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Proposition III.2.2. Differentiable implies Continuous

Proposition III.2.2

Proposition III.2.2. If f : G → C is differentiable at a ∈ G , then f is
continuous at a.

Proof. We have

lim
z→a

|f (z)− f (a)| = lim
z→a

|f (z)− f (a)|
|z − a|

|z − a|

= lim
z→a

∣∣∣∣ f (z)− f (a)

z − a

∣∣∣∣ lim
z→a

|z − a| since the limit

of a product is the product of the limits

(provided the component limits exist)

= |f ′(a)| · 0 = 0.

Therefore limz→a f (z) = f (a) and f is continuous at a, as claimed.

() Complex Analysis October 10, 2023 3 / 26



Proposition III.2.2. Differentiable implies Continuous

Proposition III.2.2

Proposition III.2.2. If f : G → C is differentiable at a ∈ G , then f is
continuous at a.

Proof. We have

lim
z→a

|f (z)− f (a)| = lim
z→a

|f (z)− f (a)|
|z − a|

|z − a|

= lim
z→a

∣∣∣∣ f (z)− f (a)

z − a

∣∣∣∣ lim
z→a

|z − a| since the limit

of a product is the product of the limits

(provided the component limits exist)

= |f ′(a)| · 0 = 0.

Therefore limz→a f (z) = f (a) and f is continuous at a, as claimed.

() Complex Analysis October 10, 2023 3 / 26



Chain Rule

Chain Rule

Chain Rule. Let f and g be analytic on G and Ω respectively and
suppose f (G ) ⊂ Ω. Then g ◦ f is analytic on G and
(g ◦ f )′(z) = g ′(f (z))f ′(z) for all z ∈ G .

Proof. Fix z0 ∈ G and choose r > 0 such that
B(z0; r) = {z ∈ C | |z − z0| < r} ⊂ G . Since g ◦ f is continuous at z0 by
Proposition III.2.2 (and properties of continuous functions), it is sufficient
to show that if 0 < |hn| < r and lim hn = 0, then
limn→∞((g(f (z0 + hn))− g(f (z0))/hn) exists and equals g ′(f (z0))f

′(z0).

Case 1. Suppose f (z0) 6= f (z0 + hn) for all n. Then

g ◦ f (z0 + hn)− g ◦ f (z0)

hn
=

g(f (z0 + hn))− g(f (z0))

f (z0 + hn)− f (z0)

f (z0 + hn)− f (z0)

hn
.

By Proposition III.2.2, limn→∞(f (z0 + hn)− f (z0)) = 0, so the limit is
g ′(f (z0))f

′(z0).
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Chain Rule

Chain Rule (continued)

Chain Rule. Let f and g be analytic on G and Ω respectively and
suppose f (G ) ⊂ Ω. Then g ◦ f is analytic on G and
(g ◦ f )′(z) = g ′(f (z))f ′(z) for all z ∈ G .

Proof (continued). Case 2. Suppose f (z0) = f (z0 + hn) for infinitely
many n. Then write {hn} as the union of two sequences {kn} and {`n}
where f (z0) 6= f (z0 + kn) and f (z0) = f (z0 + `n) for all n. Since f is

differentiable, f ′(z0) = limn→∞
f (z0+`n)−f (z0)

`n
= limn→∞

0
`n

= 0. Also,

limn→∞
g◦f (z0+`n)−g◦f (z0)

`n
= limn→∞

0
`n

= 0. By Case 1,

limn→∞
g◦f (z0+kn)−g◦f (z0)

kn
= g ′(f (z0))f

′(z0). Since f (z0) = f (z0 + hn) for
infinitely many hn and f is continuous at z0, then f ′(z0) = 0. Therefore

limn→∞
g◦f (z0+kn)−g◦f (z0)

hn
= 0 = g ′(f (z0))f

′(z0). Combining Case 1 and
case 2, the result follows.
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Chain Rule (continued)
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Proposition III.2.5

Proposition III.2.5

Proposition III.2.5. Let f (z) =
∞∑

n=0

an(z − a)n have radius of

convergence R > 0. Then:

(a) for k ≥ 1 the series

∞∑
n=k

n(n − 1) · · · (n − k + 1)an(z − a)n−k

has radius of convergence R,

(b) The function f is infinitely differentiable on B(a;R) and the
series of (a) equals f (k)(z) for all k ≥ 1 and |z − a| < R, and

(c) for n ≥ 0, an =
1

n!
f (n)(a).

Proof. Without loss of generality, assume a = 0. (a) We prove (a) for
k = 1 and the result follows in general by induction. By definition,
1/R = lim sup |an|1/n.
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Proposition III.2.5

Proposition III.2.5 (continued 1)

Proposition III.2.5. Let f (z) =
∞∑

n=0

an(z − a)n have radius of

convergence R > 0. Then:

(a) for k ≥ 1 the series∑∞
n=k n(n − 1) · · · (n − k + 1)an(z − a)n−k has radius of

convergence R.

Proof (continued). With k = 1, we consider
∑∞

n=1 nanz
n−1 and need to

show that 1/R = lim sup |nan|1/(n−1). By L’Hopital’s Rule,
limn→∞ n1/(n−1) = 1. So, by Exercise III.2.2,

lim sup |nan|1/(n−1) = lim n1/(n−1) lim sup |an|1/(n−1) = lim sup |an|1/(n−1).

We now need to show that 1/R = lim sup |an|1/(n−1). Let
1/R ′ = lim sup |an|1/(n−1). Then R ′ is the radius of convergence of

∞∑
n=1

anz
n−1 =

∞∑
n=0

an+1z
n.
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Proposition III.2.5

Proposition III.2.5 (continued 2)

Proposition III.2.5. Let f (z) =
∞∑

n=0

an(z − a)n have radius of

convergence R > 0. Then:

(a) for k ≥ 1 the series∑∞
n=k n(n − 1) · · · (n − k + 1)an(z − a)n−k has radius of

convergence R.

Proof (continued). Now, z
∑∞

n=0 an+1z
n + a0 =

∑∞
n=0 anz

n and so if
|z | < R ′ then

∑∞
n=0 |anz

n| = |a0|+ |z |
∑∞

n=0 |an+1z
n| <∞. So R ′ ≤ R. If

|z | < R and z 6= 0 then
∑∞

n=0 |anz
n| <∞ and

∞∑
n=0

|an+1z
n| = 1

|z |

∞∑
n=0

|anz
n| − 1

|z |
|a0| <∞

and so R ≤ R ′. Therefore R = R ′. �
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Proposition III.2.5

Proposition III.2.5 (continued 3)

Proposition III.2.5. Let f (z) =
∞∑

n=0

an(z − a)n have radius of

convergence R > 0. Then:

(b) The function f is infinitely differentiable on B(a;R) and the
series of (a) equals f (k)(z) for all k ≥ 1 and |z − a| < R.

Proof. (b) For |z | < R put g(z) =
∑∞

n=1 nanz
n−1, sn(z) =

∑n
k=0 akzk

and Rn(z) =
∑∞

k=n+1 akzk (so f (z) = sn(z) + Rn(z)). Fix
w ∈ B(0;R) = {z | |z − 0| < R} and fix r with |w | < r < R. We will
show f ′(w) = g(w).

Let δ1 > 0 be such that
B(w , δ1) = {z | |w − z | ≤ δ1} ⊂ B(0; r) = {z | |z − 0| < r}. Let
z ∈ B(w ; δ1). Then

f (z)− f (w)

z − w
− g(w) =

(
sn(z)− sn(w)

z − w
− s ′n(w)

)
+
(
s ′n(w)− g(w)

)
+

(
Rn(z)− Rn(w)

z − w

)
. (2.8)
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Proposition III.2.5

Proposition III.2.5 (continued 4)

Proposition III.2.5. Let f (z) =
∞∑

n=0

an(z − a)n have radius of

convergence R > 0. Then:

(b) The function f is infinitely differentiable on B(a;R) and the
series of (a) equals f (k)(z) for all k ≥ 1 and |z − a| < R.

Proof (continued). (b) Now

Rn(z)− Rn(w)

z − w
=

1

z − w

( ∞∑
k=n+1

ak(zk − wk)

)
=

∞∑
k=n+1

ak

(
zk − wk

z − w

)
.

But
|zk − wk |
|z − w |

= |zk−1 + zk−2w + · · ·+ zwk−2 + wk−1| ≤ krk−1 (since

w , z < r). Hence, ∣∣∣∣Rn(z)− Rn(w)

z − w

∣∣∣∣ ≤ ∞∑
k=n+1

|ak |krk−1.
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Proposition III.2.5

Proposition III.2.5 (continued 5)

Proposition III.2.5. Let f (z) =
∞∑

n=0

an(z − a)n have radius of

convergence R > 0. Then:

(b) The function f is infinitely differentiable on B(a;R) and the
series of (a) equals f (k)(z) for all k ≥ 1 and |z − a| < R.

Proof (continued). (b) Since r < R, then
∑∞

n=1 |ak |krk−1 converges
(consider part (a) with |z | = r < R). So for any ε > 0 there is N1 ∈ N
such that for all n ≥ N1, we have

∣∣∣Rn(z)−Rn(w)
z−w

∣∣∣ < ε
3 (here, z ∈ B(w ; δ1)).

By the definitions of sn and g , limn→∞ s ′n(w) = g(w), so there exists
N2 ∈ N such that for all n ≥ N2 we have |s ′n(w)− g(w)| < ε/3. Let
n = max{N1,N2}. Then there is δ2 > 0 such that∣∣∣ sn(z)−sn(w)

z−w − s ′n(w)
∣∣∣ < ε

3 whenever 0 < |z − w | < δ2. With z ∈ B(w ; δ),

z 6= w , where δ = min{δ1, δ2} we have from (2.8) that
∣∣∣ f (z)−f (w)

z−w

∣∣∣ < ε.

That is, f ′(w) = g(w). �
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Proposition III.2.5

Proposition III.2.5 (continued 6)

Proposition III.2.5. Let f (z) =
∞∑

n=0

an(z − a)n have radius of

convergence R > 0. Then:

(c) For n ≥ 0, an =
1

n!
f (n)(a).

Proof. From part (a), we have f (k)(0) = k!ak and the result follows.
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Proposition III.2.10

Proposition III.2.10.

Proposition III.2.10. If G is open and connected and f : G → C is
differentiable with f ′(z) = 0 for all a ∈ C, then f is constant.

Proof. Fix z0 ∈ G and denote ω0 = f (z0). Let A = {z ∈ G | f (z) = ω0}.
Let z ∈ G and {zn} ⊂ A where z = lim zn. Since f (zn) = ω0 for n ∈ N
(each zn ∈ A) and f is continuous (since f is differentiable; Proposition
III.2.2) then f (z) = f (lim zn) = lim f (zn) = ω0, and so z ∈ A. So A
contains all of its limit points and by Proposition II.3.4 A is closed in G .

Next, fix a ∈ A and let ε > 0 be such that B(a; ε) ⊂ G (since G is open).
If x ∈ B(a; ε), set g(t) = f (tz + (1− t)a) for t ∈ [0, 1]:
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Proposition III.2.10

Proposition III.2.10 (continued).

Proposition III.2.10 (continued). If G is open and connected and
f : G → C is differentiable with f ′(z) = 0 for all a ∈ C, then f is constant.

Proof (continued). Now g : [0, 1] → C is a composition of differentiable
f : G → C with h : [0, 1] → G where h(t) = tz + (1− t)a. To differentiate
g , we need a version of the Chain Rule which is applicable to this
setting—this is given in Appendix A on page 304 in Proposition A.4.
So

g ′(t) = lim
t→s

g(t)− g(s)

t − s
= f ′(tz + (1− t)a)(z − a) = 0

since f ′(z) = 0 for z ∈ G . So g ′(t) = 0 for t ∈ [0, 1] and hence (by
Proposition A.3 of Appendix A on page 303, as applied to g : [0, 1] → C)
we have that g is constant. Therefore, f (z) = g(1) = g(0) = f (a) = ω0.
Hence B(a; ε) ⊂ A and A is open in G .
Since A is both open and closed in G , a 6= ∅ (since a ∈ A), and G is
connected, then A = G . That is, f is constant on G .
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Lemma III.2.A. Properties of ez

Lemma III.2.A

Lemma III.2.A. Properties of ez include:

(a) ea+b = eaeb,

(b) ez 6= 0 for all z ∈ C,

(c) ez = ez , and

(d) |ez | = eRe(z).

Proof.
(a) Define g(z) = ezea+b−z for given a, b ∈ C. Then
g ′(z) = ezea+b−z + ez(−ea+b−z) = 0. So by Proposition 2.10, g(z) is
constant for all z ∈ C. With z = 0, we have g(0) = e0ea+b = ea+b, so
ezea+b−z = ea+b for all z ∈ C. With z = b we have ebea = ea+b, as
claimed.

(b) By part (a) we have 1 = e0 = eze−z for all z ∈ C, and so ez 6= 0 for
all z ∈ C, as claimed.
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Lemma III.2.A. Properties of ez

Lemma III.2.A (continued 1)

Lemma III.2.A. Properties of ez include:

(c) ez = ez , and

(d) |ez | = eRe(z).

Proof (continued).
(c) Since ez =

∑∞
n=0

zn

n! , then

ez =

( ∞∑
n=0

zn

n!

)
=

(
lim

N→∞

N∑
n=0

zn

n!

)

= lim
N→∞

N∑
n=0

(
zn

n!

)
since conjugation is continuous,

and Theorem I.2.A

=
∞∑

n=0

(z)n

n!
= ez , as claimed.
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Lemma III.2.A. Properties of ez

Lemma III.2.A (continued 2)

Lemma III.2.A. Properties of ez include:

(a) ea+b = eaeb,

(b) ez 6= 0 for all z ∈ C,

(c) ez = ez , and

(d) |ez | = eRe(z).

Proof (continued).
(d) By (c) we have

|ez |2 = ezez = ezez = ez+z by (a)

and so |ez |2 = e2Re(z) and |ez | = eRe(z), as claimed.
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Proposition III.2.19

Proposition III.2.19

Proposition III.2.19. If G ⊆ C is open and connected and f is a branch
of log z on G , then the totality of branches of log z are the functions
{f (z) + 2kπi | k ∈ Z}.

Proof. First, if g(z) = f (z) + 2kπi , then

exp(g(z)) = exp(f (z) + 2kπi) = exp(f (z)) exp(2kπi) = exp(f (z)) = z ,

so g is a branch of log z .

Secondly, if z ∈ G and f and g are both branches
of log z , then exp(f (z)− g(z)) = exp(f (z))/ exp(g(z)) = z/z = 1 and so
f (z)− g(z) = 2kπi for some k ∈ Z. Notice that by defining
h(z) = 1

2πi (f (z)− g(z)), we now have that h(z) ⊂ Z (it’s the “k” above).
Since h is continuous and G is connected, then h(G ) is a connected subset
of Z. Therefore h(G ) = {k} for some fixed k ∈ Z and the same k “works”
for each z ∈ G .
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Proposition III.2.20

Proposition III.2.20

Proposition III.2.20. Let G and Ω be open subsets of C. Let f : G → C
and g : Ω → C be continuous where f (G ) ⊆ Ω and g(f (z)) = z for all
z ∈ G . If g is differentiable and g ′(z) = 0, then f is differentiable and

f ′(z) =
1

g ′(f (z))
. If g is analytic, then f is analytic.

Proof. Fix a ∈ G and let h ∈ C such that h 6= 0 and a + h ∈ G . Then
a = g(f (a)) (since g(f (z)) = z) and a + h = g(f (a + h)) implies
g(f (a)) 6= g(f (a + h)) and so f (a) 6= f (a + h) (or else these two would be
equal since it would be g evaluated at the same point). So

1 =
(a + h)− (a)

h
=

g(f (a + h))− g(f (a))

h

=
g(f (a + h))− g(f (a))

f (a + h)− f (a)

f (a + h)− f (a)

h
.
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Proposition III.2.20

Proposition III.2.20 (continued)

Proposition III.2.20. Let G and Ω be open subsets of C. Let f : G → C
and g : Ω → C be continuous where f (G ) ⊆ Ω and g(f (z)) = z for all
z ∈ G . If g is differentiable and g ′(z) = 0, then f is differentiable and

f ′(z) =
1

g ′(f (z))
. If g is analytic, then f is analytic.

Proof (continued). The limit is of course 1, and since
limh→0(f (a + h)− f (a)) = 0, then

lim
h→0

g(f (a + h))− g(f (a))

f (a + h)− f (a)
= g ′(f (a)) 6= 0.

Hence limh→0
f (a+h)−f (a)

h = f ′(a) exists and f ′(a) = 1/g ′(f (a)). So
f ′(z) = 1/g ′(f (z)) for z ∈ G . If g is analytic, then g ′ is continuous, and
g ′(f (z)) is continuous. Therefore, f is analytic.
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Theorem III.2.29

Theorem III.2.29

Theorem III.2.29. Let u and v be real-valued functions defined on a
region G and suppose u and v have continuous partial derivatives (so we
view u and v as functions of x and y where z = x + iy). Then f : G → C
defined by f (z) = u(z) + iv(z) is analytic if and only if the
Cauchy-Riemann equations are satisfied.
Proof. (Analytic implies Cauchy-Riemann) Let f : G → C be analytic and
for z = x + iy ∈ G , f (z) = f (x + iy) = u(x , y) + iv(x , y). We know

f ′(z) = limh→0
f (x+h)−f (z)

h exists. We consider the limit along two paths.
We have for h ∈ R

f (z + h)− f (z)

h
=

f (x + h + iy)− f (x + iy)

h

=

(
u(x + h, y)− u(x , y)

h

)
+ i

(
v(x + h, y)− v(x , y)

h

)
and when h ∈ R and h → 0 we see that. . .
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Theorem III.2.29

Theorem III.2.29 (continued 1)

Proof (continued).

f ′(z) =
∂u

∂x
(x , y) + i

∂v

∂x
(x , y).

Next, let h ∈ R and ih → 0. Then

f (z + ih)− f (z)

ih
=

(
u(x , y + h)− u(x , y)

ih

)
+ i

(
v(x , y + h)− v(x , y)

ih

)

= −i

(
u(x , y + h)− u(x , y)

h

)
+

(
v(x , y + h)− v(x , y)

h

)
and so f ′(z) = −i

∂u

∂y
(x , y) +

∂v

∂y
(x , y). Therefore,

∂u

∂x
(x , y) =

∂v

∂y
(x , y)

and
∂u

∂y
(x , y) = −∂v

∂x
(x , y). That is, the Cauchy-Riemann equations are

necessary. (We have only used differentiability here!)
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Theorem III.2.29

Theorem III.2.29 (continued 1)

Proof (continued).
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Theorem III.2.29

Theorem III.2.29 (continued 2)

Proof (continued). (Cauchy-Riemann implies analytic) Let G be a region
and let u and v be functions defined on G with continuous partial
derivatives which satisfy the Cauchy-Riemann equations on G . Let
z = x + iy ∈ G and let B(z ; r) ⊂ G . If h = s + it ∈ B(0; r) then

Re(f (z + h)− f (z)) = u(x + s, y + t)− u(x , y)

= [u(x + s, y + t)− u(x , y + t)] + [u(x , y + t)− u(x , y)].

Treating the first bracketed quantity as a function of the first variable and
the second bracketed quantity as a function of the second variable, we
have by the Mean Value Theorem that for some s1, t1 where s1 is between
0 and s and t1 is between 0 and t:

ux(x + s1, y + t) =
u(x + s, y + t)− u(x , y + t)

s − 0
,

uy (x , y + t1) =
u(x , y + t)− u(x , y)

t − 0
.
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Theorem III.2.29

Theorem III.2.29 (continued 3)

Proof (continued). Define

ϕ(s, t) = [u(x + s, y + t)− u(x , y)]− [ux(x , y)s + uy (x , y)t] (∗)

and then

ϕ(s, t)

s + it
=

s

s + it
[ux(x+s1, y+t)−ux(x , y)]+

t

s + it
[uy (x , y+t1)−uy (x , y)].

Since |s| ≤ |s + it| and |t| ≤ |s + it|, then
∣∣∣ s
s+it

∣∣∣ and
∣∣∣ t
s+it

∣∣∣ are bounded.

Since |s1| < |s| and |t1| < |t|, and the fact that ux and uy are continuous

[the continuity of the partials is used here!], then lims+it→0
ϕ(s,t)
s+it = 0. So

by (∗),
u(x + s, y + t)− u(x , y) = ux(x , y)s + uy (x , y)t + ϕ(s, t)

where lims+it→0
ϕ(s,t)
s+it = 0. (∗∗)
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Theorem III.2.29

Theorem III.2.29 (continued 4)

Proof (continued). Similarly
v(x + s, y + t)− v(x , y) = vx(x , y)s + vy (x , y)t + ψ(s, t)

where lims+it→0
ψ(s,t)
s+it = 0. (∗ ∗ ∗)

Now

f (z + s + it)− f (z)

s + it
=

Re(f (z + s + it)− f (z)) + i Im(f (z + s + it)− f (z))

s + it

=
u(x + s, y + t)− u(x , y) + i(v(x + s, y + t)− v(x , y))

s + it

=
(ux(x , y)s + uy (x , y)t + ϕ(s, t)) + i(vx(x , y)s + vy (x , y)t + ψ(s, t))

s + it

by (∗∗) and (∗ ∗ ∗)

=
(ux(x , y)s−vx(x , y)t) + i(vx(x , y)s + ux(x , y)t)

s + it
+
ϕ(s, t) + iψ(s, t)

s + it

by the Cauchy-Riemann equations
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Theorem III.2.29

Theorem III.2.29 (continued 5)

Proof (continued).

= ux(x , y) +
i2vx(x , y)t + ivx(x , y)s

s + it
+
ϕ(s, t) + iψ(s, t)

s + it

= ux(x , y) + ivx(x , y) +
ϕ(s, t) + iψ(s, t)

s + it
.

With s + it → 0 and since f is differentiable,

f ′(z) = ux(x , y) + ivx(x , y).

Since ux and vx are continuous, then f ′ is continuous and so f is analytic
(i.e., continuously differentiable).
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