Complex Analysis

Chapter III. Elementary Properties and Examples of Analytic Functions
III.3. Analytic Functions as Mappings, Möbius Transformations—Proofs

Table of contents

(1) Theorem III.3.4
(2) Proposition III.3.8
(3) Proposition III.3.9

4 Proposition III.3.10
(5) Theorem III.3.14
(6) Theorem III.3.19. Symmetry Principle

Theorem III.3.4

Theorem III.3.4. If $f: G \rightarrow \mathbb{C}$ is analytic then f preserves angles at each point z_{0} of G where $f^{\prime}\left(z_{0}\right) \neq 0$.
Proof. Suppose γ is a smooth path in a region G and $f: G \rightarrow \mathbb{C}$ is analytic. Then $\sigma=f \circ \gamma$ is smooth and $\sigma^{\prime}(t)=f^{\prime}(\gamma(t)) \gamma^{\prime}(t)$.

Theorem III.3.4

Theorem III.3.4. If $f: G \rightarrow \mathbb{C}$ is analytic then f preserves angles at each point z_{0} of G where $f^{\prime}\left(z_{0}\right) \neq 0$.
Proof. Suppose γ is a smooth path in a region G and $f: G \rightarrow \mathbb{C}$ is analytic. Then $\sigma=f \circ \gamma$ is smooth and $\sigma^{\prime}(t)=f^{\prime}(\gamma(t)) \gamma^{\prime}(t)$. $z_{0}=\gamma\left(t_{0}\right)$ and suppose $\gamma^{\prime}\left(t_{0}\right) \neq 0$ and $f^{\prime}\left(z_{0}\right) \neq 0$.

Theorem III.3.4

Theorem III.3.4. If $f: G \rightarrow \mathbb{C}$ is analytic then f preserves angles at each point z_{0} of G where $f^{\prime}\left(z_{0}\right) \neq 0$.
Proof. Suppose γ is a smooth path in a region G and $f: G \rightarrow \mathbb{C}$ is analytic. Then $\sigma=f \circ \gamma$ is smooth and $\sigma^{\prime}(t)=f^{\prime}(\gamma(t)) \gamma^{\prime}(t)$. Let $z_{0}=\gamma\left(t_{0}\right)$ and suppose $\gamma^{\prime}\left(t_{0}\right) \neq 0$ and $f^{\prime}\left(z_{0}\right) \neq 0$.

Theorem III.3.4

Theorem III.3.4. If $f: G \rightarrow \mathbb{C}$ is analytic then f preserves angles at each point z_{0} of G where $f^{\prime}\left(z_{0}\right) \neq 0$.
Proof. Suppose γ is a smooth path in a region G and $f: G \rightarrow \mathbb{C}$ is analytic. Then $\sigma=f \circ \gamma$ is smooth and $\sigma^{\prime}(t)=f^{\prime}(\gamma(t)) \gamma^{\prime}(t)$. Let $z_{0}=\gamma\left(t_{0}\right)$ and suppose $\gamma^{\prime}\left(t_{0}\right) \neq 0$ and $f^{\prime}\left(z_{0}\right) \neq 0$.

Then $\sigma^{\prime}\left(t_{0}\right)=f^{\prime}\left(\gamma\left(t_{0}\right)\right) \gamma^{\prime}\left(t_{0}\right) \neq 0$ and

$$
\arg \left(\sigma^{\prime}\left(t_{0}\right)\right)=\arg \left(f^{\prime}\left(\gamma\left(t_{0}\right)\right)+\arg \left(\gamma^{\prime}\left(t_{0}\right)\right)\right.
$$

Theorem III.3.4

Theorem III.3.4. If $f: G \rightarrow \mathbb{C}$ is analytic then f preserves angles at each point z_{0} of G where $f^{\prime}\left(z_{0}\right) \neq 0$.
Proof. Suppose γ is a smooth path in a region G and $f: G \rightarrow \mathbb{C}$ is analytic. Then $\sigma=f \circ \gamma$ is smooth and $\sigma^{\prime}(t)=f^{\prime}(\gamma(t)) \gamma^{\prime}(t)$. Let $z_{0}=\gamma\left(t_{0}\right)$ and suppose $\gamma^{\prime}\left(t_{0}\right) \neq 0$ and $f^{\prime}\left(z_{0}\right) \neq 0$.

Then $\sigma^{\prime}\left(t_{0}\right)=f^{\prime}\left(\gamma\left(t_{0}\right)\right) \gamma^{\prime}\left(t_{0}\right) \neq 0$ and

$$
\arg \left(\sigma^{\prime}\left(t_{0}\right)\right)=\arg \left(f^{\prime}\left(\gamma\left(t_{0}\right)\right)+\arg \left(\gamma^{\prime}\left(t_{0}\right)\right)\right.
$$

Theorem III.3.4 (continued)

Theorem III.3.4. If $f: G \rightarrow \mathbb{C}$ is analytic then f preserves angles at each point z_{0} of G where $f^{\prime}\left(z_{0}\right) \neq 0$.

Proof (continued). So if γ_{1} and γ_{2} are smooth paths which intersect at x_{0} and $\gamma_{1}^{\prime}\left(t_{1}\right) \neq 0 \neq \gamma_{2}^{\prime}\left(t_{2}\right)$, then $\sigma_{1}=f \circ \gamma_{1}$ and $\sigma_{2}=f \circ \gamma_{2}$ are smooth. So (*) implies

$$
\begin{gathered}
\arg \left(\sigma_{1}^{\prime}\left(t_{1}\right)\right)-\arg \left(\sigma_{2}^{\prime}\left(t_{2}\right)\right)=\arg \left(f^{\prime}\left(\gamma_{1}\left(t_{1}\right)\right)+\arg \left(\gamma_{1}^{\prime}\left(t_{1}\right)\right)\right. \\
-\left\{\arg \left(f^{\prime}\left(\gamma_{2}\left(t_{2}\right)\right)+\arg \left(\gamma_{2}^{\prime}\left(t_{2}\right)\right)\right\}=\arg \left(\gamma_{1}^{\prime}\left(t_{1}\right)\right)-\arg \left(\gamma_{2}^{\prime}\left(t_{2}\right)\right) .\right.
\end{gathered}
$$

Theorem III.3.4 (continued)

Theorem III.3.4. If $f: G \rightarrow \mathbb{C}$ is analytic then f preserves angles at each point z_{0} of G where $f^{\prime}\left(z_{0}\right) \neq 0$.

Proof (continued). So if γ_{1} and γ_{2} are smooth paths which intersect at x_{0} and $\gamma_{1}^{\prime}\left(t_{1}\right) \neq 0 \neq \gamma_{2}^{\prime}\left(t_{2}\right)$, then $\sigma_{1}=f \circ \gamma_{1}$ and $\sigma_{2}=f \circ \gamma_{2}$ are smooth. So (*) implies

$$
\begin{gathered}
\arg \left(\sigma_{1}^{\prime}\left(t_{1}\right)\right)-\arg \left(\sigma_{2}^{\prime}\left(t_{2}\right)\right)=\arg \left(f^{\prime}\left(\gamma_{1}\left(t_{1}\right)\right)+\arg \left(\gamma_{1}^{\prime}\left(t_{1}\right)\right)\right. \\
-\left\{\arg \left(f^{\prime}\left(\gamma_{2}\left(t_{2}\right)\right)+\arg \left(\gamma_{2}^{\prime}\left(t_{2}\right)\right)\right\}=\arg \left(\gamma_{1}^{\prime}\left(t_{1}\right)\right)-\arg \left(\gamma_{2}^{\prime}\left(t_{2}\right)\right) .\right.
\end{gathered}
$$

That is, an angle between γ_{1} and γ_{2} at z_{0} is the same as the angle between $\sigma_{1}=f \circ \gamma_{1}$ and $\sigma_{2}=f \circ \gamma_{2}$.

Theorem III.3.4 (continued)

Theorem III.3.4. If $f: G \rightarrow \mathbb{C}$ is analytic then f preserves angles at each point z_{0} of G where $f^{\prime}\left(z_{0}\right) \neq 0$.

Proof (continued). So if γ_{1} and γ_{2} are smooth paths which intersect at x_{0} and $\gamma_{1}^{\prime}\left(t_{1}\right) \neq 0 \neq \gamma_{2}^{\prime}\left(t_{2}\right)$, then $\sigma_{1}=f \circ \gamma_{1}$ and $\sigma_{2}=f \circ \gamma_{2}$ are smooth. So (*) implies

$$
\begin{gathered}
\arg \left(\sigma_{1}^{\prime}\left(t_{1}\right)\right)-\arg \left(\sigma_{2}^{\prime}\left(t_{2}\right)\right)=\arg \left(f^{\prime}\left(\gamma_{1}\left(t_{1}\right)\right)+\arg \left(\gamma_{1}^{\prime}\left(t_{1}\right)\right)\right. \\
-\left\{\arg \left(f^{\prime}\left(\gamma_{2}\left(t_{2}\right)\right)+\arg \left(\gamma_{2}^{\prime}\left(t_{2}\right)\right)\right\}=\arg \left(\gamma_{1}^{\prime}\left(t_{1}\right)\right)-\arg \left(\gamma_{2}^{\prime}\left(t_{2}\right)\right) .\right.
\end{gathered}
$$

That is, an angle between γ_{1} and γ_{2} at z_{0} is the same as the angle between $\sigma_{1}=f \circ \gamma_{1}$ and $\sigma_{2}=f \circ \gamma_{2}$.

Proposition III.3.8

Proposition III.3.8. If $z_{2}, z_{3}, z_{4} \in \mathbb{C}_{\infty}$ are distinct, and T is a Möbius transformation then $\left(z_{1}, z_{2}, z_{3}, z_{4}\right)=\left(T z_{1}, T z_{2}, T z_{3}, T z_{4}\right)$ for any $z_{1} \in \mathbb{C}_{\infty}$. Proof. Let $S(z)=\left(z, z_{1}, z_{2}, z_{3}, z_{4}\right)$ (as defined above). Then S is a Möbius transformation. Define $M=S \circ T^{-1}$.

Proposition III.3.8

Proposition III.3.8. If $z_{2}, z_{3}, z_{4} \in \mathbb{C}_{\infty}$ are distinct, and T is a Möbius transformation then $\left(z_{1}, z_{2}, z_{3}, z_{4}\right)=\left(T z_{1}, T z_{2}, T z_{3}, T z_{4}\right)$ for any $z_{1} \in \mathbb{C}_{\infty}$. Proof. Let $S(z)=\left(z, z_{1}, z_{2}, z_{3}, z_{4}\right)$ (as defined above). Then S is a Möbius transformation. Define $M=S \circ T^{-1}$. Then $M\left(T z_{2}\right)=S\left(z_{2}\right)=1$, $M\left(T z_{3}\right)=S\left(z_{3}\right)=0$, and $M\left(T z_{3}\right)=S\left(z_{3}\right)=\infty$. Hence $M(z)=S \circ T^{-1}(z)=\left(z, T z_{2}, T z_{3}, T z_{4}\right)$.

Proposition III.3.8

Proposition III.3.8. If $z_{2}, z_{3}, z_{4} \in \mathbb{C}_{\infty}$ are distinct, and T is a Möbius transformation then $\left(z_{1}, z_{2}, z_{3}, z_{4}\right)=\left(T z_{1}, T z_{2}, T z_{3}, T z_{4}\right)$ for any $z_{1} \in \mathbb{C}_{\infty}$. Proof. Let $S(z)=\left(z, z_{1}, z_{2}, z_{3}, z_{4}\right)$ (as defined above). Then S is a Möbius transformation. Define $M=S \circ T^{-1}$. Then $M\left(T z_{2}\right)=S\left(z_{2}\right)=1$, $M\left(T z_{3}\right)=S\left(z_{3}\right)=0$, and $M\left(T z_{3}\right)=S\left(z_{3}\right)=\infty$. Hence $M(z)=S \circ T^{-1}(z)=\left(z, T z_{2}, T z_{3}, T z_{4}\right)$. With $z=T z_{1}$, we have

$$
S \circ T^{-1}\left(T z_{1}\right)=\left(T z_{1}, T z_{2}, T z_{3}, T z_{4}\right),
$$

$$
S\left(z_{1}\right)=\left(z_{1}, z_{2}, z_{3}, z_{4}\right)=\left(T z_{1}, T z_{2}, T z_{3}, T z_{4}\right) .
$$

Proposition III.3.8

Proposition III.3.8. If $z_{2}, z_{3}, z_{4} \in \mathbb{C}_{\infty}$ are distinct, and T is a Möbius transformation then $\left(z_{1}, z_{2}, z_{3}, z_{4}\right)=\left(T z_{1}, T z_{2}, T z_{3}, T z_{4}\right)$ for any $z_{1} \in \mathbb{C}_{\infty}$. Proof. Let $S(z)=\left(z, z_{1}, z_{2}, z_{3}, z_{4}\right)$ (as defined above). Then S is a Möbius transformation. Define $M=S \circ T^{-1}$. Then $M\left(T z_{2}\right)=S\left(z_{2}\right)=1$, $M\left(T z_{3}\right)=S\left(z_{3}\right)=0$, and $M\left(T z_{3}\right)=S\left(z_{3}\right)=\infty$. Hence $M(z)=S \circ T^{-1}(z)=\left(z, T z_{2}, T z_{3}, T z_{4}\right)$. With $z=T z_{1}$, we have

$$
S \circ T^{-1}\left(T_{z_{1}}\right)=\left(T_{z_{1}}, T_{z_{2}}, T_{z_{3}}, T_{z_{4}}\right)
$$

or

$$
S\left(z_{1}\right)=\left(z_{1}, z_{2}, z_{3}, z_{4}\right)=\left(T z_{1}, T z_{2}, T z_{3}, T z_{4}\right) .
$$

Proposition III.3.9

Proposition III.3.9. If $z_{2}, z_{3}, z_{4} \in \mathbb{C}_{\infty}$ are distinct and $\omega_{2}, \omega_{3}, \omega_{4} \in \mathbb{C}_{\infty}$ are distinct, then there is one and only one Möbius transformation such that $S\left(z_{2}\right)=\omega_{2}, S\left(z_{3}\right)=\omega_{3}$, and $S\left(z_{4}\right)=\omega_{4}$.

Proof. Define $T z=\left(z, z_{2}, z_{3}, z_{4}\right)$ and $M z=\left(z, \omega_{2}, \omega_{3}, \omega_{4}\right)$. Let $S=M^{-1} \circ T$.

Proposition III.3.9

Proposition III.3.9. If $z_{2}, z_{3}, z_{4} \in \mathbb{C}_{\infty}$ are distinct and $\omega_{2}, \omega_{3}, \omega_{4} \in \mathbb{C}_{\infty}$ are distinct, then there is one and only one Möbius transformation such that $S\left(z_{2}\right)=\omega_{2}, S\left(z_{3}\right)=\omega_{3}$, and $S\left(z_{4}\right)=\omega_{4}$.

Proof. Define $T z=\left(z, z_{2}, z_{3}, z_{4}\right)$ and $M z=\left(z, \omega_{2}, \omega_{3}, \omega_{4}\right)$. Let $S=M^{-1} \circ T$. Then

$$
\begin{aligned}
& S\left(z_{2}\right)=M^{-1} \circ T\left(z_{2}\right)=M^{-1}(1)=\omega_{2}, \\
& S\left(z_{3}\right)=M^{-1} \circ T\left(z_{3}\right)=M^{-1}(0)=\omega_{3}, \text { and } \\
& S\left(z_{4}\right)=M^{-1} \circ T\left(z_{4}\right)=M^{-1}(\infty)=\omega_{4} .
\end{aligned}
$$

Proposition III.3.9

Proposition III.3.9. If $z_{2}, z_{3}, z_{4} \in \mathbb{C}_{\infty}$ are distinct and $\omega_{2}, \omega_{3}, \omega_{4} \in \mathbb{C}_{\infty}$ are distinct, then there is one and only one Möbius transformation such that $S\left(z_{2}\right)=\omega_{2}, S\left(z_{3}\right)=\omega_{3}$, and $S\left(z_{4}\right)=\omega_{4}$.

Proof. Define $T z=\left(z, z_{2}, z_{3}, z_{4}\right)$ and $M z=\left(z, \omega_{2}, \omega_{3}, \omega_{4}\right)$. Let $S=M^{-1} \circ T$. Then

$$
\begin{aligned}
& S\left(z_{2}\right)=M^{-1} \circ T\left(z_{2}\right)=M^{-1}(1)=\omega_{2}, \\
& S\left(z_{3}\right)=M^{-1} \circ T\left(z_{3}\right)=M^{-1}(0)=\omega_{3}, \text { and } \\
& S\left(z_{4}\right)=M^{-1} \circ T\left(z_{4}\right)=M^{-1}(\infty)=\omega_{4} .
\end{aligned}
$$

If R is another Möbius transformation with $R z_{i}=\omega_{i}$ for $i=2,3,4$, then $R^{-1} \circ S$ fixed z_{2}, z_{3}, z_{4} and so $R^{-1} \circ S=I$, or $R=S$. So the transformation is unique.

Proposition III.3.9

Proposition III.3.9. If $z_{2}, z_{3}, z_{4} \in \mathbb{C}_{\infty}$ are distinct and $\omega_{2}, \omega_{3}, \omega_{4} \in \mathbb{C}_{\infty}$ are distinct, then there is one and only one Möbius transformation such that $S\left(z_{2}\right)=\omega_{2}, S\left(z_{3}\right)=\omega_{3}$, and $S\left(z_{4}\right)=\omega_{4}$.

Proof. Define $T z=\left(z, z_{2}, z_{3}, z_{4}\right)$ and $M z=\left(z, \omega_{2}, \omega_{3}, \omega_{4}\right)$. Let $S=M^{-1} \circ T$. Then

$$
\begin{aligned}
& S\left(z_{2}\right)=M^{-1} \circ T\left(z_{2}\right)=M^{-1}(1)=\omega_{2}, \\
& S\left(z_{3}\right)=M^{-1} \circ T\left(z_{3}\right)=M^{-1}(0)=\omega_{3}, \text { and } \\
& S\left(z_{4}\right)=M^{-1} \circ T\left(z_{4}\right)=M^{-1}(\infty)=\omega_{4} .
\end{aligned}
$$

If R is another Möbius transformation with $R z_{i}=\omega_{i}$ for $i=2,3,4$, then $R^{-1} \circ S$ fixed z_{2}, z_{3}, z_{4} and so $R^{-1} \circ S=I$, or $R=S$. So the transformation is unique.

Proposition III.3.10

Proposition III.3.10. Let $z_{1}, z_{2}, z_{3}, z_{4} \in \mathbb{C}_{\infty}$ be distinct. Then the cross ratio $\left(z_{1}, z_{2}, z_{3}, z_{4}\right)$ is real if and only if the four points lie on a circle/cline.

Proof. Let $S: \mathbb{C}_{\infty} \rightarrow \mathbb{C}_{\infty}$ be defined as $S(z)=\left(z, z_{2}, z_{3}, z_{4}\right)$. Then $S(z)$ is real if and only if $\left(z, z_{2}, z_{3}, z_{4}\right)$ is real. So

$$
\left\{z \mid\left(z, z_{2}, z_{3}, z_{4}\right) \in \mathbb{R}\right\}=\{z \mid S(z) \in \mathbb{R}\}=\left\{z \mid z \in S^{-1}(\mathbb{R})\right\} .
$$

So we show that the inverse image of \mathbb{R}_{∞} is a circle/cline under any Möbius transformation. Let $S(z)=\frac{a z+b}{c z+d}$. If $z=x \in \mathbb{R}$ and if $\omega=S^{-1} \neq \infty($ so $x \neq-d / c)$ then $x=S(\omega) \in \mathbb{R}$ and so $S(\omega)=S(\omega)$. So $\frac{a \omega+b}{c \omega+d}=\frac{\bar{a} \bar{\omega}+\bar{b}}{\overline{c \omega}+\bar{d}}$. Therefore $(a \omega+b)(\overline{c \bar{\omega}}+\bar{d})=(c \omega+d)(\overline{a \omega}+\bar{b})$ or $a \bar{c}|\omega|^{2}+a \bar{d} \omega+b \bar{c} \omega+b \bar{d}=\bar{a} c|\omega|^{2}+d \bar{a} \omega+c \bar{b} \omega+d \bar{b}$ or

$$
\begin{equation*}
(a \bar{c}-\bar{a} c)|\omega|^{2}+(a \bar{d}-c \bar{b}) \omega+(b \bar{c}-d \bar{a}) \bar{\omega}+(b \bar{d}-d \bar{b})=0 . \tag{3.11}
\end{equation*}
$$

Proposition III.3.10

Proposition III.3.10. Let $z_{1}, z_{2}, z_{3}, z_{4} \in \mathbb{C}_{\infty}$ be distinct. Then the cross ratio $\left(z_{1}, z_{2}, z_{3}, z_{4}\right)$ is real if and only if the four points lie on a circle/cline.

Proof. Let $S: \mathbb{C}_{\infty} \rightarrow \mathbb{C}_{\infty}$ be defined as $S(z)=\left(z, z_{2}, z_{3}, z_{4}\right)$. Then $S(z)$ is real if and only if $\left(z, z_{2}, z_{3}, z_{4}\right)$ is real. So

$$
\left\{z \mid\left(z, z_{2}, z_{3}, z_{4}\right) \in \mathbb{R}\right\}=\{z \mid S(z) \in \mathbb{R}\}=\left\{z \mid z \in S^{-1}(\mathbb{R})\right\}
$$

So we show that the inverse image of \mathbb{R}_{∞} is a circle/cline under any Möbius transformation. Let $S(z)=\frac{a z+b}{c z+d}$. If $z=x \in \mathbb{R}$ and if $\omega=S^{-1} \neq \infty($ so $x \neq-d / c)$ then $x=S(\omega) \in \mathbb{R}$ and so $S(\omega)=\overline{S(\omega)}$. So $\frac{a \omega+b}{c \omega+d}=\frac{\bar{a} \bar{\omega}+\bar{b}}{\overline{c \omega}+\bar{d}}$. Therefore $(a \omega+b)(\bar{c} \bar{\omega}+\bar{d})=(c \omega+d)(\bar{a} \bar{\omega}+\bar{b})$ or $a \bar{c}|\omega|^{2}+a \bar{d} \omega+b \bar{c} \omega+b \bar{d}=\bar{a} c|\omega|^{2}+d \bar{a} \omega+c \bar{b} \omega+d \bar{b}$ or

$$
\begin{equation*}
(a \bar{c}-\bar{a} c)|\omega|^{2}+(a \bar{d}-c \bar{b}) \omega+(b \bar{c}-d \bar{a}) \bar{\omega}+(b \bar{d}-d \bar{b})=0 . \tag{3.11}
\end{equation*}
$$

Proposition III.3.10 (continued 1)

Proposition III.3.10. Let $z_{1}, z_{2}, z_{3}, z_{4} \in \mathbb{C}_{\infty}$ be distinct. Then the cross ratio $\left(z_{1}, z_{2}, z_{3}, z_{4}\right)$ is real if and only if the four points lie on a circle/cline. Proof (continued). Case 1. Suppose $a \bar{c}$ is real.

Proposition III.3.10 (continued 1)

Proposition III.3.10. Let $z_{1}, z_{2}, z_{3}, z_{4} \in \mathbb{C}_{\infty}$ be distinct. Then the cross ratio $\left(z_{1}, z_{2}, z_{3}, z_{4}\right)$ is real if and only if the four points lie on a circle/cline.

Proof (continued).
Case 1. Suppose $a \bar{c}$ is real. Then $a \bar{c}-\bar{a} c=0$. Let $\alpha=2(a \bar{d}-c b)$ and
$\beta=i(b \bar{d}-d \bar{b})$.

Proposition III.3.10 (continued 1)

Proposition III.3.10. Let $z_{1}, z_{2}, z_{3}, z_{4} \in \mathbb{C}_{\infty}$ be distinct. Then the cross ratio $\left(z_{1}, z_{2}, z_{3}, z_{4}\right)$ is real if and only if the four points lie on a circle/cline.

Proof (continued).
Case 1. Suppose $a \bar{c}$ is real. Then $a \bar{c}-\bar{a} c=0$. Let $\alpha=2(a \bar{d}-c \bar{b})$ and $\beta=i(b \bar{d}-d \bar{b})$. Equation (3.11) then becomes $\frac{\alpha}{2} \omega-\frac{\alpha}{2} \bar{\omega}-i \beta=0$ or $i \operatorname{lm}(\alpha \omega)-i \beta=0$ or $\operatorname{Im}(\alpha \omega-\beta)=0$, since

$$
\beta=i(b \bar{d}-d \bar{b})=i(i 2 \operatorname{lm}(b \bar{d})=-2 \operatorname{lm}(b \bar{d}) \in \mathbb{R}
$$

Proposition III.3.10 (continued 1)

Proposition III.3.10. Let $z_{1}, z_{2}, z_{3}, z_{4} \in \mathbb{C}_{\infty}$ be distinct. Then the cross ratio $\left(z_{1}, z_{2}, z_{3}, z_{4}\right)$ is real if and only if the four points lie on a circle/cline.

Proof (continued).

Case 1. Suppose $a \bar{c}$ is real. Then $a \bar{c}-\bar{a} c=0$. Let $\alpha=2(a \bar{d}-c \bar{b})$ and $\beta=i(b \bar{d}-d \bar{b})$. Equation (3.11) then becomes $\frac{\alpha}{2} \omega-\frac{\bar{\alpha}}{2} \bar{\omega}-i \beta=0$ or $i \operatorname{lm}(\alpha \omega)-i \beta=0$ or $\operatorname{Im}(\alpha \omega-\beta)=0$, since

$$
\beta=i(b \bar{d}-d \bar{b})=i(i 2 \operatorname{lm}(b \bar{d})=-2 \operatorname{lm}(b \bar{d}) \in \mathbb{R}
$$

Now $\operatorname{Im}(\alpha \omega-\beta)=0$ for fixed α, β implies that all such ω lie on a line (see Section I.5).

Proposition III.3.10 (continued 1)

Proposition III.3.10. Let $z_{1}, z_{2}, z_{3}, z_{4} \in \mathbb{C}_{\infty}$ be distinct. Then the cross ratio $\left(z_{1}, z_{2}, z_{3}, z_{4}\right)$ is real if and only if the four points lie on a circle/cline.

Proof (continued).

Case 1. Suppose $a \bar{c}$ is real. Then $a \bar{c}-\bar{a} c=0$. Let $\alpha=2(a \bar{d}-c \bar{b})$ and $\beta=i(b \bar{d}-d \bar{b})$. Equation (3.11) then becomes $\frac{\alpha}{2} \omega-\frac{\bar{\alpha}}{2} \bar{\omega}-i \beta=0$ or $i \operatorname{lm}(\alpha \omega)-i \beta=0$ or $\operatorname{Im}(\alpha \omega-\beta)=0$, since

$$
\beta=i(b \bar{d}-d \bar{b})=i(i 2 \operatorname{lm}(b \bar{d})=-2 \operatorname{lm}(b \bar{d}) \in \mathbb{R}
$$

Now $\operatorname{Im}(\alpha \omega-\beta)=0$ for fixed α, β implies that all such ω lie on a line (see Section I.5).

Proposition III.3.10 (continued 2)

```
Proof (continued).
Case 2. Suppose a\overline{c}\mathrm{ is not real.}
```


Proposition III.3.10 (continued 2)

Proof (continued).

Case 2. Suppose $a \bar{c}$ is not real. Then equation (3.11) becomes
$|\omega|^{2}+\bar{\gamma} \omega+\gamma \bar{\omega}-\delta=0$ where $\gamma=\frac{b \bar{c}-d \bar{a}}{a \bar{c}-\bar{a} c}$ and
$\delta=\frac{\bar{b} d-b \bar{d}}{a \bar{c}-\bar{a} c}=\frac{i 2 \operatorname{lm}(\bar{b} d)}{i 2 \operatorname{lm}(a \bar{c})}=\frac{\operatorname{lm}(\bar{b} d)}{\operatorname{lm}(a \bar{c})} \in \mathbb{R}$.

Proposition III.3.10 (continued 2)

Proof (continued).

Case 2. Suppose $a \bar{c}$ is not real. Then equation (3.11) becomes
$|\omega|^{2}+\bar{\gamma} \omega+\gamma \bar{\omega}-\delta=0$ where $\gamma=\frac{b \bar{c}-d \bar{a}}{a \bar{c}-\bar{a} c}$ and
$\delta=\frac{\bar{b} d-b \bar{d}}{a \bar{c}-\bar{a} c}=\frac{i 2 \operatorname{lm}(\bar{b} d)}{i 2 \operatorname{lm}(a \bar{c})}=\frac{\operatorname{lm}(\bar{b} d)}{\operatorname{lm}(a \bar{c})} \in \mathbb{R}$.
$|\omega|^{2}+\bar{\gamma} \omega+\gamma \bar{\omega}+|\gamma|^{2}=|\gamma|^{2}+\delta$, or $|\omega+\gamma|^{2}=(\omega+\gamma)(\bar{\omega}+\bar{\gamma})=|\gamma|^{2}+\delta$.

Proposition III.3.10 (continued 2)

Proof (continued).

Case 2. Suppose $a \bar{c}$ is not real. Then equation (3.11) becomes
$|\omega|^{2}+\bar{\gamma} \omega+\gamma \bar{\omega}-\delta=0$ where $\gamma=\frac{b \bar{c}-d \bar{a}}{a \bar{c}-\bar{a} c}$ and
$\delta=\frac{\bar{b} d-b \bar{d}}{a \bar{c}-\bar{a} c}=\frac{i 2 \operatorname{lm}(\bar{b} d)}{i 2 \operatorname{lm}(a \bar{c})}=\frac{\operatorname{Im}(\bar{b} d)}{\operatorname{lm}(a \bar{c})} \in \mathbb{R}$. So
$|\omega|^{2}+\bar{\gamma} \omega+\gamma \bar{\omega}+|\gamma|^{2}=|\gamma|^{2}+\delta$, or $|\omega+\gamma|^{2}=(\omega+\gamma)(\bar{\omega}+\bar{\gamma})=|\gamma|^{2}+\delta$.
Hence

Proposition III.3.10 (continued 2)

Proof (continued).

Case 2. Suppose $a \bar{c}$ is not real. Then equation (3.11) becomes
$|\omega|^{2}+\bar{\gamma} \omega+\gamma \bar{\omega}-\delta=0$ where $\gamma=\frac{b \bar{c}-d \bar{a}}{a \bar{c}-\bar{a} c}$ and
$\delta=\frac{\bar{b} d-b \bar{d}}{a \bar{c}-\bar{a} c}=\frac{i 2 \operatorname{lm}(\bar{b} d)}{i 2 \operatorname{lm}(a \bar{c})}=\frac{\operatorname{lm}(\bar{b} d)}{\operatorname{Im}(a \bar{c})} \in \mathbb{R}$. So
$|\omega|^{2}+\bar{\gamma} \omega+\gamma \bar{\omega}+|\gamma|^{2}=|\gamma|^{2}+\delta$, or $|\omega+\gamma|^{2}=(\omega+\gamma)(\bar{\omega}+\bar{\gamma})=|\gamma|^{2}+\delta$.
Hence

$$
\begin{gathered}
|\omega+\gamma|=\sqrt{|\gamma|^{2}+\delta}=\sqrt{\underbrace{\frac{b \bar{c}-d \bar{a}}{a \bar{c}-\bar{a} c}}_{\gamma} \underbrace{\frac{\bar{b} c-\bar{d} a}{\bar{a}-a \bar{c}}}_{\bar{\gamma}}+\underbrace{\frac{\bar{b} d-b \bar{d}}{a \bar{c}-\bar{a} c}}_{\delta} \underbrace{\bar{a} c-a \bar{c}}_{1} \underbrace{\frac{\bar{c} c-a \bar{c}}{}}_{1}} \\
=\frac{1}{|a \bar{c}-\bar{a} c|}\{b \bar{c} \bar{b} c-b \bar{c} \bar{d} a-d \bar{a} \bar{b} c+d \bar{d} \bar{d} a+\bar{b} d \bar{a} c-\bar{b} d a \bar{c}-b \bar{d} \bar{a} c+b \bar{d} a \bar{c}\}^{1 / 2}
\end{gathered}
$$

Proposition III.3.10 (continued 3)

Proposition III.3.10. Let $z_{1}, z_{2}, z_{3}, z_{4} \in \mathbb{C}_{\infty}$ be distinct. Then the cross ratio $\left(z_{1}, z_{2}, z_{3}, z_{4}\right)$ is real if and only if the four points lie on a circle/cline.

Proof (continued).

$=\frac{1}{|a \bar{c}-\bar{a} c|}\{b \bar{c} \bar{b} c-b \bar{c} \bar{d} a-d \bar{a} \bar{b} c+d \bar{a} \bar{d} a+\bar{b} d \bar{a} c-\bar{b} d a \bar{c}-b \bar{d} \bar{a} c+b \bar{d} a \bar{c}\}^{1 / 2}$

$$
\begin{gathered}
=\frac{1}{|a \bar{c}-\bar{a} c|}\{\bar{b} \bar{c}(b c-a d)-\bar{a} \bar{d}(-a d+b c)\}^{1 / 2} \\
=\frac{1}{|a \bar{c}-\bar{a} c|} \sqrt{(\bar{b} \bar{c}-\bar{a} \bar{d})(b c-a d)}=\frac{|a d-b c|}{|a \bar{c}-\bar{a} c|}>0
\end{gathered}
$$

since $a d-b c \neq 0$.

Proposition III.3.10 (continued 3)

Proposition III.3.10. Let $z_{1}, z_{2}, z_{3}, z_{4} \in \mathbb{C}_{\infty}$ be distinct. Then the cross ratio $\left(z_{1}, z_{2}, z_{3}, z_{4}\right)$ is real if and only if the four points lie on a circle/cline.

Proof (continued).
$=\frac{1}{|a \bar{c}-\bar{a} c|}\{b \bar{c} \bar{b} c-b \bar{c} \bar{d} a-d \bar{a} \bar{b} c+d \bar{a} \bar{d} a+\bar{b} d \bar{a} c-\bar{b} d a \bar{c}-b \bar{d} \bar{a} c+b \bar{d} a \bar{c}\}^{1 / 2}$

$$
\begin{aligned}
& =\frac{1}{|a \bar{c}-\bar{a} c|}\{\bar{b} \bar{c}(b c-a d)-\bar{a} \bar{d}(-a d+b c)\}^{1 / 2} \\
= & \frac{1}{|a \bar{c}-\bar{a} c|} \sqrt{(\bar{b} \bar{c}-\bar{a} \bar{d})(b c-a d)}=\frac{|a d-b c|}{|a \bar{c}-\bar{a} c|}>0
\end{aligned}
$$

since $a d-b c \neq 0$. So ω lies on a circle of center $-\delta$ with radius
$\left|\frac{a d-b c}{a \bar{c}-\bar{a} c}\right|$

Proposition III.3.10 (continued 3)

Proposition III.3.10. Let $z_{1}, z_{2}, z_{3}, z_{4} \in \mathbb{C}_{\infty}$ be distinct. Then the cross ratio $\left(z_{1}, z_{2}, z_{3}, z_{4}\right)$ is real if and only if the four points lie on a circle/cline.

Proof (continued).
$=\frac{1}{|a \bar{c}-\bar{a} c|}\{b \bar{c} \bar{b} c-b \bar{c} \bar{d} a-d \bar{a} \bar{b} c+d \bar{a} \bar{d} a+\bar{b} d \bar{a} c-\bar{b} d a \bar{c}-b \bar{d} \bar{a} c+b \bar{d} a \bar{c}\}^{1 / 2}$

$$
\begin{aligned}
& =\frac{1}{|a \bar{c}-\bar{a} c|}\{\bar{b} \bar{c}(b c-a d)-\bar{a} \bar{d}(-a d+b c)\}^{1 / 2} \\
= & \frac{1}{|a \bar{c}-\bar{a} c|} \sqrt{(\bar{b} \bar{c}-\bar{a} \bar{d})(b c-a d)}=\frac{|a d-b c|}{|a \bar{c}-\bar{a} c|}>0
\end{aligned}
$$

since $a d-b c \neq 0$. So ω lies on a circle of center $-\delta$ with radius $\left|\frac{a d-b c}{a \bar{c}-\bar{a} c}\right|$, and the result follows.

Theorem III.3.14

Theorem III.3.14. A Möbius transformation takes circles/clines onto circles/clines.

Proof. Let Γ be a circle/cline in \mathbb{C}_{∞} and let S be a Möbius transformation. Let $z_{2} \cdot z_{3} \cdot z_{4} \in \mathbb{C}_{\infty}$ be distinct points on Γ.

Theorem III.3.14

Theorem III.3.14. A Möbius transformation takes circles/clines onto circles/clines.

Proof. Let Γ be a circle/cline in \mathbb{C}_{∞} and let S be a Möbius transformation. Let $z_{2} \cdot z_{3} \cdot z_{4} \in \mathbb{C}_{\infty}$ be distinct points on Γ. Define $\omega_{j}=S\left(z_{j}\right)$ for $j=2,3,4$. Then $\omega_{2}, \omega_{3}, \omega_{4}$ determine a circle/cline $\Gamma^{\prime}(S$ is invertible and so one to one, so $\omega_{2}, \omega_{3}, \omega_{4}$ are distinct).

Theorem III.3.14

Theorem III.3.14. A Möbius transformation takes circles/clines onto circles/clines.

Proof. Let Γ be a circle/cline in \mathbb{C}_{∞} and let S be a Möbius transformation. Let $z_{2} \cdot z_{3} \cdot z_{4} \in \mathbb{C}_{\infty}$ be distinct points on Γ. Define $\omega_{j}=S\left(z_{j}\right)$ for $j=2,3,4$. Then $\omega_{2}, \omega_{3}, \omega_{4}$ determine a circle/cline $\Gamma^{\prime}(S$ is invertible and so one to one, so $\omega_{2}, \omega_{3}, \omega_{4}$ are distinct). By Proposition III.3.8,

$$
\left(z, z_{2}, z_{3}, z_{4}\right)=\left(S z, S z_{2}, S z_{3}, S z_{4}\right)=\left(S z, \omega_{2}, \omega_{3}, \omega_{4}\right)
$$

for each $a \in \mathbb{C}_{\infty}$. Now for each $z \in \Gamma,\left(z, z_{2}, z_{3}, z_{4}\right)$ is real by Proposition III.3.10.

Theorem III.3.14

Theorem III.3.14. A Möbius transformation takes circles/clines onto circles/clines.

Proof. Let Γ be a circle/cline in \mathbb{C}_{∞} and let S be a Möbius transformation. Let $z_{2} \cdot z_{3} \cdot z_{4} \in \mathbb{C}_{\infty}$ be distinct points on Γ. Define $\omega_{j}=S\left(z_{j}\right)$ for $j=2,3,4$. Then $\omega_{2}, \omega_{3}, \omega_{4}$ determine a circle/cline $\Gamma^{\prime}(S$ is invertible and so one to one, so $\omega_{2}, \omega_{3}, \omega_{4}$ are distinct). By Proposition III.3.8,

$$
\left(z, z_{2}, z_{3}, z_{4}\right)=\left(S z, S z_{2}, S z_{3}, S z_{4}\right)=\left(S z, \omega_{2}, \omega_{3}, \omega_{4}\right)
$$

for each $a \in \mathbb{C}_{\infty}$. Now for each $z \in \Gamma,\left(z, z_{2}, z_{3}, z_{4}\right)$ is real by Proposition III.3.10. So $\left(S z, \omega_{2}, \omega_{3}, \omega_{4}\right)$ is real and again by Proposition III.3.10, $S z$ lies on on Γ^{\prime}, the circle/cline containing $\omega_{2}, \omega_{3}, \omega_{4}$. So $S(\Gamma)=\Gamma^{\prime}$ (recall that S maps \mathbb{C}_{∞} one to one and onto \mathbb{C}_{∞}).

Theorem III.3.14

Theorem III.3.14. A Möbius transformation takes circles/clines onto circles/clines.

Proof. Let Γ be a circle/cline in \mathbb{C}_{∞} and let S be a Möbius transformation. Let $z_{2} \cdot z_{3} \cdot z_{4} \in \mathbb{C}_{\infty}$ be distinct points on Γ. Define $\omega_{j}=S\left(z_{j}\right)$ for $j=2,3,4$. Then $\omega_{2}, \omega_{3}, \omega_{4}$ determine a circle/cline $\Gamma^{\prime}(S$ is invertible and so one to one, so $\omega_{2}, \omega_{3}, \omega_{4}$ are distinct). By Proposition III.3.8,

$$
\left(z, z_{2}, z_{3}, z_{4}\right)=\left(S z, S z_{2}, S z_{3}, S z_{4}\right)=\left(S z, \omega_{2}, \omega_{3}, \omega_{4}\right)
$$

for each $a \in \mathbb{C}_{\infty}$. Now for each $z \in \Gamma,\left(z, z_{2}, z_{3}, z_{4}\right)$ is real by Proposition III.3.10. So $\left(S z, \omega_{2}, \omega_{3}, \omega_{4}\right)$ is real and again by Proposition III.3.10, $S z$ lies on on Γ^{\prime}, the circle/cline containing $\omega_{2}, \omega_{3}, \omega_{4}$. So $S(\Gamma)=\Gamma^{\prime}$ (recall that S maps \mathbb{C}_{∞} one to one and onto $\left.\mathbb{C}_{\infty}\right)$.

Theorem III.3.19. Symmetry Principle

Theorem III.3.19. Symmetry Principle.

If a Möbius transformation takes a circle/cline Γ_{1} onto the circle/cline Γ_{2} then any pair of points symmetric with respect to Γ_{1} are mapped by T onto a pair of points symmetric with respect to Γ_{2}.

Proof. Let $z_{2}, z_{3}, z_{4} \in \Gamma_{1}$ be distinct. Let z and z^{*} be symmetric with respect to Γ_{1}.

Theorem III.3.19. Symmetry Principle

Theorem III.3.19. Symmetry Principle.

If a Möbius transformation takes a circle/cline Γ_{1} onto the circle/cline Γ_{2} then any pair of points symmetric with respect to Γ_{1} are mapped by T onto a pair of points symmetric with respect to Γ_{2}.

Proof. Let $z_{2}, z_{3}, z_{4} \in \Gamma_{1}$ be distinct. Let z and z^{*} be symmetric with respect to Γ_{1}. Then

```
(T\mp@subsup{z}{}{*},T\mp@subsup{z}{2}{},T\mp@subsup{z}{3}{},T\mp@subsup{z}{4}{})=(\mp@subsup{z}{}{*},\mp@subsup{z}{2}{},\mp@subsup{z}{3}{},\mp@subsup{z}{4}{})\mathrm{ by Proposition III.3.8}
=(z,\mp@subsup{z}{2}{},\mp@subsup{z}{3}{},\mp@subsup{z}{4}{})}\mathrm{ since z and z*}\mathrm{ are symmetric wrt }
=(Tz,T\mp@subsup{z}{2}{},T\mp@subsup{T}{3}{},T\mp@subsup{T}{4}{}) by Proposition III.3.8.
```


Theorem III.3.19. Symmetry Principle

Theorem III.3.19. Symmetry Principle.

If a Möbius transformation takes a circle/cline Γ_{1} onto the circle/cline Γ_{2} then any pair of points symmetric with respect to Γ_{1} are mapped by T onto a pair of points symmetric with respect to Γ_{2}.

Proof. Let $z_{2}, z_{3}, z_{4} \in \Gamma_{1}$ be distinct. Let z and z^{*} be symmetric with respect to Γ_{1}. Then

$$
\begin{aligned}
\left(T z^{*}, T z_{2}, T z_{3}, T z_{4}\right) & =\frac{\left(z^{*}, z_{2}, z_{3}, z_{4}\right) \text { by Proposition III.3.8 }}{} \\
& =\overline{\left(z, z_{2}, z_{3}, z_{4}\right)} \text { since } z \text { and } z^{*} \text { are symmetric wrt } \Gamma \\
& =\overline{\left(T z, T z_{2}, T z_{3}, T z_{4}\right)} \text { by Proposition III.3.8. }
\end{aligned}
$$

So $T_{z}{ }^{*}$ and $T z$ are symmetric with respect to $\Gamma_{2}=T\left(\Gamma_{1}\right)$.

Theorem III.3.19. Symmetry Principle

Theorem III.3.19. Symmetry Principle.

If a Möbius transformation takes a circle/cline Γ_{1} onto the circle/cline Γ_{2} then any pair of points symmetric with respect to Γ_{1} are mapped by T onto a pair of points symmetric with respect to Γ_{2}.

Proof. Let $z_{2}, z_{3}, z_{4} \in \Gamma_{1}$ be distinct. Let z and z^{*} be symmetric with respect to Γ_{1}. Then

$$
\begin{aligned}
\left(T z^{*}, T z_{2}, T z_{3}, T z_{4}\right) & =\frac{\left(z^{*}, z_{2}, z_{3}, z_{4}\right) \text { by Proposition III.3.8 }}{} \\
& =\overline{\left(z, z_{2}, z_{3}, z_{4}\right)} \text { since } z \text { and } z^{*} \text { are symmetric wrt } \Gamma \\
& =\overline{\left(T z, T z_{2}, T z_{3}, T z_{4}\right)} \text { by Proposition III.3.8. }
\end{aligned}
$$

So $T z^{*}$ and $T z$ are symmetric with respect to $\Gamma_{2}=T\left(\Gamma_{1}\right)$.

