n} \in A$) and f is continuous (since f is differentiable; Proposition III.2.2) then $f(z)=f\left(\lim z_{n}\right)=\lim f\left(z_{n}\right)=\omega_{0}$, and so $z \in A$. So A contains all of its limit points and by Proposition II.3.4 A is closed in G. Next, fix $a \in A$ and let $\varepsilon>0$ be such that $B(a ; \varepsilon) \subset G$ (since G is open). If $x \in B(a ; \varepsilon)$, set $g(t)=f(t z+(1-t) a)$ for $t \in[0,1]$:

Proposition III.2.10.

Proposition III.2.10. If G is open and connected and $f: G \rightarrow \mathbb{C}$ is differentiable with $f^{\prime}(z)=0$ for all $a \in \mathbb{C}$, then f is constant.

Proof. Fix $z_{0} \in G$ and denote $\omega_{0}=f\left(z_{0}\right)$. Let $A=\left\{z \in G \mid f(z)=\omega_{0}\right\}$. Let $z \in G$ and $\left\{z_{n}\right\} \subset A$ where $z=\lim z_{n}$. Since $f\left(z_{n}\right)=\omega_{0}$ for $n \in \mathbb{N}$ (each $z_{n} \in A$) and f is continuous (since f is differentiable; Proposition III.2.2) then $f(z)=f\left(\lim z_{n}\right)=\lim f\left(z_{n}\right)=\omega_{0}$, and so $z \in A$. So A contains all of its limit points and by Proposition II.3.4 A is closed in G. Next, fix $a \in A$ and let $\varepsilon>0$ be such that $B(a ; \varepsilon) \subset G$ (since G is open). If $x \in B(a ; \varepsilon)$, set $g(t)=f(t z+(1-t) a)$ for $t \in[0,1]$:

Proposition III.2.10 (continued).

Proposition III.2.10 (continued). If G is open and connected and $f: G \rightarrow \mathbb{C}$ is differentiable with $f^{\prime}(z)=0$ for all $a \in \mathbb{C}$, then f is constant.

Proof (continued). Now $g:[0,1] \rightarrow \mathbb{C}$ is a composition of differentiable $f: G \rightarrow \mathbb{C}$ with $h:[0,1] \rightarrow G$ where $h(t)=t z+(1-t)$ a. To differentiate g, we need a version of the Chain Rule which is applicable to this setting-this is given in Appendix A on page 304 in Proposition A.4. So

$$
g^{\prime}(t)=\lim _{t \rightarrow s} \frac{g(t)-g(s)}{t-s}=f^{\prime}(t z+(1-t) a)(z-a)=0
$$

since $f^{\prime}(z)=0$ for $z \in G$. So $g^{\prime}(t)=0$ for $t \in[0,1]$ and hence (by Proposition A. 3 of Appendix A on page 303, as applied to $\mathrm{g}:[0,1] \rightarrow \mathbb{C}$) we have that g is constant. Therefore, $f(z)=g(1)=g(0)=f(a)=\omega_{0}$. Hence $B(a ; \varepsilon) \subset A$ and A is open in G. Since A is both open and closed in $G, a \neq \varnothing$ (since $a \in A$), and G is connected, then $A=G$. That is, f is constant on G.

Proposition III.2.10 (continued).

Proposition III.2.10 (continued). If G is open and connected and $f: G \rightarrow \mathbb{C}$ is differentiable with $f^{\prime}(z)=0$ for all $a \in \mathbb{C}$, then f is constant.

Proof (continued). Now $g:[0,1] \rightarrow \mathbb{C}$ is a composition of differentiable $f: G \rightarrow \mathbb{C}$ with $h:[0,1] \rightarrow G$ where $h(t)=t z+(1-t)$ a. To differentiate g, we need a version of the Chain Rule which is applicable to this setting-this is given in Appendix A on page 304 in Proposition A.4. So

$$
g^{\prime}(t)=\lim _{t \rightarrow s} \frac{g(t)-g(s)}{t-s}=f^{\prime}(t z+(1-t) a)(z-a)=0
$$

since $f^{\prime}(z)=0$ for $z \in G$. So $g^{\prime}(t)=0$ for $t \in[0,1]$ and hence (by Proposition A. 3 of Appendix A on page 303, as applied to $g:[0,1] \rightarrow \mathbb{C}$) we have that g is constant. Therefore, $f(z)=g(1)=g(0)=f(a)=\omega_{0}$. Hence $B(a ; \varepsilon) \subset A$ and A is open in G.
Since A is both open and closed in $G, a \neq \varnothing$ (since $a \in A$), and G is connected, then $A=G$. That is, f is constant on G.

Lemma III.2.A

Lemma III.2.A. Properties of e^{z} include:
(a) $e^{a+b}=e^{a} e^{b}$,
(b) $e^{z} \neq 0$ for all $z \in \mathbb{C}$,
(c) $\overline{e^{z}}=e^{\bar{z}}$, and
(d) $\left|e^{z}\right|=e^{\operatorname{Re}(z)}$.

Proof.

(a) Define $g(z)=e^{z} e^{a+b-z}$ for given $a, b \in \mathbb{C}$. Then
$g^{\prime}(z)=e^{z} e^{a+b-z}+e^{z}\left(-e^{a+b-z}\right)=0$. So by Proposition 2.10, $g(z)$ is constant for all $z \in \mathbb{C}$. With $z=0$, we have $g(0)=e^{0} e^{a+b}=e^{a+b}$, so $e^{z} e^{a+b-z}=e^{a+b}$ for all $z \in \mathbb{C}$. With $z=b$ we have $e^{b} e^{a}=e^{a+b}$, as claimed.

Lemma III.2.A

Lemma III.2.A. Properties of e^{z} include:
(a) $e^{a+b}=e^{a} e^{b}$,
(b) $e^{z} \neq 0$ for all $z \in \mathbb{C}$,
(c) $\overline{e^{\bar{z}}}=e^{\bar{z}}$, and
(d) $\left|e^{z}\right|=e^{\operatorname{Re}(z)}$.

Proof.

(a) Define $g(z)=e^{z} e^{a+b-z}$ for given $a, b \in \mathbb{C}$. Then
$g^{\prime}(z)=e^{z} e^{a+b-z}+e^{z}\left(-e^{a+b-z}\right)=0$. So by Proposition 2.10, $g(z)$ is constant for all $z \in \mathbb{C}$. With $z=0$, we have $g(0)=e^{0} e^{a+b}=e^{a+b}$, so $e^{z} e^{a+b-z}=e^{a+b}$ for all $z \in \mathbb{C}$. With $z=b$ we have $e^{b} e^{a}=e^{a+b}$, as claimed.
(b) By part (a) we have $1=e^{0}=e^{z} e^{-z}$ for all $z \in \mathbb{C}$, and so $e^{z} \neq 0$ for all $z \in \mathbb{C}$, as claimed.

Lemma III.2.A

Lemma III.2.A. Properties of e^{z} include:
(a) $e^{a+b}=e^{a} e^{b}$,
(b) $e^{z} \neq 0$ for all $z \in \mathbb{C}$,
(c) $\overline{e^{\bar{z}}}=e^{\bar{z}}$, and
(d) $\left|e^{z}\right|=e^{\operatorname{Re}(z)}$.

Proof.

(a) Define $g(z)=e^{z} e^{a+b-z}$ for given $a, b \in \mathbb{C}$. Then
$g^{\prime}(z)=e^{z} e^{a+b-z}+e^{z}\left(-e^{a+b-z}\right)=0$. So by Proposition 2.10, $g(z)$ is constant for all $z \in \mathbb{C}$. With $z=0$, we have $g(0)=e^{0} e^{a+b}=e^{a+b}$, so $e^{z} e^{a+b-z}=e^{a+b}$ for all $z \in \mathbb{C}$. With $z=b$ we have $e^{b} e^{a}=e^{a+b}$, as claimed.
(b) By part (a) we have $1=e^{0}=e^{z} e^{-z}$ for all $z \in \mathbb{C}$, and so $e^{z} \neq 0$ for all $z \in \mathbb{C}$, as claimed.

Lemma III.2.A (continued 1)

Lemma III.2.A. Properties of e^{z} include:
(c) $\overline{e^{\bar{z}}}=e^{\bar{z}}$, and
(d) $\left|e^{z}\right|=e^{\operatorname{Re}(z)}$.

Proof (continued).

(c) Since $e^{z}=\sum_{n=0}^{\infty} \frac{z^{n}}{n!}$, then

$$
\begin{aligned}
\overline{e^{z}}= & \overline{\left(\sum_{n=0}^{\infty} \frac{z^{n}}{n!}\right)}=\overline{\left(\lim _{N \rightarrow \infty} \sum_{n=0}^{N} \frac{z^{n}}{n!}\right)} \\
= & \lim _{N \rightarrow \infty} \sum_{n=0}^{N} \overline{\left(\frac{z^{n}}{n!}\right)} \text { since conjugation is continuous, } \\
& \text { and Theorem I.2.A } \\
= & \sum_{n=0}^{\infty} \frac{(\bar{z})^{n}}{n!}=e^{\bar{z}}, \text { as claimed. }
\end{aligned}
$$

Lemma III.2.A (continued 2)

Lemma III.2.A. Properties of e^{z} include:
(a) $e^{a+b}=e^{a} e^{b}$,
(b) $e^{z} \neq 0$ for all $z \in \mathbb{C}$,
(c) $\overline{e^{\bar{z}}}=e^{\bar{z}}$, and
(d) $\left|e^{z}\right|=e^{\operatorname{Re}(z)}$.

Proof (continued).

(d) By (c) we have

$$
\left|e^{z}\right|^{2}=e^{z} \overline{e^{z}}=e^{z} e^{\bar{z}}=e^{z+\bar{z}} \text { by (a) }
$$

and so $\left|e^{z}\right|^{2}=e^{2 \operatorname{Re}(z)}$ and $\left|e^{z}\right|=e^{\operatorname{Re}(z)}$, as claimed.

Proposition III.2.19

Proposition III.2.19. If $G \subseteq \mathbb{C}$ is open and connected and f is a branch of $\log z$ on G, then the totality of branches of $\log z$ are the functions $\{f(z)+2 k \pi i \mid k \in \mathbb{Z}\}$.

Proof. First, if $g(z)=f(z)+2 k \pi i$, then
$\exp (g(z))=\exp (f(z)+2 k \pi i)=\exp (f(z)) \exp (2 k \pi i)=\exp (f(z))=z$,
so g is a branch of $\log z$.

Proposition III.2.19

Proposition III.2.19. If $G \subseteq \mathbb{C}$ is open and connected and f is a branch of $\log z$ on G, then the totality of branches of $\log z$ are the functions $\{f(z)+2 k \pi i \mid k \in \mathbb{Z}\}$.

Proof. First, if $g(z)=f(z)+2 k \pi i$, then

$$
\exp (g(z))=\exp (f(z)+2 k \pi i)=\exp (f(z)) \exp (2 k \pi i)=\exp (f(z))=z
$$

so g is a branch of $\log z$. Secondly, if $z \in G$ and f and g are both branches of $\log z$, then $\exp (f(z)-g(z))=\exp (f(z)) / \exp (g(z))=z / z=1$ and so $f(z)-g(z)=2 k \pi i$ for some $k \in \mathbb{Z}$. Notice that by defining $h(z)=\frac{1}{2 \pi i}(f(z)-g(z))$, we now have that $h(z) \subset \mathbb{Z}$ (it's the " k " above). Since h is continuous and G is connected, then $h(G)$ is a connected subset of \mathbb{Z}. Therefore $h(G)=\{k\}$ for some fixed $k \in \mathbb{Z}$ and the same k "works" for each $z \in G$.

Proposition III.2.19

Proposition III.2.19. If $G \subseteq \mathbb{C}$ is open and connected and f is a branch of $\log z$ on G, then the totality of branches of $\log z$ are the functions $\{f(z)+2 k \pi i \mid k \in \mathbb{Z}\}$.

Proof. First, if $g(z)=f(z)+2 k \pi i$, then

$$
\exp (g(z))=\exp (f(z)+2 k \pi i)=\exp (f(z)) \exp (2 k \pi i)=\exp (f(z))=z
$$

so g is a branch of $\log z$. Secondly, if $z \in G$ and f and g are both branches of $\log z$, then $\exp (f(z)-g(z))=\exp (f(z)) / \exp (g(z))=z / z=1$ and so $f(z)-g(z)=2 k \pi i$ for some $k \in \mathbb{Z}$. Notice that by defining $h(z)=\frac{1}{2 \pi i}(f(z)-g(z))$, we now have that $h(z) \subset \mathbb{Z}$ (it's the " k " above). Since h is continuous and G is connected, then $h(G)$ is a connected subset of \mathbb{Z}. Therefore $h(G)=\{k\}$ for some fixed $k \in \mathbb{Z}$ and the same k "works" for each $z \in G$.

Proposition III.2.20

Proposition III.2.20. Let G and Ω be open subsets of \mathbb{C}. Let $f: G \rightarrow \mathbb{C}$ and $g: \Omega \rightarrow \mathbb{C}$ be continuous where $f(G) \subseteq \Omega$ and $g(f(z))=z$ for all $z \in G$. If g is differentiable and $g^{\prime}(z)=0$, then f is differentiable and $f^{\prime}(z)=\frac{1}{g^{\prime}(f(z))}$. If g is analytic, then f is analytic.

Proof. Fix $a \in G$ and let $h \in \mathbb{C}$ such that $h \neq 0$ and $a+h \in G$. Then $a=g(f(a))($ since $g(f(z))=z)$ and $a+h=g(f(a+h))$ implies $g(f(a)) \neq g(f(a+h))$ and so $f(a) \neq f(a+h)$ (or else these two would be equal since it would be g evaluated at the same point). So

$$
\begin{aligned}
1 & =\frac{(a+h)-(a)}{h}=\frac{g(f(a+h))-g(f(a))}{h} \\
& =\frac{g(f(a+h))-g(f(a))}{f(a+h)-f(a)} \frac{f(a+h)-f(a)}{h} .
\end{aligned}
$$

Proposition III.2.20

Proposition III.2.20. Let G and Ω be open subsets of \mathbb{C}. Let $f: G \rightarrow \mathbb{C}$ and $g: \Omega \rightarrow \mathbb{C}$ be continuous where $f(G) \subseteq \Omega$ and $g(f(z))=z$ for all $z \in G$. If g is differentiable and $g^{\prime}(z)=0$, then f is differentiable and $f^{\prime}(z)=\frac{1}{g^{\prime}(f(z))}$. If g is analytic, then f is analytic.

Proof. Fix $a \in G$ and let $h \in \mathbb{C}$ such that $h \neq 0$ and $a+h \in G$. Then $a=g(f(a))($ since $g(f(z))=z)$ and $a+h=g(f(a+h))$ implies $g(f(a)) \neq g(f(a+h))$ and so $f(a) \neq f(a+h)$ (or else these two would be equal since it would be g evaluated at the same point). So

$$
\begin{aligned}
1 & =\frac{(a+h)-(a)}{h}=\frac{g(f(a+h))-g(f(a))}{h} \\
& =\frac{g(f(a+h))-g(f(a))}{f(a+h)-f(a)} \frac{f(a+h)-f(a)}{h} .
\end{aligned}
$$

Proposition III.2.20 (continued)

Proposition III.2.20. Let G and Ω be open subsets of \mathbb{C}. Let $f: G \rightarrow \mathbb{C}$ and $g: \Omega \rightarrow \mathbb{C}$ be continuous where $f(G) \subseteq \Omega$ and $g(f(z))=z$ for all $z \in G$. If g is differentiable and $g^{\prime}(z)=0$, then f is differentiable and $f^{\prime}(z)=\frac{1}{g^{\prime}(f(z))}$. If g is analytic, then f is analytic.

Proof (continued). The limit is of course 1, and since $\lim _{h \rightarrow 0}(f(a+h)-f(a))=0$, then

$$
\lim _{h \rightarrow 0} \frac{g(f(a+h))-g(f(a))}{f(a+h)-f(a)}=g^{\prime}(f(a)) \neq 0
$$

Hence $\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}=f^{\prime}(a)$ exists and $f^{\prime}(a)=1 / g^{\prime}(f(a))$. So $f^{\prime}(z)=1 / g^{\prime}(f(z))$ for $z \in G$. If g is analytic, then g^{\prime} is continuous, and $g^{\prime}(f(z))$ is continuous. Therefore, f is analytic.

Theorem III.2.29

Theorem III.2.29. Let u and v be real-valued functions defined on a region G and suppose u and v have continuous partial derivatives (so we view u and v as functions of x and y where $z=x+i y$). Then $f: G \rightarrow \mathbb{C}$ defined by $f(z)=u(z)+i v(z)$ is analytic if and only if the Cauchy-Riemann equations are satisfied.
Proof. (Analytic implies Cauchy-Riemann) Let $f: G \rightarrow \mathbb{C}$ be analytic and for $z=x+i y \in G, f(z)=f(x+i y)=u(x, y)+i v(x, y)$. We know $f^{\prime}(z)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(z)}{h}$ exists. We consider the limit along two paths. We have for $h \in \mathbb{R}$

and when $h \in \mathbb{R}$ and $h \rightarrow 0$ we see that.

Theorem III.2.29

Theorem III.2.29. Let u and v be real-valued functions defined on a region G and suppose u and v have continuous partial derivatives (so we view u and v as functions of x and y where $z=x+i y$). Then $f: G \rightarrow \mathbb{C}$ defined by $f(z)=u(z)+i v(z)$ is analytic if and only if the Cauchy-Riemann equations are satisfied.
Proof. (Analytic implies Cauchy-Riemann) Let $f: G \rightarrow \mathbb{C}$ be analytic and for $z=x+i y \in G, f(z)=f(x+i y)=u(x, y)+i v(x, y)$. We know $f^{\prime}(z)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(z)}{h}$ exists. We consider the limit along two paths. We have for $h \in \mathbb{R}$

$$
\begin{gathered}
\frac{f(z+h)-f(z)}{h}=\frac{f(x+h+i y)-f(x+i y)}{h} \\
=\left(\frac{u(x+h, y)-u(x, y)}{h}\right)+i\left(\frac{v(x+h, y)-v(x, y)}{h}\right)
\end{gathered}
$$

and when $h \in \mathbb{R}$ and $h \rightarrow 0$ we see that...

Theorem III.2.29 (continued 1)

Proof (continued).

$$
f^{\prime}(z)=\frac{\partial u}{\partial x}(x, y)+i \frac{\partial v}{\partial x}(x, y) .
$$

Next, let $h \in \mathbb{R}$ and $i h \rightarrow 0$. Then

$$
\begin{gathered}
\frac{f(z+i h)-f(z)}{i h}=\left(\frac{u(x, y+h)-u(x, y)}{i h}\right)+i\left(\frac{v(x, y+h)-v(x, y)}{i h}\right) \\
\quad=-i\left(\frac{u(x, y+h)-u(x, y)}{h}\right)+\left(\frac{v(x, y+h)-v(x, y)}{h}\right)
\end{gathered}
$$

and so $f^{\prime}(z)=-i \frac{\partial u}{\partial y}(x, y)+\frac{\partial v}{\partial y}(x, y)$. Therefore, $\frac{\partial u}{\partial x}(x, y)=\frac{\partial v}{\partial y}(x, y)$ and $\frac{\partial u}{\partial y}(x, y)=-\frac{\partial v}{\partial x}(x, y)$. That is, the Cauchy-Riemann equations are necessary. (We have only used differentiability here!)

Theorem III.2.29 (continued 1)

Proof (continued).

$$
f^{\prime}(z)=\frac{\partial u}{\partial x}(x, y)+i \frac{\partial v}{\partial x}(x, y) .
$$

Next, let $h \in \mathbb{R}$ and ih $\rightarrow 0$. Then

$$
\begin{gathered}
\frac{f(z+i h)-f(z)}{i h}=\left(\frac{u(x, y+h)-u(x, y)}{i h}\right)+i\left(\frac{v(x, y+h)-v(x, y)}{i h}\right) \\
\quad=-i\left(\frac{u(x, y+h)-u(x, y)}{h}\right)+\left(\frac{v(x, y+h)-v(x, y)}{h}\right)
\end{gathered}
$$

and so $f^{\prime}(z)=-i \frac{\partial u}{\partial y}(x, y)+\frac{\partial v}{\partial y}(x, y)$. Therefore, $\frac{\partial u}{\partial x}(x, y)=\frac{\partial v}{\partial y}(x, y)$ and $\frac{\partial u}{\partial y}(x, y)=-\frac{\partial v}{\partial x}(x, y)$. That is, the Cauchy-Riemann equations are necessary. (We have only used differentiability here!)

Theorem III.2.29 (continued 2)

Proof (continued). (Cauchy-Riemann implies analytic) Let G be a region and let u and v be functions defined on G with continuous partial derivatives which satisfy the Cauchy-Riemann equations on G. Let $z=x+i y \in G$ and let $B(z ; r) \subset G$. If $h=s+i t \in B(0 ; r)$ then

$$
\begin{gathered}
\operatorname{Re}(f(z+h)-f(z))=u(x+s, y+t)-u(x, y) \\
=[u(x+s, y+t)-u(x, y+t)]+[u(x, y+t)-u(x, y)] .
\end{gathered}
$$

Treating the first bracketed quantity as a function of the first variable and the second bracketed quantity as a function of the second variable, we have by the Mean Value Theorem that for some s_{1}, t_{1} where s_{1} is between 0 and s and t_{1} is between 0 and t :

Theorem III.2.29 (continued 2)

Proof (continued). (Cauchy-Riemann implies analytic) Let G be a region and let u and v be functions defined on G with continuous partial derivatives which satisfy the Cauchy-Riemann equations on G. Let $z=x+i y \in G$ and let $B(z ; r) \subset G$. If $h=s+i t \in B(0 ; r)$ then

$$
\begin{gathered}
\operatorname{Re}(f(z+h)-f(z))=u(x+s, y+t)-u(x, y) \\
=[u(x+s, y+t)-u(x, y+t)]+[u(x, y+t)-u(x, y)] .
\end{gathered}
$$

Treating the first bracketed quantity as a function of the first variable and the second bracketed quantity as a function of the second variable, we have by the Mean Value Theorem that for some s_{1}, t_{1} where s_{1} is between 0 and s and t_{1} is between 0 and t :

$$
\begin{aligned}
u_{x}\left(x+s_{1}, y+t\right) & =\frac{u(x+s, y+t)-u(x, y+t)}{s-0} \\
u_{y}\left(x, y+t_{1}\right) & =\frac{u(x, y+t)-u(x, y)}{t-0}
\end{aligned}
$$

Theorem III.2.29 (continued 3)

Proof (continued). Define

$$
\begin{equation*}
\varphi(s, t)=[u(x+s, y+t)-u(x, y)]-\left[u_{x}(x, y) s+u_{y}(x, y) t\right] \tag{*}
\end{equation*}
$$

and then
$\frac{\varphi(s, t)}{s+i t}=\frac{s}{s+i t}\left[u_{x}\left(x+s_{1}, y+t\right)-u_{x}(x, y)\right]+\frac{t}{s+i t}\left[u_{y}\left(x, y+t_{1}\right)-u_{y}(x, y)\right]$.
Since $|s| \leq|s+i t|$ and $|t| \leq|s+i t|$, then $\left|\frac{s}{s+i t}\right|$ and $\left|\frac{t}{s+i t}\right|$ are bounded. Since $\left|s_{1}\right|<|s|$ and $\left|t_{1}\right|<|t|$, and the fact that u_{x} and u_{y} are continuous [the continuity of the partials is used here!], then $\lim _{s+i t \rightarrow 0} \frac{\varphi(s, t)}{s+i t}=0$.

$$
\begin{gathered}
u(x+s, y+t)-u(x, y)=u_{x}(x, y) s+u_{y}(x, y) t+\varphi(s, t) \\
\text { where } \lim _{s+i t \rightarrow 0} \frac{\varphi(s, t)}{s+i t}=0 . \quad(* *)
\end{gathered}
$$

Theorem III.2.29 (continued 3)

Proof (continued). Define

$$
\begin{equation*}
\varphi(s, t)=[u(x+s, y+t)-u(x, y)]-\left[u_{x}(x, y) s+u_{y}(x, y) t\right] \tag{*}
\end{equation*}
$$

and then
$\frac{\varphi(s, t)}{s+i t}=\frac{s}{s+i t}\left[u_{x}\left(x+s_{1}, y+t\right)-u_{x}(x, y)\right]+\frac{t}{s+i t}\left[u_{y}\left(x, y+t_{1}\right)-u_{y}(x, y)\right]$.
Since $|s| \leq|s+i t|$ and $|t| \leq|s+i t|$, then $\left|\frac{s}{s+i t}\right|$ and $\left|\frac{t}{s+i t}\right|$ are bounded. Since $\left|s_{1}\right|<|s|$ and $\left|t_{1}\right|<|t|$, and the fact that u_{x} and u_{y} are continuous [the continuity of the partials is used here!], then $\lim _{s+i t \rightarrow 0} \frac{\varphi(s, t)}{s+i t}=0$. So by $(*)$,

$$
\begin{gathered}
u(x+s, y+t)-u(x, y)=u_{x}(x, y) s+u_{y}(x, y) t+\varphi(s, t) \\
\text { where } \lim _{s+i t \rightarrow 0} \frac{\varphi(s, t)}{s+i t}=0 . \quad(* *)
\end{gathered}
$$

Theorem III.2.29 (continued 4)

Proof (continued). Similarly

$$
\begin{gathered}
v(x+s, y+t)-v(x, y)=v_{x}(x, y) s+v_{y}(x, y) t+\psi(s, t) \\
\text { where } \lim _{s+i t \rightarrow 0} \frac{\psi(s, t)}{s+i t}=0 . \quad(* * *)
\end{gathered}
$$

Now

$$
\begin{array}{r}
\frac{f(z+s+i t)-f(z)}{s+i t}=\frac{\operatorname{Re}(f(z+s+i t)-f(z))+i \operatorname{lm}(f(z+s+i t)-f(z))}{s+i t} \\
=\frac{u(x+s, y+t)-u(x, y)+i(v(x+s, y+t)-v(x, y))}{s+i t} \\
=\frac{\left(u_{x}(x, y) s+u_{y}(x, y) t+\varphi(s, t)\right)+i\left(v_{x}(x, y) s+v_{y}(x, y) t+\psi(s, t)\right)}{s+i t \quad \text { by }(* *) \text { and }(* * *)} \\
=\frac{\left(u_{x}(x, y) s-v_{x}(x, y) t\right)+i\left(v_{x}(x, y) s+u_{x}(x, y) t\right)}{s+i t \quad}+\frac{\varphi(s, t)+i \psi(s, t)}{s+i t} \\
\text { by the Cauchy-Riemann equations }
\end{array}
$$

Theorem III.2.29 (continued 5)

Proof (continued).

$$
\begin{gathered}
=u_{x}(x, y)+\frac{i^{2} v_{x}(x, y) t+i v_{x}(x, y) s}{s+i t}+\frac{\varphi(s, t)+i \psi(s, t)}{s+i t} \\
=u_{x}(x, y)+i v_{x}(x, y)+\frac{\varphi(s, t)+i \psi(s, t)}{s+i t}
\end{gathered}
$$

With $s+i t \rightarrow 0$ and since f is differentiable,

$$
f^{\prime}(z)=u_{x}(x, y)+i v_{x}(x, y)
$$

Since u_{x} and v_{x} are continuous, then f^{\prime} is continuous and so f is analytic (i.e., continuously differentiable).

