Complex Analysis

Chapter IV. Complex Integration

IV.1. Riemann-Stieltjes Integrals—Proofs

John B. Conway
Functions of One Complex Variable I

Second Edition

Springer

Table of contents

(1) Theorem IV.1.3
(2) Theorem IV.1.4
(3) Theorem IV.1.9
(4) Proposition IV.1.13
(5) Lemma IV.1.19
(6) Theorem IV.1.18 (our Fundamental Theorem of Calculus)

Theorem IV.1.3

Proposition IV.1.3. If $\gamma:[a, b] \rightarrow \mathbb{C}$ is piecewise smooth then γ is of bounded variation and

$$
V(\gamma)=\int_{a}^{b}\left|\gamma^{\prime}(t)\right| d t
$$

Proof. Assume that γ is smooth (the case of piecewise smooth following by summing). Let $P=\left\{a=t_{0}<t_{1}<\cdots<t_{m}=b\right\}$. Then

$$
\begin{aligned}
v(\gamma ; P) & =\sum_{k=1}^{m}\left|\gamma\left(t_{k}\right)-\gamma\left(t_{k-1}\right)\right| \\
& =\sum_{k=1}^{m}\left|\int_{t_{k-1}}^{t_{k}} \gamma^{\prime}(t) d t\right| \text { by the FTC since } \gamma \text { is smooth } \\
& \leq \sum_{k=1}^{m} \int_{t_{k-1}}^{t_{k}}\left|\gamma^{\prime}(t)\right| d t=\int_{a}^{b}\left|\gamma^{\prime}(t)\right| d t .
\end{aligned}
$$

Hence γ is of bounded variation since $\quad V(\gamma) \leq \int_{a}^{b}\left|\gamma^{\prime}(t)\right| d t, \quad(*)$

Theorem IV.1.3

Proposition IV.1.3. If $\gamma:[a, b] \rightarrow \mathbb{C}$ is piecewise smooth then γ is of bounded variation and

$$
V(\gamma)=\int_{a}^{b}\left|\gamma^{\prime}(t)\right| d t
$$

Proof. Assume that γ is smooth (the case of piecewise smooth following by summing). Let $P=\left\{a=t_{0}<t_{1}<\cdots<t_{m}=b\right\}$. Then

$$
\begin{aligned}
v(\gamma ; P) & =\sum_{k=1}^{m}\left|\gamma\left(t_{k}\right)-\gamma\left(t_{k-1}\right)\right| \\
& =\sum_{k=1}^{m}\left|\int_{t_{k-1}}^{t_{k}} \gamma^{\prime}(t) d t\right| \text { by the FTC since } \gamma \text { is smooth } \\
& \leq \sum_{k=1}^{m} \int_{t_{k-1}}^{t_{k}}\left|\gamma^{\prime}(t)\right| d t=\int_{a}^{b}\left|\gamma^{\prime}(t)\right| d t
\end{aligned}
$$

Hence γ is of bounded variation since $\quad V(\gamma) \leq \int_{a}^{b}\left|\gamma^{\prime}(t)\right| d t, \quad(*)$

Theorem IV.1.3 (continued 1)

Proof (continued). Since γ^{\prime} is continuous and $[a, b]$ is compact, then γ^{\prime} is uniformly continuous. So if $\varepsilon>0$, there exists $\delta_{1}>0$ such that $|s-t|<\delta_{1}$ implies $\left|\gamma^{\prime}(s)-\gamma^{\prime}(t)\right|<\varepsilon$. Also by definition of integral, there exists $\delta_{2}>0$ such that if $P=\left\{a=t_{0}<t_{1}<\cdots<t_{m}=b\right\}$ and $\|P\|=\max \left\{t_{k}-t_{k-1} \mid 1 \leq k \leq m\right\}<\delta_{2}$ implies
$\left|\int_{a}^{b}\right| \gamma^{\prime}(t)\left|d t-\sum_{k=1}^{m}\right| \gamma^{\prime}\left(\tau_{k}\right)\left|\left(t_{k}-t_{k-1}\right)\right|<\varepsilon$ where τ_{k} is any point in $\left[t_{k-1}, t_{k}\right]$. Hence

$$
\begin{aligned}
\int_{a}^{b}\left|\gamma^{\prime}(t)\right| d t & <\varepsilon+\sum_{k=1}^{m}\left|\gamma^{\prime}\left(\tau_{k}\right)\right|\left(t_{k}-t_{k-1}\right) \\
& =\varepsilon+\sum_{k=1}^{m}\left|\int_{t_{k-1}}^{t_{k}} \gamma^{\prime}\left(\tau_{k}\right) d t\right| \text { since } \gamma^{\prime}\left(\tau_{k}\right) \text { is constant }
\end{aligned}
$$

Theorem IV.1.3 (continued 1)

Proof (continued). Since γ^{\prime} is continuous and $[a, b]$ is compact, then γ^{\prime} is uniformly continuous. So if $\varepsilon>0$, there exists $\delta_{1}>0$ such that $|s-t|<\delta_{1}$ implies $\left|\gamma^{\prime}(s)-\gamma^{\prime}(t)\right|<\varepsilon$. Also by definition of integral, there exists $\delta_{2}>0$ such that if $P=\left\{a=t_{0}<t_{1}<\cdots<t_{m}=b\right\}$ and $\|P\|=\max \left\{t_{k}-t_{k-1} \mid 1 \leq k \leq m\right\}<\delta_{2}$ implies
$\left|\int_{a}^{b}\right| \gamma^{\prime}(t)\left|d t-\sum_{k=1}^{m}\right| \gamma^{\prime}\left(\tau_{k}\right)\left|\left(t_{k}-t_{k-1}\right)\right|<\varepsilon$ where τ_{k} is any point in
$\left[t_{k-1}, t_{k}\right]$. Hence

$$
\begin{aligned}
\int_{a}^{b}\left|\gamma^{\prime}(t)\right| d t & <\varepsilon+\sum_{k=1}^{m}\left|\gamma^{\prime}\left(\tau_{k}\right)\right|\left(t_{k}-t_{k-1}\right) \\
& =\varepsilon+\sum_{k=1}^{m}\left|\int_{t_{k-1}}^{t_{k}} \gamma^{\prime}\left(\tau_{k}\right) d t\right| \text { since } \gamma^{\prime}\left(\tau_{k}\right) \text { is constant }
\end{aligned}
$$

Theorem IV.1.3 (continued 2)

Proof (continued).

$$
\begin{aligned}
\int_{a}^{b}\left|\gamma^{\prime}(t)\right| d t & <\varepsilon+\sum_{k=1}^{m}\left|\int_{t_{k-1}}^{t_{k}}\left[\gamma^{\prime}\left(\tau_{k}\right)-\gamma^{\prime}(t)+\gamma^{\prime}(t)\right] d t\right| \\
& \leq \varepsilon+\sum_{k=1}^{m}\left|\int_{t_{k-1}}^{t_{k}}\left[\gamma^{\prime}\left(\tau_{k}\right)-\gamma^{\prime}(t)\right] d t\right|+\sum_{k=1}^{m}\left|\int_{t_{k-1}}^{t_{k}} \gamma^{\prime}(t) d t\right|
\end{aligned}
$$

If $\|P\|<\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$ then $\left|\gamma^{\prime}\left(\tau_{k}\right)-\gamma^{\prime}(t)\right|<\varepsilon$ for $t \in\left[t_{k-1}, t_{k}\right]$ and

$$
\begin{aligned}
& \int_{a}^{b}\left|\gamma^{\prime}(t)\right| d t<\varepsilon+\varepsilon(b-a)+\sum_{k=1}^{m}\left|\gamma\left(t_{k}\right)-\gamma\left(t_{k-1}\right)\right| \\
& =\varepsilon[1+(b-a)]+v(\gamma ; P) \leq \varepsilon[1+b-a]+V(\gamma)
\end{aligned}
$$

Since $\varepsilon>0$ is arbitrary, $\int_{a}^{b}\left|\gamma^{\prime}(t)\right| d t \leq V(\gamma)$, and we have equality combining with ($*$).

Theorem IV.1.3 (continued 2)

Proof (continued).

$$
\begin{aligned}
\int_{a}^{b}\left|\gamma^{\prime}(t)\right| d t & <\varepsilon+\sum_{k=1}^{m}\left|\int_{t_{k-1}}^{t_{k}}\left[\gamma^{\prime}\left(\tau_{k}\right)-\gamma^{\prime}(t)+\gamma^{\prime}(t)\right] d t\right| \\
& \leq \varepsilon+\sum_{k=1}^{m}\left|\int_{t_{k-1}}^{t_{k}}\left[\gamma^{\prime}\left(\tau_{k}\right)-\gamma^{\prime}(t)\right] d t\right|+\sum_{k=1}^{m}\left|\int_{t_{k-1}}^{t_{k}} \gamma^{\prime}(t) d t\right|
\end{aligned}
$$

If $\|P\|<\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$ then $\left|\gamma^{\prime}\left(\tau_{k}\right)-\gamma^{\prime}(t)\right|<\varepsilon$ for $t \in\left[t_{k-1}, t_{k}\right]$ and

$$
\begin{aligned}
& \int_{a}^{b}\left|\gamma^{\prime}(t)\right| d t<\varepsilon+\varepsilon(b-a)+\sum_{k=1}^{m}\left|\gamma\left(t_{k}\right)-\gamma\left(t_{k-1}\right)\right| \\
& =\varepsilon[1+(b-a)]+v(\gamma ; P) \leq \varepsilon[1+b-a]+V(\gamma)
\end{aligned}
$$

Since $\varepsilon>0$ is arbitrary, $\int_{a}^{b}\left|\gamma^{\prime}(t)\right| d t \leq V(\gamma)$, and we have equality combining with $(*)$.

Theorem IV.1.4

Theorem IV.1.4. Let $\gamma:[a, b] \rightarrow \mathbb{C}$ be of bounded variation and suppose that $f:[a, b] \rightarrow \mathbb{C}$ is continuous. Then there is a complex number $/$ such that for all $\varepsilon>0$, there exists $\delta>0$ such that when $P=\left\{t_{0}<t_{1}<\cdots t_{m}\right\}$ is a partition of $[a, b]$ with $\|P\|=\max \left\{t_{k}-t_{k-1}\right\}<\delta$, then

$$
\left|I-\sum_{k=1}^{m} f\left(\tau_{k}\right)\left[\gamma\left(t_{k}\right)-\gamma\left(t_{k-1}\right)\right]\right|<\varepsilon
$$

for whatever choice of points τ_{k}, where $\tau_{k} \in\left[t_{k-1}, t_{k}\right]$. The number $/$ is called the Riemann-Stieltjes integral of f with respect to γ over $[a, b]$, denoted

$$
I=\int_{a}^{b} f d \gamma=\int_{a}^{b} f(t) d \gamma(t)
$$

Theorem IV.1.4 (continued 1)

Proof. Since f is continuous and $[a, b]$ is compact, then f is uniformly continuous on $[a, b]$. So for all $\varepsilon=1 / m(m \in \mathbb{N})$ there exists $\delta_{m}>0$ (where we take $\delta_{1}>\delta_{2}>\delta_{3}>\cdots$) such that if $|s-t|<\delta_{m}$ then $|f(s)-f(t)|<1 / m$. For each $m \in \mathbb{N}$, let \mathcal{P}_{m} be the set of all partitions P of $[a, b]$ such that $\|P\|<\delta_{m}$. So $\mathcal{P}_{1} \supset \mathcal{P}_{2} \supset \mathcal{P}_{3} \supset \cdots$. Define F_{m} (for each $m \in \mathbb{N}$) as the closure of the set:

$$
\begin{equation*}
\left\{\sum_{k=1}^{n} f\left(\tau_{k}\right)\left[\gamma\left(t_{k}\right)-\gamma\left(t_{k-1}\right)\right] \mid P \in \mathcal{P}_{m} \text { and } \tau_{k} \in\left(t_{k-1}, t_{k}\right)\right\} \tag{*}
\end{equation*}
$$

We now show that the diameter of set $(*)$ is $\leq 2 / m V(\gamma)$ for each $m \in \mathbb{N}$ for each $m \in \mathbb{N}$. If $P=\left\{t_{0}<t_{1}<\cdots<t_{n}\right\}$ is a partition of $[a, b]$, then denote by $S(P)$ a sum of the form $\sum_{k=1}^{n} f\left(\tau_{k}\right)\left[\gamma\left(t_{k}\right)-\gamma\left(t_{k-1}\right)\right]$ where τ_{k} is any point with $t_{k-1} \leq \tau_{k} \leq t_{k}$. Fix $m \in \mathbb{N}$ and let $P \in \mathcal{P}_{m}$.

Theorem IV.1.4 (continued 1)

Proof. Since f is continuous and $[a, b]$ is compact, then f is uniformly continuous on $[a, b]$. So for all $\varepsilon=1 / m(m \in \mathbb{N})$ there exists $\delta_{m}>0$ (where we take $\delta_{1}>\delta_{2}>\delta_{3}>\cdots$) such that if $|s-t|<\delta_{m}$ then $|f(s)-f(t)|<1 / m$. For each $m \in \mathbb{N}$, let \mathcal{P}_{m} be the set of all partitions P of $[a, b]$ such that $\|P\|<\delta_{m}$. So $\mathcal{P}_{1} \supset \mathcal{P}_{2} \supset \mathcal{P}_{3} \supset \cdots$. Define F_{m} (for each $m \in \mathbb{N}$) as the closure of the set:

$$
\begin{equation*}
\left\{\sum_{k=1}^{n} f\left(\tau_{k}\right)\left[\gamma\left(t_{k}\right)-\gamma\left(t_{k-1}\right)\right] \mid P \in \mathcal{P}_{m} \text { and } \tau_{k} \in\left(t_{k-1}, t_{k}\right)\right\} . \tag{*}
\end{equation*}
$$

We now show that the diameter of set $(*)$ is $\leq 2 / m V(\gamma)$ for each $m \in \mathbb{N}$ for each $m \in \mathbb{N}$. If $P=\left\{t_{0}<t_{1}<\cdots<t_{n}\right\}$ is a partition of $[a, b]$, then denote by $S(P)$ a sum of the form $\sum_{k=1}^{n} f\left(\tau_{k}\right)\left[\gamma\left(t_{k}\right)-\gamma\left(t_{k-1}\right)\right]$ where τ_{k} is any point with $t_{k-1} \leq \tau_{k} \leq t_{k}$. Fix $m \in \mathbb{N}$ and let $P \in \mathcal{P}_{m}$.

Theorem IV.1.4 (continued 2)

Proof (continued). (1) Suppose $P \subset Q$ (and so $Q \in \mathcal{P}_{m}$) such that $Q=P \cup\left\{t^{*}\right\}$ where $t_{p-1}<t^{*}<t_{p}$ (so Q contains one more point than P and is a refinement of P). If $t_{p-1} \leq \sigma \leq t^{*}$ and $t^{*} \leq \sigma^{\prime} \leq t_{p}$ and if

$$
\begin{gathered}
S(Q)=\sum_{k \neq p} f\left(\sigma_{k}\right)\left[\gamma\left(t_{k}\right)-\gamma\left(t_{k-1}\right)\right]+f(\sigma)\left[\gamma\left(t^{*}\right)-\gamma\left(t_{p-1}\right)\right] \\
+f\left(\sigma^{\prime}\right)\left[\gamma\left(t_{p}\right)-\gamma\left(t^{*}\right)\right]
\end{gathered}
$$

then

$$
\begin{gathered}
|S(P)-S(Q)|=\mid \sum_{k \neq p} f\left(\tau_{k}\right)\left[\gamma\left(t_{k}\right)-\gamma\left(t_{k-1}\right)\right] \\
+f\left(\tau_{p}\right)\left[\gamma\left(t_{p}\right)-\gamma\left(t_{p-1}\right)\right]-S(Q) \mid \\
=\mid \sum_{k \neq p}\left(f\left(\tau_{k}\right)-f\left(\sigma_{k}\right)\right)\left[\gamma\left(t_{k}\right)-\gamma\left(t_{k-1}\right)\right]+f\left(\tau_{p}\right)\left[\gamma\left(t_{p}\right)-\gamma\left(t_{p-1}\right)\right] \\
-f(\sigma)\left[\gamma\left(t^{*}\right)-\gamma\left(t_{p-1}\right)\right]-f\left(\sigma^{\prime}\right)\left[\gamma\left(t_{p}\right)-\gamma\left(t^{*}\right)\right] \mid
\end{gathered}
$$

Theorem IV.1.4 (continued 3)

Proof (continued).

$$
\begin{gathered}
\left.\left.\left.\leq \frac{1}{m} \sum_{k \neq p} \right\rvert\, \gamma\left(t_{k}\right)-\gamma\right) t_{k-1}\right)|+|\left[f\left(\tau_{p}\right)-f(\sigma)\right]\left[\gamma\left(t^{*}\right)-\gamma\left(t_{p-1}\right)\right] \\
+\left[f\left(\tau_{p}\right)-f\left(\sigma^{\prime}\right)\right]\left[\gamma\left(t_{p}\right)-\gamma\left(t^{*}\right)\right] \mid \text { (since }\left|\tau_{k}-\sigma_{k}\right|<\delta_{m} \\
\left.\quad \text { and so } f\left(\tau_{k}\right)-f\left(\sigma_{k}\right) \mid<1 / m\right) \\
\leq \frac{1}{m} \sum_{k \neq p}\left|\gamma\left(t_{k}\right)-\gamma\left(t_{k-1}\right)\right|+\frac{1}{m}\left|\gamma\left(t^{*}\right)-\gamma\left(t_{p-1}\right)\right|+\frac{1}{m}\left|\gamma\left(t_{p}\right)-\gamma\left(t^{*}\right)\right| \\
\leq \frac{1}{m} V(\gamma)\left(\text { since } t^{*}-t_{p-1} \mid<\delta_{m} \text { and }\left|t_{p}-t^{*}\right|<\delta_{m}\right) .
\end{gathered}
$$

Now if $P \subset Q$ and Q contains several more points than P, then the proof follows similarly.

Theorem IV.1.4 (continued 4)

Proof (continued). Now let P and R be any two partitions in \mathcal{P}_{m}. Then $Q=P \cup R$ is a refinement of both P and R. By the above argument,

$$
|S(P)-S(R)| \leq|S(P)-S(Q)|+|S(Q)-S(R)| \leq \frac{2}{m} V(\gamma)
$$

Therefore, the modulus of the difference of any two elements of set $(*)$ is $\leq \frac{1}{m} V(\gamma)$. That is, the diameter of set $(*)$ is $\leq \frac{2}{m} V(\gamma)$ and so $\operatorname{diam}\left(F_{m}\right) \leq \frac{2}{m} V(\gamma)$. So the sets F_{m} are closed, nested $\left(F_{1} \supset F_{2} \supset F_{2} \supset \cdots\right)$, and $\operatorname{diam}\left(F_{m}\right) \leq \frac{2}{m} V(\gamma)$ (and so $\operatorname{diam}\left(F_{m}\right) \rightarrow 0$ as $m \rightarrow \infty)$. Therefore by Cantor's Theorem (Theorem II.3.7), $\cap_{m=1}^{\infty} F_{m}=\{I\}$ for some single $I \in \mathbb{C}$. This value I satisfies the claims of the theorem.

Theorem IV.1.4 (continued 4)

Proof (continued). Now let P and R be any two partitions in \mathcal{P}_{m}. Then $Q=P \cup R$ is a refinement of both P and R. By the above argument,

$$
|S(P)-S(R)| \leq|S(P)-S(Q)|+|S(Q)-S(R)| \leq \frac{2}{m} V(\gamma)
$$

Therefore, the modulus of the difference of any two elements of set $(*)$ is $\leq \frac{1}{m} V(\gamma)$. That is, the diameter of set $(*)$ is $\leq \frac{2}{m} V(\gamma)$ and so $\operatorname{diam}\left(F_{m}\right) \leq \frac{2}{m} V(\gamma)$. So the sets F_{m} are closed, nested $\left(F_{1} \supset F_{2} \supset F_{2} \supset \cdots\right)$, and $\operatorname{diam}\left(F_{m}\right) \leq \frac{2}{m} V(\gamma)$ (and so $\operatorname{diam}\left(F_{m}\right) \rightarrow 0$ as $m \rightarrow \infty$). Therefore by Cantor's Theorem (Theorem II.3.7), $\cap_{m=1}^{\infty} F_{m}=\{I\}$ for some single $I \in \mathbb{C}$. This value I satisfies the claims of the theorem.

Theorem IV.1.9

Theorem IV.1.9. If γ is piecewise smooth and $f:[a, b] \rightarrow \mathbb{C}$ is continuous then

$$
\int_{a}^{b} f d \gamma=\int_{a}^{b} f(t) \gamma^{\prime}(t) d t
$$

Proof. Without loss of generality, γ is smooth (the result for piecewise smooth following then from additivity). Also, γ can be represented as $\gamma=\gamma_{r}+i \gamma_{i}$ where γ_{r} and γ_{i} are real. So also WLOG, $\gamma([a, b]) \subset \mathbb{R}$ (the general result following for complex valued γ by linearity).

Theorem IV.1.9

Theorem IV.1.9. If γ is piecewise smooth and $f:[a, b] \rightarrow \mathbb{C}$ is continuous then

$$
\int_{a}^{b} f d \gamma=\int_{a}^{b} f(t) \gamma^{\prime}(t) d t
$$

Proof. Without loss of generality, γ is smooth (the result for piecewise smooth following then from additivity). Also, γ can be represented as $\gamma=\gamma_{r}+i \gamma_{i}$ where γ_{r} and γ_{i} are real. So also WLOG, $\gamma([a, b]) \subset \mathbb{R}$ (the general result following for complex valued γ by linearity). Let $\varepsilon>0$ and choose $\delta>0$ such that if $P=\left\{a=t_{0}<t_{1}<t_{2}<\cdots t_{n}=b\right\}$ satisfies $\|P\|<\delta$ then

$$
\begin{equation*}
\left|\int_{a}^{b} f d \gamma-\sum_{k=1}^{n} f\left(\tau_{k}\right)\left[\gamma\left(t_{k}\right)-\gamma\left(t_{k-1}\right)\right]\right|<\frac{\varepsilon}{2} \tag{1.10}
\end{equation*}
$$

Theorem IV.1.9

Theorem IV.1.9. If γ is piecewise smooth and $f:[a, b] \rightarrow \mathbb{C}$ is continuous then

$$
\int_{a}^{b} f d \gamma=\int_{a}^{b} f(t) \gamma^{\prime}(t) d t
$$

Proof. Without loss of generality, γ is smooth (the result for piecewise smooth following then from additivity). Also, γ can be represented as $\gamma=\gamma_{r}+i \gamma_{i}$ where γ_{r} and γ_{i} are real. So also WLOG, $\gamma([a, b]) \subset \mathbb{R}$ (the general result following for complex valued γ by linearity). Let $\varepsilon>0$ and choose $\delta>0$ such that if $P=\left\{a=t_{0}<t_{1}<t_{2}<\cdots t_{n}=b\right\}$ satisfies $\|P\|<\delta$ then

$$
\begin{equation*}
\left|\int_{a}^{b} f d \gamma-\sum_{k=1}^{n} f\left(\tau_{k}\right)\left[\gamma\left(t_{k}\right)-\gamma\left(t_{k-1}\right)\right]\right|<\frac{\varepsilon}{2} \tag{1.10}
\end{equation*}
$$

$$
\begin{equation*}
\text { and }\left|\int_{a}^{b} f(t) \gamma^{\prime}(t) d t-\sum_{k=1}^{n} f\left(\tau_{k}\right) \gamma^{\prime}\left(\tau_{k}\right)\left(t_{k}-t_{k-1}\right)\right|<\frac{\varepsilon}{2} \tag{1.11}
\end{equation*}
$$

for any choice of $\tau_{k} \in\left[t_{k-1}, t_{k}\right]$ for $k=1,2, \ldots, n$.

Theorem IV.1.9 (continued)

Theorem IV.1.9. If γ is piecewise smooth and $f:[a, b] \rightarrow \mathbb{C}$ is continuous then

$$
\int_{a}^{b} f d \gamma=\int_{a}^{b} f(t) \gamma^{\prime}(t) d t
$$

Proof (continued). By the Mean Value Theorem (for real functions from Calculus 1) there is $\tau_{k} \in\left[t_{k-1}, t_{k}\right]$ with $\gamma^{\prime}\left(\tau_{k}\right)=\left[\gamma\left(t_{k}\right)-\gamma\left(t_{k-1}\right)\right] /\left(t_{k}-t_{k-1}\right)$. Thus
$\sum_{k=1}^{n} f\left(\tau_{k}\right)\left[\gamma\left(t_{k}\right)-\gamma\left(t_{k-1}\right)\right]=\sum_{k=1}^{n} f\left(\tau_{k}\right) \gamma^{\prime}\left(\tau_{k}\right)\left(t_{k}-t_{k-1}\right)$. Therefore
$\left|\int_{a}^{b} f d \gamma-\int_{a}^{b} f(t) \gamma^{\prime}(t) d t\right|=\mid \int_{a}^{b} f d \gamma-\sum_{k=1}^{n} f\left(\tau_{k}\right)\left[\gamma\left(t_{k}\right)-\gamma\left(t_{k-1}\right)\right]$

$$
+\sum_{k=1}^{n} f\left(\tau_{k}\right) \gamma^{\prime}\left(\tau_{k}\right)\left(t_{k}-t_{k-1}\right)-\int_{a}^{b} f(t) \gamma^{\prime}(t) d t \left\lvert\,<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon\right.
$$

by (1.10) and (1.11).

Proposition IV.1.13

Proposition IV.1.13. If $\gamma:[a, b] \rightarrow \mathbb{C}$ is a rectifiable path and $\sigma:[c, d] \rightarrow[a, b]$ is a continuous non-decreasing function with $\sigma(c)=a$ and $\sigma(d)=b$, then for any f continuous on $\{\gamma\}=\{\gamma \circ \sigma\}$ we have $\int_{\gamma} f=\int_{\gamma \circ \sigma} f$.

Proof. Let $\varepsilon>0$ and choose $\delta_{1}>0$ such that for
$P_{1}=\left\{c=s_{0}<s_{1}<\cdots<s_{n}=d\right\}$ a partition of $[c, d]$ with $\left\|P_{1}\right\|<\delta_{1}$
and $s_{k-1} \leq \sigma_{k} \leq s_{k}$ we have

$$
\left|\int_{\gamma \circ \sigma} f-\sum_{k=1}^{n} f\left(\gamma \circ \varphi\left(\sigma_{k}\right)\right)\left[\gamma \circ \sigma\left(s_{k}\right)-\gamma \circ \sigma\left(s_{k-1}\right)\right]\right|<\frac{\varepsilon}{2}
$$

Choose $\delta_{2}>0$ such that if $P_{2}=\left\{a=t_{0}<t_{1}<\cdots<t_{n}=b\right\}$ is a partition of $[a, b]$ with $\left\|P_{2}\right\|<\delta_{2}$ and $t_{k-1}<\tau_{k}<t_{k}$ then

$$
\left|\int_{\gamma} f-\sum_{k=1}^{n}\left(\gamma\left(\tau_{k}\right)\right)\left[\gamma\left(t_{k}\right)-\gamma\left(t_{k-1}\right)\right]\right|<\frac{\varepsilon}{2}
$$

Proposition IV.1.13

Proposition IV.1.13. If $\gamma:[a, b] \rightarrow \mathbb{C}$ is a rectifiable path and $\sigma:[c, d] \rightarrow[a, b]$ is a continuous non-decreasing function with $\sigma(c)=a$ and $\sigma(d)=b$, then for any f continuous on $\{\gamma\}=\{\gamma \circ \sigma\}$ we have $\int_{\gamma} f=\int_{\gamma \circ \sigma} f$.

Proof. Let $\varepsilon>0$ and choose $\delta_{1}>0$ such that for $P_{1}=\left\{c=s_{0}<s_{1}<\cdots<s_{n}=d\right\}$ a partition of $[c, d]$ with $\left\|P_{1}\right\|<\delta_{1}$ and $s_{k-1} \leq \sigma_{k} \leq s_{k}$ we have

$$
\left|\int_{\gamma \circ \sigma} f-\sum_{k=1}^{n} f\left(\gamma \circ \varphi\left(\sigma_{k}\right)\right)\left[\gamma \circ \sigma\left(s_{k}\right)-\gamma \circ \sigma\left(s_{k-1}\right)\right]\right|<\frac{\varepsilon}{2} .
$$

Choose $\delta_{2}>0$ such that if $P_{2}=\left\{a=t_{0}<t_{1}<\cdots<t_{n}=b\right\}$ is a partition of $[a, b]$ with $\left\|P_{2}\right\|<\delta_{2}$ and $t_{k-1}<\tau_{k}<t_{k}$ then

$$
\left|\int_{\gamma} f-\sum_{k=1}^{n}\left(\gamma\left(\tau_{k}\right)\right)\left[\gamma\left(t_{k}\right)-\gamma\left(t_{k-1}\right)\right]\right|<\frac{\varepsilon}{2} .
$$

Proposition IV.1.13 (continued)

Proposition IV.1.13. If $\gamma:[a, b] \rightarrow \mathbb{C}$ is a rectifiable path and $\sigma:[c, d] \rightarrow[a, b]$ is a continuous non-decreasing function with $\sigma(c)=a$ and $\sigma(d)=b$, then for any f continuous on $\{\gamma\}=\{\gamma \circ \sigma\}$ we have $\int_{\gamma} f=\int_{\gamma \circ \sigma} f$.
Proof (continued). Since φ is continuous on $[c, d]$ and $[c, d]$ is compact, then there is a $\delta>0$ such that $\delta<\delta_{1}$ and $\left|\varphi(s)-\varphi\left(s^{\prime}\right)\right|<\delta_{2}$ whenever $\left|s-s^{\prime}\right|<\delta$ (by the definition of uniform continuity). So if $P_{2}=\left\{c=s_{0}<s_{1}<\cdots<s_{n}=d\right\}$ is a partition of $[c, d]$ with $\left\|P_{3}\right\|<\delta<\delta_{1}$ and $t_{k}=\varphi\left(s_{k}\right)$, then $P_{4}=\left\{a=t_{0} \leq t_{1} \leq \cdots \leq t_{n}=b\right\}$ is a partition of $[a, b]$ with $\left\|P_{4}\right\|<\delta_{2}$. If $s_{k-1} \leq \sigma_{k} \leq s_{k}$ and $\tau_{k}=\varphi\left(\sigma_{k}\right)$
 follows.

Proposition IV.1.13 (continued)

Proposition IV.1.13. If $\gamma:[a, b] \rightarrow \mathbb{C}$ is a rectifiable path and $\sigma:[c, d] \rightarrow[a, b]$ is a continuous non-decreasing function with $\sigma(c)=a$ and $\sigma(d)=b$, then for any f continuous on $\{\gamma\}=\{\gamma \circ \sigma\}$ we have $\int_{\gamma} f=\int_{\gamma \circ \sigma} f$.
Proof (continued). Since φ is continuous on $[c, d]$ and $[c, d]$ is compact, then there is a $\delta>0$ such that $\delta<\delta_{1}$ and $\left|\varphi(s)-\varphi\left(s^{\prime}\right)\right|<\delta_{2}$ whenever $\left|s-s^{\prime}\right|<\delta$ (by the definition of uniform continuity). So if $P_{2}=\left\{c=s_{0}<s_{1}<\cdots<s_{n}=d\right\}$ is a partition of $[c, d]$ with $\left\|P_{3}\right\|<\delta<\delta_{1}$ and $t_{k}=\varphi\left(s_{k}\right)$, then $P_{4}=\left\{a=t_{0} \leq t_{1} \leq \cdots \leq t_{n}=b\right\}$ is a partition of $[a, b]$ with $\left\|P_{4}\right\|<\delta_{2}$. If $s_{k-1} \leq \sigma_{k} \leq s_{k}$ and $\tau_{k}=\varphi\left(\sigma_{k}\right)$ then both above inequalities hold and
$\left|\int_{\gamma} f-\int_{\gamma \circ \sigma} f\right|=\mid \int_{\gamma} f-\sum_{k=1}^{n} f\left(\gamma\left(\tau_{k}\right)\right)\left[\gamma\left(t_{k}\right)-\gamma\left(t_{k-1}\right)\right]$
$+\sum_{k=1}^{n} f\left(\gamma \circ \varphi\left(\sigma_{k}\right)\right)\left[\gamma \circ \varphi\left(s_{k}\right)-\gamma \circ\left(\varphi\left(s_{k-1}\right)\right]-\int_{\gamma \circ \sigma} \mid<\varepsilon\right.$ and the result follows.

Lemma IV.1.19

Lemma IV.1.19. If G is an open set in $\mathbb{C}, \gamma:[a, b] \rightarrow G$ is a rectifiable path, and $f: G \rightarrow \mathbb{C}$ is continuous then for every $\varepsilon>0$ there is a polygonal path Γ in G such that $\Gamma(a)=\gamma(a), \Gamma(b)=\gamma(b)$, and $\left|\int_{\gamma} f-\int_{\Gamma} f\right|<\varepsilon$.
Proof. Case I. Suppose G is an open disk. Since $\{\gamma\}$ is a compact set, by Theorem II.5.17, $d=\operatorname{dist})\{\gamma\}, \partial(G))>0$ where $\partial(G)$ is the boundary of G. So if $G=B(c ; r)$ then $\{\gamma\} \subset B(c ; \rho)$ where $\rho=r-\frac{1}{2} d$:

Lemma IV.1.19

Lemma IV.1.19. If G is an open set in $\mathbb{C}, \gamma:[a, b] \rightarrow G$ is a rectifiable path, and $f: G \rightarrow \mathbb{C}$ is continuous then for every $\varepsilon>0$ there is a polygonal path Γ in G such that $\Gamma(a)=\gamma(a), \Gamma(b)=\gamma(b)$, and $\left|\int_{\gamma} f-\int_{\Gamma} f\right|<\varepsilon$.
Proof. Case I. Suppose G is an open disk. Since $\{\gamma\}$ is a compact set, by Theorem II.5.17, $d=\operatorname{dist})\{\gamma\}, \partial(G))>0$ where $\partial(G)$ is the boundary of G. So if $G=B(c ; r)$ then $\{\gamma\} \subset B(c ; \rho)$ where $\rho=r-\frac{1}{2} d$:

Lemma IV.1.19

Lemma IV.1.19. If G is an open set in $\mathbb{C}, \gamma:[a, b] \rightarrow G$ is a rectifiable path, and $f: G \rightarrow \mathbb{C}$ is continuous then for every $\varepsilon>0$ there is a polygonal path Γ in G such that $\Gamma(a)=\gamma(a), \Gamma(b)=\gamma(b)$, and $\left|\int_{\gamma} f-\int_{\Gamma} f\right|<\varepsilon$.
Proof. Case I. Suppose G is an open disk. Since $\{\gamma\}$ is a compact set, by Theorem II.5.17, $d=\operatorname{dist})\{\gamma\}, \partial(G))>0$ where $\partial(G)$ is the boundary of G. So if $G=B(c ; r)$ then $\{\gamma\} \subset B(c ; \rho)$ where $\rho=r-\frac{1}{2} d$:

Lemma IV.1.19 (continued 1)

Proof (continued). Case I (continued 1). Now f is uniformly continuous on $\bar{B}(c ; \rho) \subset G$ since $\bar{B}(c ; \rho)$ is compact. So WLOG, f is uniformly continuous on G. Choose $\delta>0$ such that $|f(z)-f(w)|<\varepsilon$ whenever $|z-w|<\delta . \gamma$ is defined on $[a, b]$ and so γ is also uniformly continuous. So there is a partition $\left\{a=t_{0}<t_{1}<\cdots<t_{n}=b\right\}$ of $[a, b]$ such that the norm of this partition is sufficiently small so that (1) $|\gamma(s)-\gamma(t)|<\delta / 2$ for s, t such that $t_{k-1} \leq s \leq t_{k}$ and $t_{k-1} \leq t \leq t_{k}$, and (2) for $\tau_{k} \in\left[t_{k-1}, t_{k}\right]$ we have

$$
\begin{equation*}
\left|\int_{\gamma} f-\sum_{k=1}^{n} f\left(\gamma\left(\tau_{k}\right)\right)\left[\gamma\left(t_{k}\right)-\gamma\left(t_{k-1}\right)\right]\right| \tag{1.20}
\end{equation*}
$$

(by the definition of $\int_{\gamma} f$). We now use this partition of $[a, b]$ to define the desired polygon. Define $\Gamma:[a, b] \rightarrow \mathbb{C}$ as

$$
\Gamma(t)=\frac{1}{t_{k}-t_{k-1}}\left[\left(t_{k}-t\right) \gamma\left(t_{k-1}\right)+\left(t-t_{k-1}\right) \gamma\left(t_{k}\right)\right] \text { for } t \in\left[t_{k-1}, t_{k}\right]
$$

Lemma IV.1.19 (continued 1)

Proof (continued). Case I (continued 1). Now f is uniformly continuous on $\bar{B}(c ; \rho) \subset G$ since $\bar{B}(c ; \rho)$ is compact. So WLOG, f is uniformly continuous on G. Choose $\delta>0$ such that $|f(z)-f(w)|<\varepsilon$ whenever $|z-w|<\delta . \gamma$ is defined on $[a, b]$ and so γ is also uniformly continuous. So there is a partition $\left\{a=t_{0}<t_{1}<\cdots<t_{n}=b\right\}$ of $[a, b]$ such that the norm of this partition is sufficiently small so that (1) $|\gamma(s)-\gamma(t)|<\delta / 2$ for s, t such that $t_{k-1} \leq s \leq t_{k}$ and $t_{k-1} \leq t \leq t_{k}$, and (2) for $\tau_{k} \in\left[t_{k-1}, t_{k}\right]$ we have

$$
\begin{equation*}
\left|\int_{\gamma} f-\sum_{k=1}^{n} f\left(\gamma\left(\tau_{k}\right)\right)\left[\gamma\left(t_{k}\right)-\gamma\left(t_{k-1}\right)\right]\right|<\varepsilon \tag{1.20}
\end{equation*}
$$

(by the definition of $\int_{\gamma} f$). We now use this partition of $[a, b]$ to define the desired polygon. Define $\Gamma:[a, b] \rightarrow \mathbb{C}$ as

$$
\Gamma(t)=\frac{1}{t_{k}-t_{k-1}}\left[\left(t_{k}-t\right) \gamma\left(t_{k-1}\right)+\left(t-t_{k-1}\right) \gamma\left(t_{k}\right)\right] \text { for } t \in\left[t_{k-1}, t_{k}\right]
$$

Lemma IV.1.19 (continued 2)

Proof (continued). Case I. (so $\Gamma\left(t_{k-1}\right)=\gamma\left(t_{k-1}\right), \Gamma\left(t_{k}\right)=\gamma\left(t_{k}\right)$, and hence $\Gamma\left(\left[t_{k-1}, t_{k}\right]\right)=\left[\gamma\left(t_{k-1}, \gamma\left(t_{k}\right)\right]\right)$. Then Γ is a polygonal path and a subset of G (since G is convex; it's a disk). Since $|\gamma(s)-\gamma(t)|<\delta / 2$ for $t_{k-1} \leq s \leq t \leq t_{k}$, then

$$
\begin{array}{r}
\left|\Gamma(t)-\gamma\left(\tau_{k}\right)\right|=\left|\Gamma(t)-\gamma\left(t_{k}\right)+\gamma\left(t_{k}\right)-\gamma\left(\tau_{k}\right)\right| \\
\leq\left|\Gamma(t)-\gamma\left(t_{k}\right)\right|+\left|\gamma\left(t_{k}\right)-\gamma\left(\tau_{k}\right)\right|<\frac{\delta}{2}+\frac{\delta}{2}=\delta \tag{1.21}
\end{array}
$$

for $t \in\left[t_{k-1}, t_{k}\right]\left(\Gamma(t)\right.$ is at least as close to $\gamma\left(t_{k}\right)$ as $\gamma\left(t_{k-1}\right)$ is, and so the distance $\left|\Gamma(t)-\gamma\left(t_{k}\right)\right|$ is less than $\delta / 2$:

Lemma IV.1.19 (continued 2)

Proof (continued). Case I. (so $\Gamma\left(t_{k-1}\right)=\gamma\left(t_{k-1}\right), \Gamma\left(t_{k}\right)=\gamma\left(t_{k}\right)$, and hence $\Gamma\left(\left[t_{k-1}, t_{k}\right]\right)=\left[\gamma\left(t_{k-1}, \gamma\left(t_{k}\right)\right]\right)$. Then Γ is a polygonal path and a subset of G (since G is convex; it's a disk). Since $|\gamma(s)-\gamma(t)|<\delta / 2$ for $t_{k-1} \leq s \leq t \leq t_{k}$, then

$$
\begin{array}{r}
\left|\Gamma(t)-\gamma\left(\tau_{k}\right)\right|=\left|\Gamma(t)-\gamma\left(t_{k}\right)+\gamma\left(t_{k}\right)-\gamma\left(\tau_{k}\right)\right| \\
\leq\left|\Gamma(t)-\gamma\left(t_{k}\right)\right|+\left|\gamma\left(t_{k}\right)-\gamma\left(\tau_{k}\right)\right|<\frac{\delta}{2}+\frac{\delta}{2}=\delta \tag{1.21}
\end{array}
$$

for $t \in\left[t_{k-1}, t_{k}\right]\left(\Gamma(t)\right.$ is at least as close to $\gamma\left(t_{k}\right)$ as $\gamma\left(t_{k-1}\right)$ is, and so the distance $\left|\Gamma(t)-\gamma\left(t_{k}\right)\right|$ is less than $\delta / 2$:

Lemma IV.1.19 (continued 2)

Proof (continued). Case I. (so $\Gamma\left(t_{k-1}\right)=\gamma\left(t_{k-1}\right), \Gamma\left(t_{k}\right)=\gamma\left(t_{k}\right)$, and hence $\Gamma\left(\left[t_{k-1}, t_{k}\right]\right)=\left[\gamma\left(t_{k-1}, \gamma\left(t_{k}\right)\right]\right)$. Then Γ is a polygonal path and a subset of G (since G is convex; it's a disk). Since $|\gamma(s)-\gamma(t)|<\delta / 2$ for $t_{k-1} \leq s \leq t \leq t_{k}$, then

$$
\begin{array}{r}
\left|\Gamma(t)-\gamma\left(\tau_{k}\right)\right|=\left|\Gamma(t)-\gamma\left(t_{k}\right)+\gamma\left(t_{k}\right)-\gamma\left(\tau_{k}\right)\right| \\
\leq\left|\Gamma(t)-\gamma\left(t_{k}\right)\right|+\left|\gamma\left(t_{k}\right)-\gamma\left(\tau_{k}\right)\right|<\frac{\delta}{2}+\frac{\delta}{2}=\delta \tag{1.21}
\end{array}
$$

for $t \in\left[t_{k-1}, t_{k}\right]\left(\Gamma(t)\right.$ is at least as close to $\gamma\left(t_{k}\right)$ as $\gamma\left(t_{k-1}\right)$ is, and so the distance $\left|\Gamma(t)-\gamma\left(t_{k}\right)\right|$ is less than $\delta / 2$:

Lemma IV.1.19 (continued 3)

Proof (continued). Case I. Since $\int_{\Gamma} f=\int_{a}^{b} f(\Gamma(t)) \Gamma^{\prime}(t) d t$ (computed piecewise), then

$$
\int_{\Gamma} f=\sum_{k=1}^{n} \underbrace{\left(\frac{\gamma\left(t_{k}\right)-\gamma\left(t_{k-1}\right)}{t_{k}-t_{k-1}}\right)}_{\Gamma^{\prime}(t)} \int_{t_{k-1}}^{t_{k}} f(\Gamma(t)) d t
$$

Next,

$$
\begin{aligned}
\left|\int_{\gamma} f-\int_{\Gamma} f\right|= & \mid \int_{\gamma} f-\sum_{k=1}^{n} f\left(\gamma\left(\tau_{k}\right)\right)\left[\gamma\left(t_{k}\right)-\gamma\left(t_{k-1}\right)\right] \\
& +\sum_{k=1}^{n} f\left(\gamma\left(\tau_{k}\right)\right)\left[\gamma\left(t_{k}\right)-\gamma\left(t_{k-1}\right)\right]-\int_{\Gamma} f \mid \\
< & \varepsilon+\left|\sum_{k=1}^{m} f\left(\gamma\left(\tau_{k}\right)\right)\left[\gamma\left(t_{k}\right)-\gamma\left(t_{k-1}\right)\right]-\int_{\Gamma} f\right| \text { by }(1.20)
\end{aligned}
$$

Lemma IV.1.19 (continued 4)

Proof (continued). Case I.

$$
\begin{aligned}
\left|\int_{\gamma} f-\int_{\Gamma} f\right|= & \varepsilon+\mid \sum_{k=1}^{n}\left(f\left(\gamma\left(\tau_{k}\right)\right)\left[\gamma\left(t_{k}\right)-\gamma\left(t_{k-1}\right)\right]\right. \\
& \left.-\frac{\gamma\left(t_{k}\right)-\gamma\left(t_{k-1}\right)}{t_{k}-t_{k-1}} \int_{t_{k-1}}^{t_{k}} f(\Gamma(t)) d t\right) \mid \\
= & \varepsilon+\left\lvert\, \sum_{k=1}^{n}\left(\frac{\gamma\left(t_{k}\right)-\gamma\left(t_{k-1}\right)}{t_{k}-t_{k-1}}\right) \int_{t_{k-1}}^{t_{k}} \underbrace{\left.f\left(\tau_{k}\right)\right)}_{\substack{\text { constant } \\
\text { WRT } t}}-f(\Gamma(t))\right.) d t \mid \\
\leq & \varepsilon+\sum_{k=1}^{n}\left(\frac{\left|\gamma\left(t_{k}\right)-\gamma\left(t_{k-1}\right)\right|}{t_{k}-t_{k-1}} \int_{t_{k-1}}^{t_{k}}\left|f\left(\gamma\left(\tau_{k}\right)\right)-f(\Gamma(t))\right| d t\right)
\end{aligned}
$$

Lemma IV.1.19 (continued 5)

Lemma IV.1.19. If G is an open set in $\mathbb{C}, \gamma:[a, b] \rightarrow G$ is a rectifiable path, and $f: G \rightarrow \mathbb{C}$ is continuous then for every $\varepsilon>0$ there is a polygonal path Γ in G such that $\Gamma(a)=\gamma(a), \Gamma(b)=\gamma(b)$, and $\left|\int_{\gamma} f-\int_{\Gamma} f\right|<\varepsilon$.
Proof (continued). Case I. To recap: G is an open disk and

$$
\left|\int_{\gamma} f-\int_{\Gamma} f\right| \leq \varepsilon+\sum_{k=1}^{n}\left(\frac{\left|\gamma\left(t_{k}\right)-\gamma\left(t_{k-1}\right)\right|}{t_{k}-t_{k-1}} \int_{t_{k-1}}^{t_{k}}\left|f\left(\gamma\left(\tau_{k}\right)\right)-f(\Gamma(t))\right| d t\right) .
$$

By (1.21), $\left|\Gamma(t)-\gamma\left(\tau_{k}\right)\right|<\delta$ and by uniform continuity mentioned above, $\left|f\left(\gamma\left(\tau_{k}\right)\right)-f(\Gamma(t))\right|<\varepsilon$, so

$$
\left|\int_{\gamma} f-\int_{\Gamma} f\right|<\varepsilon=\varepsilon \sum_{k=1}^{n}\left|\gamma\left(t_{k}\right)-\gamma\left(t_{k-1}\right)\right| \leq \varepsilon(1-V(\gamma)) .
$$

Since ε is arbitrary, Case I follows.

Lemma IV.1.19 (continued 6)

Lemma IV.1.19. If G is an open set in $\mathbb{C}, \gamma:[a, b] \rightarrow G$ is a rectifiable path, and $f: G \rightarrow \mathbb{C}$ is continuous then for every $\varepsilon>0$ there is a polygonal path Γ in G such that $\Gamma(a)=\gamma(a), \Gamma(b)=\gamma(b)$, and $\left|\int_{\gamma} f-\int_{\Gamma} f\right|<\varepsilon$.
Proof (continued). Case II. G is an arbitrary set. As in Case I, since $\{\gamma\}$ is compact there is a number r such that $0<r<\operatorname{dist}(\{\gamma\}, \partial G)$. Choose $\delta>0$ such that $|\gamma(s)-\gamma(t)|<r$ whenever $|s-t|<\delta$ (by the uniform continuity of γ on $[a, b]$). If $P=\left\{a=t_{0}<t_{1}<\cdots<t_{n}=b\right\}$ is a partition of $[a, b]$ with $\|P\|<\delta$ then $\left|\gamma(t)-\gamma\left(t_{k-1}\right)\right|<r$ for $t \in\left[t_{k-1}, t_{k}\right]$. So we now have the " k th part" of γ contained in $\boldsymbol{B}\left(\gamma\left(t_{k-1} ; r\right)\right.$ and can use Case I. If $\gamma_{k}:\left[t_{k-1}, t_{k}\right] \rightarrow G$ is defined by

Lemma IV.1.19 (continued 6)

Lemma IV.1.19. If G is an open set in $\mathbb{C}, \gamma:[a, b] \rightarrow G$ is a rectifiable path, and $f: G \rightarrow \mathbb{C}$ is continuous then for every $\varepsilon>0$ there is a polygonal path Γ in G such that $\Gamma(a)=\gamma(a), \Gamma(b)=\gamma(b)$, and $\left|\int_{\gamma} f-\int_{\Gamma} f\right|<\varepsilon$.
Proof (continued). Case II. G is an arbitrary set. As in Case I, since $\{\gamma\}$ is compact there is a number r such that $0<r<\operatorname{dist}(\{\gamma\}, \partial G)$. Choose $\delta>0$ such that $|\gamma(s)-\gamma(t)|<r$ whenever $|s-t|<\delta$ (by the uniform continuity of γ on $[a, b]$). If $P=\left\{a=t_{0}<t_{1}<\cdots<t_{n}=b\right\}$ is a partition of $[a, b]$ with $\|P\|<\delta$ then $\left|\gamma(t)-\gamma\left(t_{k-1}\right)\right|<r$ for $t \in\left[t_{k-1}, t_{k}\right]$. So we now have the " k th part" of γ contained in $B\left(\gamma\left(t_{k-1} ; r\right)\right.$ and can use Case I. If $\gamma_{k}:\left[t_{k-1}, t_{k}\right] \rightarrow G$ is defined by $\gamma_{k}(t)=\gamma(t)$ then $\left\{\gamma_{k}\right\} \subset B\left(\gamma\left(t_{k-1}\right) ; r\right)$ for $1 \leq k \leq n$ (the "parts" of γ). By Case I there is a polygonal path $\Gamma_{k}:\left[t_{k-1}, t_{k}\right] \rightarrow B\left(\gamma\left(t_{k-1}\right) ; r\right)$ such that $\Gamma_{k}\left(t_{k-1}\right)=\gamma\left(t_{k-1}\right), \Gamma_{k}\left(t_{k}\right)=\gamma\left(t_{k}\right)$, and $\left|\int_{\gamma_{k}} f-\int_{\Gamma_{k}} f\right|<\varepsilon / n$. Defining Γ as the union of the Γ_{k} yields the desired polygonal path.

Theorem IV.1.18

Theorem IV.1.18. Let G be open in \mathbb{C} and let γ be a rectifiable path in G with initial and end points α and β. If $f: G \rightarrow \mathbb{C}$ is a continuous function with a primitive $F: G \rightarrow \mathbb{C}$ (i.e., $F^{\prime}=f$), then $\int_{\gamma} f=F(\beta)-F(\alpha)$.
Proof. Case I. Suppose $\gamma:[a, b] \rightarrow \mathbb{C}$ is piecewise smooth. Then

$$
\begin{aligned}
\int_{\gamma} f & =\int_{a}^{b} f(\gamma(t)) \gamma^{\prime}(t) d t \text { (piecewise) } \\
& =\int_{a}^{b} F^{\prime}(\gamma(t)) \gamma^{\prime}(t) d t=\int_{a}^{b}(F \circ \gamma)^{\prime}(t) d t \\
& =\int_{a}^{b} \operatorname{Re}\left\{(F \circ \gamma)^{\prime}\right\} d t+i \int_{a}^{b} \operatorname{Im}\left\{(F \circ \gamma)^{\prime}\right\} d t \\
& =\left.\operatorname{Re}\{(F \circ \gamma)\}\right|_{a} ^{b}+\left.i \operatorname{lm}\{(F \circ \gamma)\}\right|_{a} ^{b} \text { by the F.T.C. } \\
& =F(\gamma(b))-F(\gamma(a)) .
\end{aligned}
$$

Theorem IV.1.18 (continued)

Theorem IV.1.18. Let G be open in \mathbb{C} and let γ be a rectifiable path in G with initial and end points α and β. If $f: G \rightarrow \mathbb{C}$ is a continuous function with a primitive $F: G \rightarrow \mathbb{C}$ (i.e., $F^{\prime}=f$), then $\int_{\gamma} f=F(\beta)-F(\alpha)$.
Proof (continued). Case II. Suppose γ is rectifiable. For $\varepsilon>0$, Lemma IV.1.19 implies there is a polygonal path Γ from α to β such that $\left|\int_{\gamma} f-\int_{\Gamma} f\right|<\varepsilon$. But Γ is piecewise smooth, so by Case I, $\int_{\Gamma} f=F(\beta)-F(\alpha)$. Therefore $\left|\int_{\gamma} f-[F(\beta)-F(\alpha)]\right|<\varepsilon$, and the result follows.

