Complex Analysis

Chapter IV. Complex Integration IV.1. Riemann-Stieltjes Integrals—Proofs

John B. Conway

Functions of One Complex Variable I

Second Edition

D Springer

Table of contents

- **1** Theorem IV.1.3
- 2 Theorem IV.1.4
- 3 Theorem IV.1.9
- Proposition IV.1.13
- 5 Lemma IV.1.19

6 Theorem IV.1.18 (our Fundamental Theorem of Calculus)

Proposition IV.1.3. If $\gamma : [a, b] \to \mathbb{C}$ is piecewise smooth then γ is of bounded variation and

$$V(\gamma) = \int_a^b |\gamma'(t)| \, dt.$$

Proof. Assume that γ is smooth (the case of piecewise smooth following by summing). Let $P = \{a = t_0 < t_1 < \cdots < t_m = b\}$. Then $v(\gamma; P) = \sum |\gamma(t_k) - \gamma(t_{k-1})|$ k=1= $\sum_{k=1}^{m} \left| \int_{t_{k}}^{t_{k}} \gamma'(t) dt \right|$ by the FTC since γ is smooth $\leq \sum_{i=1}^{m} \int_{t_{i-1}}^{t_k} |\gamma'(t)| dt = \int_{a}^{b} |\gamma'(t)| dt.$ Hence γ is of bounded variation since $V(\gamma) \leq \int_{2}^{b} |\gamma'(t)| dt$, (*)

Proposition IV.1.3. If $\gamma : [a, b] \to \mathbb{C}$ is piecewise smooth then γ is of bounded variation and

$$V(\gamma) = \int_a^b |\gamma'(t)| \, dt.$$

Proof. Assume that γ is smooth (the case of piecewise smooth following by summing). Let $P = \{a = t_0 < t_1 < \cdots < t_m = b\}$. Then $v(\gamma; P) = \sum |\gamma(t_k) - \gamma(t_{k-1})|$ k=1= $\sum_{k=1}^{m} \left| \int_{t_{k-1}}^{t_{k}} \gamma'(t) dt \right|$ by the FTC since γ is smooth $\leq \sum_{k=1}^{m} \int_{t_{k-1}}^{t_{k}} |\gamma'(t)| dt = \int_{a}^{b} |\gamma'(t)| dt.$ Hence γ is of bounded variation since $V(\gamma) \leq \int_{a}^{b} |\gamma'(t)| dt$, (*)

Theorem IV.1.3 (continued 1)

Proof (continued). Since γ' is continuous and [a, b] is compact, then γ' is uniformly continuous. So if $\varepsilon > 0$, there exists $\delta_1 > 0$ such that $|s - t| < \delta_1$ implies $|\gamma'(s) - \gamma'(t)| < \varepsilon$. Also by definition of integral, there exists $\delta_2 > 0$ such that if $P = \{a = t_0 < t_1 < \cdots < t_m = b\}$ and $||P|| = \max\{t_k - t_{k-1} \mid 1 \le k \le m\} < \delta_2$ implies $\int_a^b |\gamma'(t)| \, dt - \sum_{k=1}^m |\gamma'(\tau_k)| (t_k - t_{k-1}) | < \varepsilon$ where τ_k is any point in $[t_{k-1}, t_k]$. Hence

$$\int_{a}^{b} |\gamma'(t)| dt < \varepsilon + \sum_{k=1}^{m} |\gamma'(\tau_{k})| (t_{k} - t_{k-1})$$
$$= \varepsilon + \sum_{k=1}^{m} \left| \int_{t_{k-1}}^{t_{k}} \gamma'(\tau_{k}) dt \right| \text{ since } \gamma'(\tau_{k}) \text{ is constant}$$

Theorem IV.1.3 (continued 1)

Proof (continued). Since γ' is continuous and [a, b] is compact, then γ' is uniformly continuous. So if $\varepsilon > 0$, there exists $\delta_1 > 0$ such that $|s - t| < \delta_1$ implies $|\gamma'(s) - \gamma'(t)| < \varepsilon$. Also by definition of integral, there exists $\delta_2 > 0$ such that if $P = \{a = t_0 < t_1 < \cdots < t_m = b\}$ and $||P|| = \max\{t_k - t_{k-1} \mid 1 \le k \le m\} < \delta_2$ implies $\left| \int_a^b |\gamma'(t)| \, dt - \sum_{k=1}^m |\gamma'(\tau_k)| (t_k - t_{k-1}) \right| < \varepsilon$ where τ_k is any point in $[t_{k-1}, t_k]$. Hence

$$\int_{a}^{b} |\gamma'(t)| dt < \varepsilon + \sum_{k=1}^{m} |\gamma'(\tau_{k})|(t_{k} - t_{k-1})$$
$$= \varepsilon + \sum_{k=1}^{m} \left| \int_{t_{k-1}}^{t_{k}} \gamma'(\tau_{k}) dt \right| \text{ since } \gamma'(\tau_{k}) \text{ is constant}$$

Theorem IV.1.3 (continued 2)

Proof (continued).

$$\begin{split} \int_{a}^{b} |\gamma'(t)| \, dt &< \varepsilon + \sum_{k=1}^{m} \left| \int_{t_{k-1}}^{t_{k}} [\gamma'(\tau_{k}) - \gamma'(t) + \gamma'(t)] \, dt \right| \\ &\leq \varepsilon + \sum_{k=1}^{m} \left| \int_{t_{k-1}}^{t_{k}} [\gamma'(\tau_{k}) - \gamma'(t)] \, dt \right| + \sum_{k=1}^{m} \left| \int_{t_{k-1}}^{t_{k}} \gamma'(t) \, dt \right| \end{split}$$

If $\|P\| < \delta = \min\{\delta_1, \delta_2\}$ then $|\gamma'(\tau_k) - \gamma'(t)| < \varepsilon$ for $t \in [t_{k-1}, t_k]$ and

$$\int_{a}^{b} |\gamma'(t)| \, dt < \varepsilon + \varepsilon(b-a) + \sum_{k=1}^{m} |\gamma(t_k) - \gamma(t_{k-1})|$$

$$=\varepsilon[1+(b-a)]+v(\gamma;P)\leq\varepsilon[1+b-a]+V(\gamma).$$

Since $\varepsilon > 0$ is arbitrary, $\int_a^b |\gamma'(t)| dt \le V(\gamma)$, and we have equality combining with (*).

Theorem IV.1.3 (continued 2)

Proof (continued).

$$\begin{split} \int_{a}^{b} |\gamma'(t)| \, dt &< \varepsilon + \sum_{k=1}^{m} \left| \int_{t_{k-1}}^{t_{k}} [\gamma'(\tau_{k}) - \gamma'(t) + \gamma'(t)] \, dt \right| \\ &\leq \varepsilon + \sum_{k=1}^{m} \left| \int_{t_{k-1}}^{t_{k}} [\gamma'(\tau_{k}) - \gamma'(t)] \, dt \right| + \sum_{k=1}^{m} \left| \int_{t_{k-1}}^{t_{k}} \gamma'(t) \, dt \right| \end{split}$$

If $\|P\| < \delta = \min\{\delta_1, \delta_2\}$ then $|\gamma'(\tau_k) - \gamma'(t)| < \varepsilon$ for $t \in [t_{k-1}, t_k]$ and

$$\int_{a}^{b} |\gamma'(t)| \, dt < \varepsilon + \varepsilon(b-a) + \sum_{k=1}^{m} |\gamma(t_k) - \gamma(t_{k-1})|$$

$$=\varepsilon[1+(b-a)]+v(\gamma;P)\leq\varepsilon[1+b-a]+V(\gamma).$$

Complex Analysis

Since $\varepsilon > 0$ is arbitrary, $\int_a^b |\gamma'(t)| dt \le V(\gamma)$, and we have equality combining with (*).

()

Theorem IV.1.4

Theorem IV.1.4. Let $\gamma : [a, b] \to \mathbb{C}$ be of bounded variation and suppose that $f : [a, b] \to \mathbb{C}$ is continuous. Then there is a complex number I such that for all $\varepsilon > 0$, there exists $\delta > 0$ such that when $P = \{t_0 < t_1 < \cdots t_m\}$ is a partition of [a, b] with $\|P\| = \max\{t_k - t_{k-1}\} < \delta$, then

$$\left|I - \sum_{k=1}^m f(au_k)[\gamma(t_k) - \gamma(t_{k-1})]\right| < arepsilon$$

for whatever choice of points τ_k , where $\tau_k \in [t_{k-1}, t_k]$. The number I is called the *Riemann-Stieltjes integral* of f with respect to γ over [a, b], denoted

$$I = \int_a^b f \, d\gamma = \int_a^b f(t) \, d\gamma(t).$$

Theorem IV.1.4 (continued 1)

Proof. Since *f* is continuous and [a, b] is compact, then *f* is uniformly continuous on [a, b]. So for all $\varepsilon = 1/m$ ($m \in \mathbb{N}$) there exists $\delta_m > 0$ (where we take $\delta_1 > \delta_2 > \delta_3 > \cdots$) such that if $|s - t| < \delta_m$ then |f(s) - f(t)| < 1/m. For each $m \in \mathbb{N}$, let \mathcal{P}_m be the set of all partitions *P* of [a, b] such that $||P|| < \delta_m$. So $\mathcal{P}_1 \supset \mathcal{P}_2 \supset \mathcal{P}_3 \supset \cdots$. Define F_m (for each $m \in \mathbb{N}$) as the closure of the set:

$$\left\{ \sum_{k=1}^n f(\tau_k) [\gamma(t_k) - \gamma(t_{k-1})] \middle| P \in \mathcal{P}_m \text{ and } \tau_k \in (t_{k-1}, t_k) \right\}.$$
 (*)

We now show that the diameter of set (*) is $\leq 2/mV(\gamma)$ for each $m \in \mathbb{N}$ for each $m \in \mathbb{N}$. If $P = \{t_0 < t_1 < \cdots < t_n\}$ is a partition of [a, b], then denote by S(P) a sum of the form $\sum_{k=1}^{n} f(\tau_k)[\gamma(t_k) - \gamma(t_{k-1})]$ where τ_k is any point with $t_{k-1} \leq \tau_k \leq t_k$. Fix $m \in \mathbb{N}$ and let $P \in \mathcal{P}_m$.

Theorem IV.1.4 (continued 1)

Proof. Since *f* is continuous and [a, b] is compact, then *f* is uniformly continuous on [a, b]. So for all $\varepsilon = 1/m$ ($m \in \mathbb{N}$) there exists $\delta_m > 0$ (where we take $\delta_1 > \delta_2 > \delta_3 > \cdots$) such that if $|s - t| < \delta_m$ then |f(s) - f(t)| < 1/m. For each $m \in \mathbb{N}$, let \mathcal{P}_m be the set of all partitions *P* of [a, b] such that $||P|| < \delta_m$. So $\mathcal{P}_1 \supset \mathcal{P}_2 \supset \mathcal{P}_3 \supset \cdots$. Define F_m (for each $m \in \mathbb{N}$) as the closure of the set:

$$\left\{ \sum_{k=1}^n f(\tau_k) [\gamma(t_k) - \gamma(t_{k-1})] \middle| P \in \mathcal{P}_m \text{ and } \tau_k \in (t_{k-1}, t_k) \right\}. \quad (*)$$

We now show that the diameter of set (*) is $\leq 2/mV(\gamma)$ for each $m \in \mathbb{N}$ for each $m \in \mathbb{N}$. If $P = \{t_0 < t_1 < \cdots < t_n\}$ is a partition of [a, b], then denote by S(P) a sum of the form $\sum_{k=1}^n f(\tau_k)[\gamma(t_k) - \gamma(t_{k-1})]$ where τ_k is any point with $t_{k-1} \leq \tau_k \leq t_k$. Fix $m \in \mathbb{N}$ and let $P \in \mathcal{P}_m$.

Theorem IV.1.4 (continued 2)

Proof (continued). (1) Suppose $P \subset Q$ (and so $Q \in \mathcal{P}_m$) such that $Q = P \cup \{t^*\}$ where $t_{p-1} < t^* < t_p$ (so Q contains one more point than P and is a refinement of P). If $t_{p-1} \leq \sigma \leq t^*$ and $t^* \leq \sigma' \leq t_p$ and if

$$\mathcal{S}(Q) = \sum_{k
eq p} f(\sigma_k) [\gamma(t_k) - \gamma(t_{k-1})] + f(\sigma) [\gamma(t^*) - \gamma(t_{p-1})]$$

$$+f(\sigma')[\gamma(t_p)-\gamma(t^*)]$$

then

$$\begin{split} |S(P) - S(Q)| &= |\sum_{k \neq p} f(\tau_k) [\gamma(t_k) - \gamma(t_{k-1})] \\ &+ f(\tau_p) [\gamma(t_p) - \gamma(t_{p-1})] - S(Q)| \\ &= |\sum_{k \neq p} (f(\tau_k) - f(\sigma_k)) [\gamma(t_k) - \gamma(t_{k-1})] + f(\tau_p) [\gamma(t_p) - \gamma(t_{p-1})] \\ &- f(\sigma) [\gamma(t^*) - \gamma(t_{p-1})] - f(\sigma') [\gamma(t_p) - \gamma(t^*)]| \end{split}$$

Theorem IV.1.4 (continued 3)

Proof (continued).

$$\leq \frac{1}{m} \sum_{k \neq p} |\gamma(t_k) - \gamma)t_{k-1}| + |[f(\tau_p) - f(\sigma)][\gamma(t^*) - \gamma(t_{p-1})] \\ + [f(\tau_p) - f(\sigma')][\gamma(t_p) - \gamma(t^*)]| \text{ (since } |\tau_k - \sigma_k| < \delta_m \\ \text{ and so } f(\tau_k) - f(\sigma_k)| < 1/m) \\ \leq \frac{1}{m} \sum_{k \neq p} |\gamma(t_k) - \gamma(t_{k-1})| + \frac{1}{m} |\gamma(t^*) - \gamma(t_{p-1})| + \frac{1}{m} |\gamma(t_p) - \gamma(t^*)| \\ \leq \frac{1}{m} V(\gamma) \text{ (since } t^* - t_{p-1}| < \delta_m \text{ and } |t_p - t^*| < \delta_m).$$

Now if $P \subset Q$ and Q contains several more points than P, then the proof follows similarly.

Theorem IV.1.4 (continued 4)

Proof (continued). Now let *P* and *R* be any two partitions in \mathcal{P}_m . Then $Q = P \cup R$ is a refinement of both *P* and *R*. By the above argument,

$$|S(P)-S(R)|\leq |S(P)-S(Q)|+|S(Q)-S(R)|\leq rac{2}{m}V(\gamma).$$

Therefore, the modulus of the difference of any two elements of set (*) is $\leq \frac{1}{m}V(\gamma)$. That is, the diameter of set (*) is $\leq \frac{2}{m}V(\gamma)$ and so diam $(F_m) \leq \frac{2}{m}V(\gamma)$. So the sets F_m are closed, nested $(F_1 \supset F_2 \supset F_2 \supset \cdots)$, and diam $(F_m) \leq \frac{2}{m}V(\gamma)$ (and so diam $(F_m) \rightarrow 0$ as $m \rightarrow \infty$). Therefore by Cantor's Theorem (Theorem II.3.7), $\bigcap_{m=1}^{\infty}F_m = \{I\}$ for some single $I \in \mathbb{C}$. This value I satisfies the claims of the theorem.

Theorem IV.1.4 (continued 4)

Proof (continued). Now let *P* and *R* be any two partitions in \mathcal{P}_m . Then $Q = P \cup R$ is a refinement of both *P* and *R*. By the above argument,

$$|S(P)-S(R)|\leq |S(P)-S(Q)|+|S(Q)-S(R)|\leq rac{2}{m}V(\gamma).$$

Therefore, the modulus of the difference of any two elements of set (*) is $\leq \frac{1}{m}V(\gamma)$. That is, the diameter of set (*) is $\leq \frac{2}{m}V(\gamma)$ and so diam $(F_m) \leq \frac{2}{m}V(\gamma)$. So the sets F_m are closed, nested $(F_1 \supset F_2 \supset F_2 \supset \cdots)$, and diam $(F_m) \leq \frac{2}{m}V(\gamma)$ (and so diam $(F_m) \rightarrow 0$ as $m \rightarrow \infty$). Therefore by Cantor's Theorem (Theorem II.3.7), $\bigcap_{m=1}^{\infty}F_m = \{I\}$ for some single $I \in \mathbb{C}$. This value I satisfies the claims of the theorem.

Theorem IV.1.9

Theorem IV.1.9. If γ is piecewise smooth and $f : [a, b] \rightarrow \mathbb{C}$ is continuous then

$$\int_a^b f\,d\gamma = \int_a^b f(t)\gamma'(t)\,dt.$$

Proof. Without loss of generality, γ is smooth (the result for piecewise smooth following then from additivity). Also, γ can be represented as $\gamma = \gamma_r + i\gamma_i$ where γ_r and γ_i are real. So also WLOG, $\gamma([a, b]) \subset \mathbb{R}$ (the general result following for complex valued γ by linearity).

Theorem IV.1.9. If γ is piecewise smooth and $f : [a, b] \to \mathbb{C}$ is continuous then

$$\int_a^b f \, d\gamma = \int_a^b f(t) \gamma'(t) \, dt.$$

Proof. Without loss of generality, γ is smooth (the result for piecewise smooth following then from additivity). Also, γ can be represented as $\gamma = \gamma_r + i\gamma_i$ where γ_r and γ_i are real. So also WLOG, $\gamma([a, b]) \subset \mathbb{R}$ (the general result following for complex valued γ by linearity). Let $\varepsilon > 0$ and choose $\delta > 0$ such that if $P = \{a = t_0 < t_1 < t_2 < \cdots < t_n = b\}$ satisfies $||P|| < \delta \text{ then } \left| \int_{a}^{b} f \, d\gamma - \sum_{k=1}^{n} f(\tau_{k}) [\gamma(t_{k}) - \gamma(t_{k-1})] \right| < \frac{\varepsilon}{2} \qquad (1.10)$ and $\left|\int_{a}^{b}f(t)\gamma'(t) dt - \sum_{k=1}^{n}f(\tau_{k})\gamma'(\tau_{k})(t_{k}-t_{k-1})\right| < \frac{\varepsilon}{2}$ (1.11)

for any choice of $\tau_k \in [t_{k-1}, t_k]$ for $k = 1, 2, \ldots, n$.

()

Theorem IV.1.9. If γ is piecewise smooth and $f : [a, b] \to \mathbb{C}$ is continuous then

$$\int_a^b f \, d\gamma = \int_a^b f(t) \gamma'(t) \, dt.$$

Proof. Without loss of generality, γ is smooth (the result for piecewise smooth following then from additivity). Also, γ can be represented as $\gamma = \gamma_r + i\gamma_i$ where γ_r and γ_i are real. So also WLOG, $\gamma([a, b]) \subset \mathbb{R}$ (the general result following for complex valued γ by linearity). Let $\varepsilon > 0$ and choose $\delta > 0$ such that if $P = \{a = t_0 < t_1 < t_2 < \cdots < t_n = b\}$ satisfies $\|P\| < \delta$ then $\left| \int_{2}^{b} f \, d\gamma - \sum_{k=1}^{n} f(\tau_{k}) [\gamma(t_{k}) - \gamma(t_{k-1})] \right| < \frac{\varepsilon}{2}$ (1.10)and $\left|\int_{a}^{b}f(t)\gamma'(t)\,dt-\sum_{k=1}^{n}f(\tau_{k})\gamma'(\tau_{k})(t_{k}-t_{k-1})\right|<\frac{\varepsilon}{2}$ (1.11)

for any choice of $\tau_k \in [t_{k-1}, t_k]$ for $k = 1, 2, \ldots, n$.

Theorem IV.1.9 (continued)

Theorem IV.1.9. If γ is piecewise smooth and $f : [a, b] \to \mathbb{C}$ is continuous then $\int_{a}^{b} f \, d\gamma = \int_{a}^{b} f(t)\gamma'(t) \, dt.$

Proof (continued). By the Mean Value Theorem (for real functions from Calculus 1) there is $\tau_k \in [t_{k-1}, t_k]$ with $\gamma'(\tau_k) = [\gamma(t_k) - \gamma(t_{k-1})]/(t_k - t_{k-1})$. Thus $\sum_{k=1}^n f(\tau_k)[\gamma(t_k) - \gamma(t_{k-1})] = \sum_{k=1}^n f(\tau_k)\gamma'(\tau_k)(t_k - t_{k-1})$. Therefore

$$\left|\int_{a}^{b} f \, d\gamma - \int_{a}^{b} f(t)\gamma'(t) \, dt\right| = \left|\int_{a}^{b} f \, d\gamma - \sum_{k=1}^{n} f(\tau_{k})[\gamma(t_{k}) - \gamma(t_{k-1})]\right|$$

$$\left| + \sum_{k=1}^n f(\tau_k) \gamma'(\tau_k) (t_k - t_{k-1}) - \int_a^b f(t) \gamma'(t) \, dt \right| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

by (1.10) and (1.11).

Proposition IV.1.13

Proposition IV.1.13. If $\gamma : [a, b] \to \mathbb{C}$ is a rectifiable path and $\sigma : [c, d] \to [a, b]$ is a continuous non-decreasing function with $\sigma(c) = a$ and $\sigma(d) = b$, then for any f continuous on $\{\gamma\} = \{\gamma \circ \sigma\}$ we have $\int_{\gamma} f = \int_{\gamma \circ \sigma} f$.

Proof. Let $\varepsilon > 0$ and choose $\delta_1 > 0$ such that for $P_1 = \{c = s_0 < s_1 < \cdots < s_n = d\}$ a partition of [c, d] with $||P_1|| < \delta_1$ and $s_{k-1} \le \sigma_k \le s_k$ we have

$$\left|\int_{\gamma\circ\sigma}f-\sum_{k=1}^nf(\gamma\circ\varphi(\sigma_k))[\gamma\circ\sigma(s_k)-\gamma\circ\sigma(s_{k-1})]\right|<\frac{\varepsilon}{2}.$$

Choose $\delta_2 > 0$ such that if $P_2 = \{a = t_0 < t_1 < \cdots < t_n = b\}$ is a partition of [a, b] with $||P_2|| < \delta_2$ and $t_{k-1} < \tau_k < t_k$ then

$$\left|\int_{\gamma} f - \sum_{k=1}^{n} (\gamma(\tau_k)) [\gamma(t_k) - \gamma(t_{k-1})]\right| < \frac{\varepsilon}{2}$$

Proposition IV.1.13

Proposition IV.1.13. If $\gamma : [a, b] \to \mathbb{C}$ is a rectifiable path and $\sigma : [c, d] \to [a, b]$ is a continuous non-decreasing function with $\sigma(c) = a$ and $\sigma(d) = b$, then for any f continuous on $\{\gamma\} = \{\gamma \circ \sigma\}$ we have $\int_{\gamma} f = \int_{\gamma \circ \sigma} f$.

Proof. Let $\varepsilon > 0$ and choose $\delta_1 > 0$ such that for $P_1 = \{c = s_0 < s_1 < \cdots < s_n = d\}$ a partition of [c, d] with $||P_1|| < \delta_1$ and $s_{k-1} \le \sigma_k \le s_k$ we have

$$\left|\int_{\gamma\circ\sigma}f-\sum_{k=1}^nf(\gamma\circ\varphi(\sigma_k))[\gamma\circ\sigma(s_k)-\gamma\circ\sigma(s_{k-1})]\right|<\frac{\varepsilon}{2}.$$

Choose $\delta_2 > 0$ such that if $P_2 = \{a = t_0 < t_1 < \cdots < t_n = b\}$ is a partition of [a, b] with $||P_2|| < \delta_2$ and $t_{k-1} < \tau_k < t_k$ then

$$\left|\int_{\gamma} f - \sum_{k=1}^{n} (\gamma(\tau_k)) [\gamma(t_k) - \gamma(t_{k-1})]\right| < \frac{\varepsilon}{2}$$

Proposition IV.1.13 (continued)

Proposition IV.1.13. If $\gamma : [a, b] \to \mathbb{C}$ is a rectifiable path and $\sigma: [c, d] \rightarrow [a, b]$ is a continuous non-decreasing function with $\sigma(c) = a$ and $\sigma(d) = b$, then for any f continuous on $\{\gamma\} = \{\gamma \circ \sigma\}$ we have $\int_{\alpha} f = \int_{\alpha \circ \sigma} f$. **Proof (continued).** Since φ is continuous on [c, d] and [c, d] is compact, then there is a $\delta > 0$ such that $\delta < \delta_1$ and $|\varphi(s) - \varphi(s')| < \delta_2$ whenever $|s - s'| < \delta$ (by the definition of uniform continuity). So if $P_2 = \{c = s_0 < s_1 < \cdots < s_n = d\}$ is a partition of [c, d] with $||P_3|| < \delta < \delta_1$ and $t_k = \varphi(s_k)$, then $P_4 = \{a = t_0 \leq t_1 \leq \cdots \leq t_n = b\}$ is a partition of [a, b] with $||P_4|| < \delta_2$. If $s_{k-1} < \sigma_k < s_k$ and $\tau_k = \varphi(\sigma_k)$ then both above inequalities hold and $\left|\int_{\gamma} f - \int_{\gamma \circ \sigma} f\right| = \left|\int_{\gamma} f - \sum_{k=1}^{n} f(\gamma(\tau_k))[\gamma(t_k) - \gamma(t_{k-1})]\right|$ $+\sum_{k=1}^{n} f(\gamma \circ \varphi(\sigma_k))[\gamma \circ \varphi(s_k) - \gamma \circ (\varphi(s_{k-1})] - \int_{\gamma \circ \sigma} | < \varepsilon$ and the result follows.

Proposition IV.1.13 (continued)

Proposition IV.1.13. If $\gamma : [a, b] \to \mathbb{C}$ is a rectifiable path and $\sigma: [c, d] \rightarrow [a, b]$ is a continuous non-decreasing function with $\sigma(c) = a$ and $\sigma(d) = b$, then for any f continuous on $\{\gamma\} = \{\gamma \circ \sigma\}$ we have $\int_{\alpha} f = \int_{\alpha \circ \sigma} f$. **Proof (continued).** Since φ is continuous on [c, d] and [c, d] is compact, then there is a $\delta > 0$ such that $\delta < \delta_1$ and $|\varphi(s) - \varphi(s')| < \delta_2$ whenever $|s - s'| < \delta$ (by the definition of uniform continuity). So if $P_2 = \{c = s_0 < s_1 < \cdots < s_n = d\}$ is a partition of [c, d] with $||P_3|| < \delta < \delta_1$ and $t_k = \varphi(s_k)$, then $P_4 = \{a = t_0 \leq t_1 \leq \cdots \leq t_n = b\}$ is a partition of [a, b] with $||P_4|| < \delta_2$. If $s_{k-1} \leq \sigma_k \leq s_k$ and $\tau_k = \varphi(\sigma_k)$ then both above inequalities hold and $\left|\int_{\gamma} f - \int_{\gamma \circ \sigma} f \right| = \left|\int_{\gamma} f - \sum_{k=1}^{n} f(\gamma(\tau_k))[\gamma(t_k) - \gamma(t_{k-1})]\right|$ $+\sum_{k=1}^{n} f(\gamma \circ \varphi(\sigma_k))[\gamma \circ \varphi(s_k) - \gamma \circ (\varphi(s_{k-1})] - \int_{\gamma \circ \sigma} | < \varepsilon$ and the result follows.

Lemma IV.1.19

Lemma IV.1.19

Lemma IV.1.19. If *G* is an open set in \mathbb{C} , $\gamma : [a, b] \to G$ is a rectifiable path, and $f : G \to \mathbb{C}$ is continuous then for every $\varepsilon > 0$ there is a polygonal path Γ in *G* such that $\Gamma(a) = \gamma(a)$, $\Gamma(b) = \gamma(b)$, and $\left| \int_{\gamma} f - \int_{\Gamma} f \right| < \varepsilon$. **Proof. Case I.** Suppose *G* is an open disk. Since $\{\gamma\}$ is a compact set, by Theorem II.5.17, $d = \text{dist}(\{\gamma\}, \partial(G)) > 0$ where $\partial(G)$ is the boundary of *G*. So if G = B(c; r) then $\{\gamma\} \subset B(c; \rho)$ where $\rho = r - \frac{1}{2}d$:

Complex Analysis

Lemma IV.1.19

Lemma IV.1.19. If *G* is an open set in \mathbb{C} , $\gamma : [a, b] \to G$ is a rectifiable path, and $f : G \to \mathbb{C}$ is continuous then for every $\varepsilon > 0$ there is a polygonal path Γ in *G* such that $\Gamma(a) = \gamma(a)$, $\Gamma(b) = \gamma(b)$, and $\left| \int_{\gamma} f - \int_{\Gamma} f \right| < \varepsilon$. **Proof. Case I.** Suppose *G* is an open disk. Since $\{\gamma\}$ is a compact set, by Theorem II.5.17, $d = \text{dist}\{\gamma\}, \partial(G)\} > 0$ where $\partial(G)$ is the boundary of

G. So if G = B(c; r) then $\{\gamma\} \subset B(c; \rho)$ where $\rho = r - \frac{1}{2}d$:

Lemma IV.1.19

Lemma IV.1.19. If *G* is an open set in \mathbb{C} , $\gamma : [a, b] \to G$ is a rectifiable path, and $f : G \to \mathbb{C}$ is continuous then for every $\varepsilon > 0$ there is a polygonal path Γ in *G* such that $\Gamma(a) = \gamma(a)$, $\Gamma(b) = \gamma(b)$, and $\left| \int_{\gamma} f - \int_{\Gamma} f \right| < \varepsilon$. **Proof. Case I.** Suppose *G* is an open disk. Since $\{\gamma\}$ is a compact set, by Theorem II.5.17, $d = \text{dist}\{\gamma\}, \partial(G)\} > 0$ where $\partial(G)$ is the boundary of

G. So if G = B(c; r) then $\{\gamma\} \subset B(c; \rho)$ where $\rho = r - \frac{1}{2}d$:

Lemma IV.1.19 (continued 1)

Proof (continued). Case I (continued 1). Now f is uniformly continuous on $\overline{B}(c; \rho) \subset G$ since $\overline{B}(c; \rho)$ is compact. So WLOG, f is uniformly continuous on G. Choose $\delta > 0$ such that $|f(z) - f(w)| < \varepsilon$ whenever $|z - w| < \delta$. γ is defined on [a, b] and so γ is also uniformly continuous. So there is a partition $\{a = t_0 < t_1 < \cdots < t_n = b\}$ of [a, b] such that the norm of this partition is sufficiently small so that (1) $|\gamma(s) - \gamma(t)| < \delta/2$ for s, t such that $t_{k-1} \leq s \leq t_k$ and $t_{k-1} \leq t \leq t_k$, and (2) for $\tau_k \in [t_{k-1}, t_k]$ we have

$$\left|\int_{\gamma} f - \sum_{k=1}^{n} f(\gamma(\tau_k))[\gamma(t_k) - \gamma(t_{k-1})]\right| < \varepsilon \qquad (1.20)$$

(by the definition of $\int_{\gamma} f$). We now use this partition of [a, b] to define the desired polygon. Define $\Gamma : [a, b] \to \mathbb{C}$ as

$$\Gamma(t) = \frac{1}{t_k - t_{k-1}} [(t_k - t)\gamma(t_{k-1}) + (t - t_{k-1})\gamma(t_k)] \text{ for } t \in [t_{k-1}, t_k].$$

Lemma IV.1.19 (continued 1)

Proof (continued). Case I (continued 1). Now f is uniformly continuous on $\overline{B}(c; \rho) \subset G$ since $\overline{B}(c; \rho)$ is compact. So WLOG, f is uniformly continuous on G. Choose $\delta > 0$ such that $|f(z) - f(w)| < \varepsilon$ whenever $|z - w| < \delta$. γ is defined on [a, b] and so γ is also uniformly continuous. So there is a partition $\{a = t_0 < t_1 < \cdots < t_n = b\}$ of [a, b] such that the norm of this partition is sufficiently small so that (1) $|\gamma(s) - \gamma(t)| < \delta/2$ for s, t such that $t_{k-1} \leq s \leq t_k$ and $t_{k-1} \leq t \leq t_k$, and (2) for $\tau_k \in [t_{k-1}, t_k]$ we have

$$\left|\int_{\gamma} f - \sum_{k=1}^{n} f(\gamma(\tau_k))[\gamma(t_k) - \gamma(t_{k-1})]\right| < \varepsilon \qquad (1.20)$$

(by the definition of $\int_{\gamma} f$). We now use this partition of [a, b] to define the desired polygon. Define $\Gamma : [a, b] \to \mathbb{C}$ as

$$\Gamma(t) = \frac{1}{t_k - t_{k-1}} [(t_k - t)\gamma(t_{k-1}) + (t - t_{k-1})\gamma(t_k)] \text{ for } t \in [t_{k-1}, t_k].$$

Lemma IV.1.19 (continued 2)

Proof (continued). Case I. (so $\Gamma(t_{k-1}) = \gamma(t_{k-1})$, $\Gamma(t_k) = \gamma(t_k)$, and hence $\Gamma([t_{k-1}, t_k]) = [\gamma(t_{k-1}, \gamma(t_k)])$. Then Γ is a polygonal path and a subset of *G* (since *G* is convex; it's a disk). Since $|\gamma(s) - \gamma(t)| < \delta/2$ for $t_{k-1} \le s \le t \le t_k$, then

$$|\Gamma(t) - \gamma(\tau_k)| = |\Gamma(t) - \gamma(t_k) + \gamma(t_k) - \gamma(\tau_k)|$$

$$\leq |\Gamma(t) - \gamma(t_k)| + |\gamma(t_k) - \gamma(\tau_k)| < \frac{\delta}{2} + \frac{\delta}{2} = \delta \quad (1.21)$$

for $t \in [t_{k-1}, t_k]$ ($\Gamma(t)$ is at least as close to $\gamma(t_k)$ as $\gamma(t_{k-1})$ is, and so the distance $|\Gamma(t) - \gamma(t_k)|$ is less than $\delta/2$:

Lemma IV.1.19 (continued 2)

Proof (continued). Case I. (so $\Gamma(t_{k-1}) = \gamma(t_{k-1})$, $\Gamma(t_k) = \gamma(t_k)$, and hence $\Gamma([t_{k-1}, t_k]) = [\gamma(t_{k-1}, \gamma(t_k)])$. Then Γ is a polygonal path and a subset of *G* (since *G* is convex; it's a disk). Since $|\gamma(s) - \gamma(t)| < \delta/2$ for $t_{k-1} \le s \le t \le t_k$, then

$$\begin{aligned} |\Gamma(t) - \gamma(\tau_k)| &= |\Gamma(t) - \gamma(t_k) + \gamma(t_k) - \gamma(\tau_k)| \\ &\leq |\Gamma(t) - \gamma(t_k)| + |\gamma(t_k) - \gamma(\tau_k)| < \frac{\delta}{2} + \frac{\delta}{2} = \delta \quad (1.21) \end{aligned}$$

for $t \in [t_{k-1}, t_k]$ ($\Gamma(t)$ is at least as close to $\gamma(t_k)$ as $\gamma(t_{k-1})$ is, and so the distance $|\Gamma(t) - \gamma(t_k)|$ is less than $\delta/2$:

$$\gamma(t_{k-1})$$
 $\Gamma(t)$ $\gamma(t_k)$

Lemma IV.1.19 (continued 2)

Proof (continued). Case I. (so $\Gamma(t_{k-1}) = \gamma(t_{k-1})$, $\Gamma(t_k) = \gamma(t_k)$, and hence $\Gamma([t_{k-1}, t_k]) = [\gamma(t_{k-1}, \gamma(t_k)])$. Then Γ is a polygonal path and a subset of *G* (since *G* is convex; it's a disk). Since $|\gamma(s) - \gamma(t)| < \delta/2$ for $t_{k-1} \le s \le t \le t_k$, then

$$\begin{aligned} |\Gamma(t) - \gamma(\tau_k)| &= |\Gamma(t) - \gamma(t_k) + \gamma(t_k) - \gamma(\tau_k)| \\ &\leq |\Gamma(t) - \gamma(t_k)| + |\gamma(t_k) - \gamma(\tau_k)| < \frac{\delta}{2} + \frac{\delta}{2} = \delta \quad (1.21) \end{aligned}$$

for $t \in [t_{k-1}, t_k]$ ($\Gamma(t)$ is at least as close to $\gamma(t_k)$ as $\gamma(t_{k-1})$ is, and so the distance $|\Gamma(t) - \gamma(t_k)|$ is less than $\delta/2$:

$$\gamma(t_{k-1})$$
 $\Gamma(t)$ $\gamma(t_k)$

Lemma IV.1.19 (continued 3)

Proof (continued). Case I. Since $\int_{\Gamma} f = \int_{a}^{b} f(\Gamma(t))\Gamma'(t) dt$ (computed piecewise), then

$$\int_{\Gamma} f = \sum_{k=1}^{n} \underbrace{\left(\frac{\gamma(t_k) - \gamma(t_{k-1})}{t_k - t_{k-1}}\right)}_{\Gamma'(t)} \int_{t_{k-1}}^{t_k} f(\Gamma(t)) dt.$$

Next,

$$\begin{aligned} \left| \int_{\gamma} f - \int_{\Gamma} f \right| &= \left| \int_{\gamma} f - \sum_{k=1}^{n} f(\gamma(\tau_{k}))[\gamma(t_{k}) - \gamma(t_{k-1})] \right| \\ &+ \sum_{k=1}^{n} f(\gamma(\tau_{k}))[\gamma(t_{k}) - \gamma(t_{k-1})] - \int_{\Gamma} f \right| \\ &< \varepsilon + \left| \sum_{k=1}^{m} f(\gamma(\tau_{k}))[\gamma(t_{k}) - \gamma(t_{k-1})] - \int_{\Gamma} f \right|$$
 by (1.20)

Lemma IV.1.19 (continued 4)

Proof (continued). Case I.

$$\begin{split} \int_{\gamma} f - \int_{\Gamma} f \bigg| &= \varepsilon + \left| \sum_{k=1}^{n} \left(f(\gamma(\tau_{k})) [\gamma(t_{k}) - \gamma(t_{k-1})] \right. \\ &\left. - \frac{\gamma(t_{k}) - \gamma(t_{k-1})}{t_{k} - t_{k-1}} \int_{t_{k-1}}^{t_{k}} f(\Gamma(t)) \, dt \right) \right| \\ &= \varepsilon + \left| \sum_{k=1}^{n} \left(\frac{\gamma(t_{k}) - \gamma(t_{k-1})}{t_{k} - t_{k-1}} \right) \int_{t_{k-1}}^{t_{k}} \underbrace{(f(\gamma(\tau_{k})) - f(\Gamma(t))) \, dt}_{WRT t} \right| \\ &\leq \varepsilon + \sum_{k=1}^{n} \left(\frac{|\gamma(t_{k}) - \gamma(t_{k-1})|}{t_{k} - t_{k-1}} \int_{t_{k-1}}^{t_{k}} |f(\gamma(\tau_{k})) - f(\Gamma(t))| \, dt \right) \end{split}$$

•

Lemma IV.1.19 (continued 5)

Lemma IV.1.19. If *G* is an open set in \mathbb{C} , $\gamma : [a, b] \to G$ is a rectifiable path, and $f : G \to \mathbb{C}$ is continuous then for every $\varepsilon > 0$ there is a polygonal path Γ in *G* such that $\Gamma(a) = \gamma(a)$, $\Gamma(b) = \gamma(b)$, and $\left| \int_{\gamma} f - \int_{\Gamma} f \right| < \varepsilon$.

Proof (continued). Case I. To recap: G is an open disk and

$$\left|\int_{\gamma} f - \int_{\Gamma} f\right| \leq \varepsilon + \sum_{k=1}^{n} \left(\frac{|\gamma(t_k) - \gamma(t_{k-1})|}{t_k - t_{k-1}} \int_{t_{k-1}}^{t_k} |f(\gamma(\tau_k)) - f(\Gamma(t))| \, dt \right).$$

By (1.21), $|\Gamma(t) - \gamma(\tau_k)| < \delta$ and by uniform continuity mentioned above, $|f(\gamma(\tau_k)) - f(\Gamma(t))| < \varepsilon$, so

$$\left|\int_{\gamma}f-\int_{\Gamma}f
ight|$$

Since ε is arbitrary, Case I follows.

Lemma IV.1.19 (continued 6)

Lemma IV.1.19. If G is an open set in \mathbb{C} , $\gamma : [a, b] \to G$ is a rectifiable path, and $f: G \to \mathbb{C}$ is continuous then for every $\varepsilon > 0$ there is a polygonal path Γ in G such that $\Gamma(a) = \gamma(a)$, $\Gamma(b) = \gamma(b)$, and $\left|\int_{\Gamma} f - \int_{\Gamma} f\right| < \varepsilon.$ **Proof (continued).** Case II. G is an arbitrary set. As in Case I, since $\{\gamma\}$ is compact there is a number r such that $0 < r < dist(\{\gamma\}, \partial G)$. Choose $\delta > 0$ such that $|\gamma(s) - \gamma(t)| < r$ whenever $|s - t| < \delta$ (by the uniform continuity of γ on [a, b]). If $P = \{a = t_0 < t_1 < \cdots < t_n = b\}$ is a partition of [a, b] with $||P|| < \delta$ then $|\gamma(t) - \gamma(t_{k-1})| < r$ for $t \in [t_{k-1}, t_k]$. So we now have the "kth part" of γ contained in $B(\gamma(t_{k-1}; r) \text{ and can use Case I. If } \gamma_k : [t_{k-1}, t_k] \to G \text{ is defined by}$ $\gamma_k(t) = \gamma(t)$ then $\{\gamma_k\} \subset B(\gamma(t_{k-1}); r)$ for $1 \leq k \leq n$ (the "parts" of γ). By Case I there is a polygonal path $\Gamma_k : [t_{k-1}, t_k] \to B(\gamma(t_{k-1}); r)$ such that $\Gamma_k(t_{k-1}) = \gamma(t_{k-1}), \ \Gamma_k(t_k) = \gamma(t_k), \text{ and } |\int_{\gamma'} f - \int_{\Gamma'} f| < \varepsilon/n.$ Defining Γ as the union of the Γ_k yields the desired polygonal path.

Lemma IV.1.19 (continued 6)

Lemma IV.1.19. If G is an open set in \mathbb{C} , $\gamma : [a, b] \to G$ is a rectifiable path, and $f : G \to \mathbb{C}$ is continuous then for every $\varepsilon > 0$ there is a polygonal path Γ in G such that $\Gamma(a) = \gamma(a)$, $\Gamma(b) = \gamma(b)$, and $\left|\int_{-\infty}^{\infty} f - \int_{\Gamma} f\right| < \varepsilon.$ **Proof (continued).** Case II. G is an arbitrary set. As in Case I, since $\{\gamma\}$ is compact there is a number r such that $0 < r < \text{dist}(\{\gamma\}, \partial G)$. Choose $\delta > 0$ such that $|\gamma(s) - \gamma(t)| < r$ whenever $|s - t| < \delta$ (by the uniform continuity of γ on [a, b]). If $P = \{a = t_0 < t_1 < \cdots < t_n = b\}$ is a partition of [a, b] with $||P|| < \delta$ then $|\gamma(t) - \gamma(t_{k-1})| < r$ for $t \in [t_{k-1}, t_k]$. So we now have the "kth part" of γ contained in $B(\gamma(t_{k-1}; r) \text{ and can use Case I. If } \gamma_k : [t_{k-1}, t_k] \to G \text{ is defined by}$ $\gamma_k(t) = \gamma(t)$ then $\{\gamma_k\} \subset B(\gamma(t_{k-1}); r)$ for $1 \leq k \leq n$ (the "parts" of γ). By Case I there is a polygonal path $\Gamma_k : [t_{k-1}, t_k] \to B(\gamma(t_{k-1}); r)$ such that $\Gamma_k(t_{k-1}) = \gamma(t_{k-1}), \ \Gamma_k(t_k) = \gamma(t_k), \ \text{and} \ |\int_{\gamma_k} f - \int_{\Gamma_k} f| < \varepsilon/n.$ Defining Γ as the union of the Γ_k yields the desired polygonal path.

Theorem IV.1.18. Let G be open in \mathbb{C} and let γ be a rectifiable path in G with initial and end points α and β . If $f : G \to \mathbb{C}$ is a continuous function with a *primitive* $F : G \to \mathbb{C}$ (i.e., F' = f), then $\int_{\gamma} f = F(\beta) - F(\alpha)$. **Proof. Case I.** Suppose $\gamma : [a, b] \to \mathbb{C}$ is piecewise smooth. Then

$$\int_{\gamma} f = \int_{a}^{b} f(\gamma(t))\gamma'(t) dt \text{ (piecewise)}$$

$$= \int_{a}^{b} F'(\gamma(t))\gamma'(t) dt = \int_{a}^{b} (F \circ \gamma)'(t) dt$$

$$= \int_{a}^{b} \operatorname{Re}\{(F \circ \gamma)'\} dt + i \int_{a}^{b} \operatorname{Im}\{(F \circ \gamma)'\} dt$$

$$= \operatorname{Re}\{(F \circ \gamma)\}|_{a}^{b} + i \operatorname{Im}\{(F \circ \gamma)\}|_{a}^{b} \text{ by the F.T.C.}$$

$$= F(\gamma(b)) - F(\gamma(a)).$$

Theorem IV.1.18 (continued)

Theorem IV.1.18. Let *G* be open in \mathbb{C} and let γ be a rectifiable path in *G* with initial and end points α and β . If $f : G \to \mathbb{C}$ is a continuous function with a *primitive* $F : G \to \mathbb{C}$ (i.e., F' = f), then $\int_{\gamma} f = F(\beta) - F(\alpha)$. **Proof (continued). Case II.** Suppose γ is rectifiable. For $\varepsilon > 0$, Lemma IV.1.19 implies there is a polygonal path Γ from α to β such that $\left| \int_{\gamma} f - \int_{\Gamma} f \right| < \varepsilon$. But Γ is piecewise smooth, so by Case I, $\int_{\Gamma} f = F(\beta) - F(\alpha)$. Therefore $\left| \int_{\gamma} f - [F(\beta) - F(\alpha)] \right| < \varepsilon$, and the result follows.