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Theorem III.3.4

Theorem III.3.4

Theorem III.3.4. If f : G → C is analytic then f preserves angles at each
point z0 of G where f ′(z0) 6= 0.
Proof. Suppose γ is a smooth path in a region G and f : G → C is
analytic. Then σ = f ◦ γ is smooth and σ′(t) = f ′(γ(t))γ′(t).

Let
z0 = γ(t0) and suppose γ′(t0) 6= 0 and f ′(z0) 6= 0.

Then σ′(t0) = f ′(γ(t0))γ
′(t0) 6= 0 and

arg(σ′(t0)) = arg(f ′(γ(t0)) + arg(γ′(t0)). (∗)
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Theorem III.3.4

Theorem III.3.4 (continued)

Theorem III.3.4. If f : G → C is analytic then f preserves angles at each
point z0 of G where f ′(z0) 6= 0.

Proof (continued). So if γ1 and γ2 are smooth paths which intersect at
x0 and γ′1(t1) 6= 0 6= γ′2(t2), then σ1 = f ◦ γ1 and σ2 = f ◦ γ2 are smooth.
So (∗) implies

arg(σ′1(t1))− arg(σ′2(t2)) = arg(f ′(γ1(t1)) + arg(γ′1(t1))

−{arg(f ′(γ2(t2)) + arg(γ′2(t2))} = arg(γ′1(t1))− arg(γ′2(t2)).

That is, an angle between γ1 and γ2 at z0 is the same as the angle
between σ1 = f ◦ γ1 and σ2 = f ◦ γ2.
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Proposition III.3.8

Proposition III.3.8

Proposition III.3.8. If z2, z3, z4 ∈ C∞ are distinct, and T is a Möbius
transformation then (z1, z2, z3, z4) = (Tz1,Tz2,Tz3,Tz4) for any z1 ∈ C∞.

Proof. Let S(z) = (z , z1, z2, z3, z4) (as defined above). Then S is a
Möbius transformation. Define M = S ◦ T−1.

Then M(Tz2) = S(z2) = 1,
M(Tz3) = S(z3) = 0, and M(Tz3) = S(z3) = ∞. Hence
M(z) = S ◦ T−1(z) = (z ,Tz2,Tz3,Tz4). With z = Tz1, we have

S ◦ T−1(Tz1) = (Tz1,Tz2,Tz3,Tz4),

or
S(z1) = (z1, z2, z3, z4) = (Tz1,Tz2,Tz3,Tz4).
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Proposition III.3.9

Proposition III.3.9

Proposition III.3.9. If z2, z3, z4 ∈ C∞ are distinct and ω2, ω3, ω4 ∈ C∞
are distinct, then there is one and only one Möbius transformation such
that S(z2) = ω2, S(z3) = ω3, and S(z4) = ω4.

Proof. Define Tz = (z , z2, z3, z4) and Mz = (z , ω2, ω3, ω4). Let
S = M−1 ◦ T .

Then

S(z2) = M−1 ◦ T (z2) = M−1(1) = ω2,

S(z3) = M−1 ◦ T (z3) = M−1(0) = ω3, and

S(z4) = M−1 ◦ T (z4) = M−1(∞) = ω4.

If R is another Möbius transformation with Rzi = ωi for i = 2, 3, 4, then
R−1 ◦ S fixed z2, z3, z4 and so R−1 ◦ S = I , or R = S . So the
transformation is unique.
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Proposition III.3.10

Proposition III.3.10

Proposition III.3.10. Let z1, z2, z3, z4 ∈ C∞ be distinct. Then the cross
ratio (z1, z2, z3, z4) is real if and only if the four points lie on a circle/cline.

Proof. Let S : C∞ → C∞ be defined as S(z) = (z , z2, z3, z4). Then S(z)
is real if and only if (z , z2, z3, z4) is real. So

{z | (z , z2, z3, z4) ∈ R} = {z | S(z) ∈ R} = {z | z ∈ S−1(R)}.

So we show that the inverse image of R∞ is a circle/cline under any
Möbius transformation. Let S(z) = az+b

cz+d . If z = x ∈ R and if

ω = S−1 6= ∞ (so x 6= −d/c) then x = S(ω) ∈ R and so S(ω) = S(ω).

So aω+b
cω+d = aω+b

cω+d
. Therefore (aω + b)(cω + d) = (cω + d)(aω + b) or

ac |ω|2 + adω + bcω + bd = ac |ω|2 + daω + cbω + db or

(ac − ac)|ω|2 + (ad − cb)ω + (bc − da)ω + (bd − db) = 0. (3.11)
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Proposition III.3.10

Proposition III.3.10 (continued 1)

Proposition III.3.10. Let z1, z2, z3, z4 ∈ C∞ be distinct. Then the cross
ratio (z1, z2, z3, z4) is real if and only if the four points lie on a circle/cline.

Proof (continued).
Case 1. Suppose ac is real.

Then ac − ac = 0. Let α = 2(ad − cb) and

β = i(bd − db). Equation (3.11) then becomes
α

2
ω − α

2
ω − iβ = 0 or

i Im(αω)− iβ = 0 or Im(αω − β) = 0, since

β = i(bd − db) = i(i2Im(bd) = −2Im(bd) ∈ R.

Now Im(αω − β) = 0 for fixed α, β implies that all such ω lie on a line
(see Section I.5).
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Proposition III.3.10

Proposition III.3.10 (continued 2)

Proof (continued).
Case 2. Suppose ac is not real.

Then equation (3.11) becomes

|ω|2 + γω + γω − δ = 0 where γ =
bc − da

ac − ac
and

δ =
bd − bd

ac − ac
=

i2Im(bd)

i2Im(ac)
=

Im(bd)

Im(ac)
∈ R. So

|ω|2 + γω + γω + |γ|2 = |γ|2 + δ, or |ω + γ|2 = (ω + γ)(ω + γ) = |γ|2 + δ.

Hence

|ω + γ| =
√
|γ|2 + δ =

√√√√√bc − da

ac − ac︸ ︷︷ ︸
γ

bc − da

a− ac︸ ︷︷ ︸
γ

+
bd − bd

ac − ac︸ ︷︷ ︸
δ

ac − ac

ac − ac︸ ︷︷ ︸
1

=
1

|ac − ac |
{bcbc−bcda−dabc + dada + bdac−bdac−bdac + bdac}1/2
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ac − ac︸ ︷︷ ︸
γ

bc − da

a− ac︸ ︷︷ ︸
γ

+
bd − bd

ac − ac︸ ︷︷ ︸
δ

ac − ac

ac − ac︸ ︷︷ ︸
1

=
1

|ac − ac |
{bcbc−bcda−dabc + dada + bdac−bdac−bdac + bdac}1/2
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Proposition III.3.10

Proposition III.3.10 (continued 3)

Proposition III.3.10. Let z1, z2, z3, z4 ∈ C∞ be distinct. Then the cross
ratio (z1, z2, z3, z4) is real if and only if the four points lie on a circle/cline.

Proof (continued).

=
1

|ac − ac |
{bcbc−bcda−dabc + dada + bdac−bdac−bdac + bdac}1/2

=
1

|ac − ac |
{bc(bc − ad)−ad(−ad + bc)}1/2

=
1

|ac − ac |

√
(bc − ad)(bc − ad) =

|ad − bc |
|ac − ac |

> 0

since ad − bc 6= 0.

So ω lies on a circle of center −δ with radius∣∣∣∣ad − bc

ac − ac

∣∣∣∣, and the result follows.
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Theorem III.3.14

Theorem III.3.14

Theorem III.3.14. A Möbius transformation takes circles/clines onto
circles/clines.

Proof. Let Γ be a circle/cline in C∞ and let S be a Möbius
transformation. Let z2.z3.z4 ∈ C∞ be distinct points on Γ.

Define
ωj = S(zj) for j = 2, 3, 4. Then ω2, ω3, ω4 determine a circle/cline Γ′ (S is
invertible and so one to one, so ω2, ω3, ω4 are distinct). By Proposition
III.3.8,

(z , z2, z3, z4) = (Sz ,Sz2,Sz3,Sz4) = (Sz , ω2, ω3, ω4)

for each a ∈ C∞. Now for each z ∈ Γ, (z , z2, z3, z4) is real by Proposition
III.3.10. So (Sz , ω2, ω3, ω4) is real and again by Proposition III.3.10, Sz
lies on on Γ′, the circle/cline containing ω2, ω3, ω4. So S(Γ) = Γ′ (recall
that S maps C∞ one to one and onto C∞).
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Theorem III.3.19. Symmetry Principle

Theorem III.3.19. Symmetry Principle

Theorem III.3.19. Symmetry Principle.
If a Möbius transformation takes a circle/cline Γ1 onto the circle/cline Γ2

then any pair of points symmetric with respect to Γ1 are mapped by T
onto a pair of points symmetric with respect to Γ2.

Proof. Let z2, z3, z4 ∈ Γ1 be distinct. Let z and z∗ be symmetric with
respect to Γ1.

Then

(Tz∗,Tz2,Tz3,Tz4) = (z∗, z2, z3, z4) by Proposition III.3.8

= (z , z2, z3, z4) since z and z∗ are symmetric wrt Γ

= (Tz ,Tz2,Tz3,Tz4) by Proposition III.3.8.

So Tz∗ and Tz are symmetric with respect to Γ2 = T (Γ1).
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