Complex Analysis

Chapter IV. Complex Integration

IV.2. Power Series Representation of Analytic Functions—Proofs

Table of contents

(1) Proposition IV.2.1
(2) Lemma IV.2.A
(3) Theorem IV.2.6
(4) Lemma IV.2.7
(5) Theorem IV.2.8. "Analytic" Implies Power Series
(6) Theorem IV.2.14. Cauchy's Estimate
(7) Proposition IV.2.15

Proposition IV.2.1

Proposition IV.2.1. Let $\varphi:[a, b] \times[c, d] \rightarrow \mathbb{C}$ be a continuous function and define $g:[c, d] \rightarrow \mathbb{C}$ by $g(t)=\int_{a}^{b} \varphi(s, t) d s$. Then g is continuous. Moreover, if $\frac{\partial \varphi}{\partial t}$ exists and is a continuous function on $[a, b] \times[c, d]$ then g is continuously differentiable and

$$
g^{\prime}(t)=\int_{a}^{b} \frac{\partial \varphi}{\partial t}(s, t) d s
$$

Proof. The proof that g is continuous is left as Exercise IV.2.1.

Proposition IV.2.1

Proposition IV.2.1. Let $\varphi:[a, b] \times[c, d] \rightarrow \mathbb{C}$ be a continuous function and define $g:[c, d] \rightarrow \mathbb{C}$ by $g(t)=\int_{a}^{b} \varphi(s, t) d s$. Then g is continuous. Moreover, if $\frac{\partial \varphi}{\partial t}$ exists and is a continuous function on $[a, b] \times[c, d]$ then g is continuously differentiable and

$$
g^{\prime}(t)=\int_{a}^{b} \frac{\partial \varphi}{\partial t}(s, t) d s .
$$

Proof. The proof that g is continuous is left as Exercise IV.2.1.
Now suppose $\partial \varphi / \partial t$ exists and is continuous on $[a, b] \times[c, d]$. Since $[a, b] \times[c, d]$ is a compact subset of \mathbb{R}^{2} then by Theorem II.5.15, $\partial \varphi / \partial t$ is uniformly continuous on $[a, b] \times[c, d]$. Now denote $\partial \varphi / \partial t=\varphi_{2}$. Fix a point t_{0} is $[c, d]$ and let $\varepsilon>0$. So there is $\delta>0$ such that $\varphi_{2}\left(s^{\prime}, t^{\prime}\right)-\varphi_{2}(s, t) \mid<\varepsilon$ whenever $\left(s-s^{\prime}\right)^{2}+\left(t-t^{\prime}\right)^{2}<\delta^{2}$.

Proposition IV.2.1

Proposition IV.2.1. Let $\varphi:[a, b] \times[c, d] \rightarrow \mathbb{C}$ be a continuous function and define $g:[c, d] \rightarrow \mathbb{C}$ by $g(t)=\int_{a}^{b} \varphi(s, t) d s$. Then g is continuous. Moreover, if $\frac{\partial \varphi}{\partial t}$ exists and is a continuous function on $[a, b] \times[c, d]$ then g is continuously differentiable and

$$
g^{\prime}(t)=\int_{a}^{b} \frac{\partial \varphi}{\partial t}(s, t) d s .
$$

Proof. The proof that g is continuous is left as Exercise IV.2.1.
Now suppose $\partial \varphi / \partial t$ exists and is continuous on $[a, b] \times[c, d]$. Since $[a, b] \times[c, d]$ is a compact subset of \mathbb{R}^{2} then by Theorem II.5.15, $\partial \varphi / \partial t$ is uniformly continuous on $[a, b] \times[c, d]$. Now denote $\partial \varphi / \partial t=\varphi_{2}$. Fix a point t_{0} is $[c, d]$ and let $\varepsilon>0$. So there is $\delta>0$ such that $\left|\varphi_{2}\left(s^{\prime}, t^{\prime}\right)-\varphi_{2}(s, t)\right|<\varepsilon$ whenever $\left(s-s^{\prime}\right)^{2}+\left(t-t^{\prime}\right)^{2}<\delta^{2}$.

Proposition IV.2.1 (continued 1)

Proof (continued). In particular, $\left|\varphi_{2}(s, t)-\varphi_{2}\left(s, t_{0}\right)\right|<\varepsilon$ whenever $\left|t-t_{0}\right|<\delta$ and $s \in[a, b]$. So for $\left|t-t_{0}\right|<\delta$ and $x \in[a, b]$ we have

$$
\left|\int_{t_{0}}^{t}\left(\varphi_{2}(s, \tau)-\varphi_{2}\left(s, t_{0}\right)\right) d \tau\right| \leq \varepsilon\left|t-t_{0}\right| .
$$

But for a fixed $s \in[a, b], \Phi(t)=\varphi(s, t)-t \varphi_{2}\left(s, t_{0}\right)$ is a primitive of $\varphi_{2}(s, t)-\varphi_{2}\left(s, t_{0}\right)$, so by the Fundamental Theorem of Calculus we have

$$
\begin{aligned}
& \left|\int_{t_{0}}^{t}\left(\varphi_{2}(s, \tau)-\varphi_{2}\left(s, t_{0}\right)\right) d \tau\right| \\
= & \left|\left(\varphi(s, t)-t \varphi_{2}\left(s, t_{0}\right)\right)-\left(\varphi\left(s, t_{0}\right)-t_{0} \varphi_{2}\left(s, t_{0}\right)\right)\right| \\
= & \left|\varphi(s, t)-\varphi\left(s, t_{0}\right)-\left(t-t_{0}\right) \varphi_{2}\left(s, t_{0}\right)\right| \leq \varepsilon\left|t-t_{0}\right|
\end{aligned}
$$

Proposition IV.2.1 (continued 1)

Proof (continued). In particular, $\left|\varphi_{2}(s, t)-\varphi_{2}\left(s, t_{0}\right)\right|<\varepsilon$ whenever $\left|t-t_{0}\right|<\delta$ and $s \in[a, b]$. So for $\left|t-t_{0}\right|<\delta$ and $x \in[a, b]$ we have

$$
\left|\int_{t_{0}}^{t}\left(\varphi_{2}(s, \tau)-\varphi_{2}\left(s, t_{0}\right)\right) d \tau\right| \leq \varepsilon\left|t-t_{0}\right| .
$$

But for a fixed $s \in[a, b], \Phi(t)=\varphi(s, t)-t \varphi_{2}\left(s, t_{0}\right)$ is a primitive of $\varphi_{2}(s, t)-\varphi_{2}\left(s, t_{0}\right)$, so by the Fundamental Theorem of Calculus we have

$$
\begin{aligned}
& \left|\int_{t_{0}}^{t}\left(\varphi_{2}(s, \tau)-\varphi_{2}\left(s, t_{0}\right)\right) d \tau\right| \\
= & \left|\left(\varphi(s, t)-t \varphi_{2}\left(s, t_{0}\right)\right)-\left(\varphi\left(s, t_{0}\right)-t_{0} \varphi_{2}\left(s, t_{0}\right)\right)\right| \\
= & \left|\varphi(s, t)-\varphi\left(s, t_{0}\right)-\left(t-t_{0}\right) \varphi_{2}\left(s, t_{0}\right)\right| \leq \varepsilon\left|t-t_{0}\right|
\end{aligned}
$$

and this holds for any $s \in[a, b]$ when $\left|t-t_{0}\right|<\delta$.

Proposition IV.2.1 (continued 2)

Proof (continued). Therefore for $s \in[a, b]$ and $\left|t-t_{0}\right|<\delta$ we have

$$
\begin{gathered}
\left|\frac{\varphi(s, t)-\varphi\left(s, t_{0}\right)}{t-t_{0}}-\varphi_{2}\left(s, t_{0}\right)\right| \leq \varepsilon \text { and } \\
\left|\int_{a}^{b} \frac{\varphi(s, t)-\varphi\left(s, t_{0}\right)}{t-t_{0}} d s-\int_{a}^{b} \varphi_{2}\left(s, t_{0}\right) d s\right| \leq \varepsilon(b-a) \text { or } \\
\left|\frac{g(t)-g\left(t_{0}\right)}{t-t_{0}}-\int_{a}^{b} \varphi_{2}\left(s, t_{0}\right) d s\right| \leq \varepsilon(b-a)
\end{gathered}
$$

since $g(t)=\int_{a}^{b} \varphi(s, t) d s$ by definition. Therefore for $s \in[a, b]$ we have

$$
g^{\prime}\left(t_{0}\right)=\int_{a}^{b} \varphi_{2}\left(s, t_{0}\right) d s=\int_{a}^{b} \frac{\partial \varphi}{\partial t}\left(s, t_{0}\right) d s
$$

Proposition IV.2.1 (continued 3)

Proposition IV.2.1. Let $\varphi:[a, b] \times[c, d] \rightarrow \mathbb{C}$ be a continuous function and define $g:[c, d] \rightarrow \mathbb{C}$ by $g(t)=\int_{a}^{b} \varphi(s, t) d s$. Then g is continuous. Moreover, if $\frac{\partial \varphi}{\partial t}$ exists and is a continuous function on $[a, b] \times[c, d]$ then g is continuously differentiable and

$$
g^{\prime}(t)=\int_{a}^{b} \frac{\partial \varphi}{\partial t}(s, t) d s .
$$

Proof (continued). Since t_{0} is an arbitrary element of $[c, d]$ then we have $g^{\prime}(t)=\int_{a}^{b} \frac{\partial \varphi}{\partial t}(s, t) d s$ on $[a, b] \times[c, d]$, as claimed. Since $\partial \varphi / \partial t$ is hypothesized to be continuous then g^{\prime} is continuous by Exercise IV.2.1 (with g and φ of the exercise replaced with g^{\prime} and $\partial \varphi / \partial t$ here), as claimed.

Lemma IV.2.A

Lemma IV.2.A. If $|z|<1$ then $\int_{0}^{2 \pi} \frac{e^{i s}}{e^{i s}-z} d s=2 \pi$.
Proof. Let $\varphi(s, t)=\frac{e^{i s}}{e^{i s}-t z}$ for $0 \leq t \leq 1$ and $0 \leq s \leq 2 \pi$. Since $|z|<1, \varphi$ is continuously differentiable. So by Proposition IV.2.1, $g(t)=\int_{0}^{2 \pi} \varphi(s, t) d s$ is continuously differentiable.

Lemma IV.2.A

Lemma IV.2.A. If $|z|<1$ then $\int_{0}^{2 \pi} \frac{e^{i s}}{e^{i s}-z} d s=2 \pi$.
Proof. Let $\varphi(s, t)=\frac{e^{i s}}{e^{i s}-t z}$ for $0 \leq t \leq 1$ and $0 \leq s \leq 2 \pi$. Since $|z|<1, \varphi$ is continuously differentiable. So by Proposition IV.2.1, $g(t)=\int_{0}^{2 \pi} \varphi(s, t) d s$ is continuously differentiable. Also,
$g(0)=\int_{0}^{2 \pi} \varphi(s, 0) d s=\int_{0}^{2 \pi} \frac{e^{i s}}{e^{i s}-0 z} d z=\int_{0}^{2 \pi} 1 d z=2 \pi$.
Next, $g^{\prime}(t)=\int_{0}^{2 \pi} \frac{z e^{i s}}{\left(e^{i s}-t z\right)^{2}} d s$ by Proposition IV.2.1.

Lemma IV.2.A

Lemma IV.2.A. If $|z|<1$ then $\int_{0}^{2 \pi} \frac{e^{i s}}{e^{i s}-z} d s=2 \pi$.
Proof. Let $\varphi(s, t)=\frac{e^{i s}}{e^{i s}-t z}$ for $0 \leq t \leq 1$ and $0 \leq s \leq 2 \pi$. Since $|z|<1, \varphi$ is continuously differentiable. So by Proposition IV.2.1, $g(t)=\int_{0}^{2 \pi} \varphi(s, t) d s$ is continuously differentiable. Also,

$$
g(0)=\int_{0}^{2 \pi} \varphi(s, 0) d s=\int_{0}^{2 \pi} \frac{e^{i s}}{e^{i s}-0 z} d z=\int_{0}^{2 \pi} 1 d z=2 \pi
$$

Next, $g^{\prime}(t)=\int_{0}^{2 \pi} \frac{z e^{i s}}{\left(e^{i s}-t z\right)^{2}} d s$ by Proposition IV.2.1. Notice for
$\phi(s)=\frac{z i}{e^{i s}-t z}($ with t fixed $)$ we have $\phi^{\prime}(s)=\frac{z e^{i s}}{\left(e^{i s}-t z\right)^{2}}$ and so $\phi(s)$ is a primitive for

$$
\overline{\left(e^{i s}-t z\right)^{2}}, \text { and so }
$$

Lemma IV.2.A

Lemma IV.2.A. If $|z|<1$ then $\int_{0}^{2 \pi} \frac{e^{i s}}{e^{i s}-z} d s=2 \pi$.
Proof. Let $\varphi(s, t)=\frac{e^{i s}}{e^{i s}-t z}$ for $0 \leq t \leq 1$ and $0 \leq s \leq 2 \pi$. Since $|z|<1, \varphi$ is continuously differentiable. So by Proposition IV.2.1, $g(t)=\int_{0}^{2 \pi} \varphi(s, t) d s$ is continuously differentiable. Also,

$$
g(0)=\int_{0}^{2 \pi} \varphi(s, 0) d s=\int_{0}^{2 \pi} \frac{e^{i s}}{e^{i s}-0 z} d z=\int_{0}^{2 \pi} 1 d z=2 \pi
$$

Next, $g^{\prime}(t)=\int_{0}^{2 \pi} \frac{z e^{i s}}{\left(e^{i s}-t z\right)^{2}} d s$ by Proposition IV.2.1. Notice for $\Phi(s)=\frac{z i}{e^{i s}-t z}($ with t fixed $)$ we have $\Phi^{\prime}(s)=\frac{z e^{i s}}{\left(e^{i s}-t z\right)^{2}}$ and so $\Phi(s)$ is a primitive for $\frac{z e^{i s}}{\left(e^{i s}-t z\right)^{2}}$, and so

Lemma IV.2.A (continued)

Lemma IV.2.A. If $|z|<1$ then $\int_{0}^{2 \pi} \frac{e^{i s}}{e^{i s}-z} d s=2 \pi$.

Proof (continued).

$g^{\prime}(t)=\int_{0}^{2 \pi} \frac{z e^{i s}}{\left(e^{i s}-t z\right)^{2}} d s=\Phi(2 \pi)-\Phi(0)=\frac{z i}{e^{2 \pi i}-t z}-\frac{z}{e^{0}-t z}=0$.
Therefore g is constant and $g(1)=g(0)=2 \pi$.

Lemma IV.2.A (continued)

Lemma IV.2.A. If $|z|<1$ then $\int_{0}^{2 \pi} \frac{e^{i s}}{e^{i s}-z} d s=2 \pi$.

Proof (continued).

$$
g^{\prime}(t)=\int_{0}^{2 \pi} \frac{z e^{i s}}{\left(e^{i s}-t z\right)^{2}} d s=\Phi(2 \pi)-\Phi(0)=\frac{z i}{e^{2 \pi i}-t z}-\frac{z}{e^{0}-t z}=0 .
$$

Therefore g is constant and $g(1)=g(0)=2 \pi$. That is,

$$
g(1)=\int_{0}^{2 \pi} \frac{e^{i s}}{e^{i s}-z} d z=2 \pi
$$

Lemma IV.2.A (continued)

Lemma IV.2.A. If $|z|<1$ then $\int_{0}^{2 \pi} \frac{e^{i s}}{e^{i s}-z} d s=2 \pi$.

Proof (continued).

$$
g^{\prime}(t)=\int_{0}^{2 \pi} \frac{z e^{i s}}{\left(e^{i s}-t z\right)^{2}} d s=\Phi(2 \pi)-\Phi(0)=\frac{z i}{e^{2 \pi i}-t z}-\frac{z}{e^{0}-t z}=0
$$

Therefore g is constant and $g(1)=g(0)=2 \pi$. That is,

$$
g(1)=\int_{0}^{2 \pi} \frac{e^{i s}}{e^{i s}-z} d z=2 \pi
$$

Theorem IV.2.6

Proposition IV.2.6. Let $f: G \rightarrow \mathbb{C}$ be analytic and suppose $B(a ; r) \subseteq G$ $(r>0)$. If $\gamma(t)=a+r e^{i t}$, and $0 \leq t \leq 2 \pi$. Then

$$
f(z)=\frac{1}{2 \pi i} \int_{\gamma} \frac{f(w)}{w-z} d w
$$

for $|z-a|<r$.
Proof. Without loss of generality, we assume $a=0$ and $r=1$ (otherwise, we consider $g(z)=f(a+r z)$ and $\left.G_{1}=\left\{\left.\frac{1}{r}(z-a) \right\rvert\, z \in G\right\}\right)$. That is, $\bar{B}(0,1) \subset G$.

Theorem IV.2.6

Proposition IV.2.6. Let $f: G \rightarrow \mathbb{C}$ be analytic and suppose $\bar{B}(a ; r) \subseteq G$ $(r>0)$. If $\gamma(t)=a+r e^{i t}$, and $0 \leq t \leq 2 \pi$. Then

$$
f(z)=\frac{1}{2 \pi i} \int_{\gamma} \frac{f(w)}{w-z} d w
$$

for $|z-a|<r$.
Proof. Without loss of generality, we assume $a=0$ and $r=1$ (otherwise, we consider $g(z)=f(a+r z)$ and $\left.G_{1}=\left\{\left.\frac{1}{r}(z-a) \right\rvert\, z \in G\right\}\right)$. That is, $\bar{B}(0,1) \subset G$. Fix z where $|z|<1$. We then need to show that

$$
f(z)=\frac{1}{2 \pi i} \int_{\gamma} \frac{f(w)}{w-z} d w=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{f\left(e^{i s}\right) e^{i s}}{e^{i s}-z} d s .
$$

Theorem IV.2.6

Proposition IV.2.6. Let $f: G \rightarrow \mathbb{C}$ be analytic and suppose $\bar{B}(a ; r) \subseteq G$ $(r>0)$. If $\gamma(t)=a+r e^{i t}$, and $0 \leq t \leq 2 \pi$. Then

$$
f(z)=\frac{1}{2 \pi i} \int_{\gamma} \frac{f(w)}{w-z} d w
$$

for $|z-a|<r$.
Proof. Without loss of generality, we assume $a=0$ and $r=1$ (otherwise, we consider $g(z)=f(a+r z)$ and $\left.G_{1}=\left\{\left.\frac{1}{r}(z-a) \right\rvert\, z \in G\right\}\right)$. That is, $\bar{B}(0,1) \subset G$. Fix z where $|z|<1$. We then need to show that

$$
f(z)=\frac{1}{2 \pi i} \int_{\gamma} \frac{f(w)}{w-z} d w=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{f\left(e^{i s}\right) e^{i s}}{e^{i s}-z} d s
$$

This is equivalent to

Theorem IV.2.6

Proposition IV.2.6. Let $f: G \rightarrow \mathbb{C}$ be analytic and suppose $\bar{B}(a ; r) \subseteq G$ $(r>0)$. If $\gamma(t)=a+r e^{i t}$, and $0 \leq t \leq 2 \pi$. Then

$$
f(z)=\frac{1}{2 \pi i} \int_{\gamma} \frac{f(w)}{w-z} d w
$$

for $|z-a|<r$.
Proof. Without loss of generality, we assume $a=0$ and $r=1$ (otherwise, we consider $g(z)=f(a+r z)$ and $\left.G_{1}=\left\{\left.\frac{1}{r}(z-a) \right\rvert\, z \in G\right\}\right)$. That is, $\bar{B}(0,1) \subset G$. Fix z where $|z|<1$. We then need to show that

$$
f(z)=\frac{1}{2 \pi i} \int_{\gamma} \frac{f(w)}{w-z} d w=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{f\left(e^{i s}\right) e^{i s}}{e^{i s}-z} d s
$$

This is equivalent to

$$
\begin{equation*}
0=\int_{0}^{2 \pi} \frac{f\left(e^{i s}\right) e^{i s}}{e^{i s}-z} d s-2 \pi f(z)=\int_{0}^{2 \pi}\left(\frac{f\left(e^{i s}\right) e^{i s}}{e^{i s}-z}-f(z)\right) d s \tag{*}
\end{equation*}
$$

Theorem IV.2.6 (continued 1)

Proof (continued). Let $\varphi(s, t)=\frac{f\left(z+t\left(e^{i s}-z\right)\right) e^{i s}}{e^{i s}-z}-f(z)$ for $0 \leq t \leq 1$ and $0 \leq s \leq 2 \pi$. Since $\left|z+t\left(e^{i s}-z\right)\right|=\left|z(1-t)+t e^{i s}\right| \leq|z(1-t)|+t \leq|1-t|+t=1-t+t=1$, then φ is well defined (f takes on values in $\bar{B}(0 ; 1) \subset G$) and is continuously differentiable. Let $g(t)=\int_{0}^{2 \pi} \varphi(s, t) d s$. Then by Proposition IV.2.1, g is continuously differentiable. Notice that

$$
\begin{aligned}
g(0) & =\int_{0}^{2 \pi} \varphi(s, 0) d s=\int_{0}^{2 \pi}\left(\frac{f(z) e^{i s}}{e^{i s}-z}-f(z)\right) d s \\
& =f(z) \int_{0}^{2 \pi} \frac{e^{i s}}{e^{i s}-z} d s-2 \pi f(z) \\
& =0 \text { by Lemma IV.2.A }
\end{aligned}
$$

Theorem IV.2.6 (continued 1)

Proof (continued). Let $\varphi(s, t)=\frac{f\left(z+t\left(e^{i s}-z\right)\right) e^{i s}}{e^{i s}-z}-f(z)$ for $0 \leq t \leq 1$ and $0 \leq s \leq 2 \pi$. Since $\left|z+t\left(e^{i s}-z\right)\right|=\left|z(1-t)+t e^{i s}\right| \leq|z(1-t)|+t \leq|1-t|+t=1-t+t=1$, then φ is well defined (f takes on values in $\bar{B}(0 ; 1) \subset G$) and is continuously differentiable. Let $g(t)=\int_{0}^{2 \pi} \varphi(s, t) d s$. Then by Proposition IV.2.1, g is continuously differentiable. Notice that

$$
\begin{aligned}
g(0) & =\int_{0}^{2 \pi} \varphi(s, 0) d s=\int_{0}^{2 \pi}\left(\frac{f(z) e^{i s}}{e^{i s}-z}-f(z)\right) d s \\
& =f(z) \int_{0}^{2 \pi} \frac{e^{i s}}{e^{i s}-z} d s-2 \pi f(z) \\
& =0 \text { by Lemma IV.2.A }
\end{aligned}
$$

We now show g is constant. By Proposition IV.2.1,
$g^{\prime}(t)=\int_{0}^{2 \pi} \varphi_{2}(s, t) d s$ where $\varphi_{2}(s, t)=e^{i s} f^{\prime}\left(z+t\left(e^{i s}-z\right)\right)=\partial \varphi / \partial t$.

Theorem IV.2.6 (continued 1)

Proof (continued). Let $\varphi(s, t)=\frac{f\left(z+t\left(e^{i s}-z\right)\right) e^{i s}}{e^{i s}-z}-f(z)$ for $0 \leq t \leq 1$ and $0 \leq s \leq 2 \pi$. Since $\left|z+t\left(e^{i s}-z\right)\right|=\left|z(1-t)+t e^{i s}\right| \leq|z(1-t)|+t \leq|1-t|+t=1-t+t=1$, then φ is well defined (f takes on values in $\bar{B}(0 ; 1) \subset G$) and is continuously differentiable. Let $g(t)=\int_{0}^{2 \pi} \varphi(s, t) d s$. Then by Proposition IV.2.1, g is continuously differentiable. Notice that

$$
\begin{aligned}
g(0) & =\int_{0}^{2 \pi} \varphi(s, 0) d s=\int_{0}^{2 \pi}\left(\frac{f(z) e^{i s}}{e^{i s}-z}-f(z)\right) d s \\
& =f(z) \int_{0}^{2 \pi} \frac{e^{i s}}{e^{i s}-z} d s-2 \pi f(z) \\
& =0 \text { by Lemma IV.2.A }
\end{aligned}
$$

We now show g is constant. By Proposition IV.2.1, $g^{\prime}(t)=\int_{0}^{2 \pi} \varphi_{2}(s, t) d s$ where $\varphi_{2}(s, t)=e^{i s} f^{\prime}\left(z+t\left(e^{i s}-z\right)\right)=\partial \varphi / \partial t$.

Theorem IV.2.6 (continued 2)

Proof (continued). For $0<t \leq 1$, we have $\Phi(s)=-i t^{-1} f\left(z+t\left(e^{i s}-z\right)\right)$ is a primitive of $\varphi_{2}(s, t)$. So $g^{\prime}(t)=\Phi(2 \pi)-\Phi(0)=0$ for $0<t \leq 1$. Since g^{\prime} is continuous, we must have $g^{\prime}(t)=0$ for $0 \leq t \leq 1$. Therefore $g(t)$ is constant on $[0,1]$ and $g(1)=g(0)=0$.

Theorem IV.2.6 (continued 2)

Proof (continued). For $0<t \leq 1$, we have $\Phi(s)=-i t^{-1} f\left(z+t\left(e^{i s}-z\right)\right)$ is a primitive of $\varphi_{2}(s, t)$. So $g^{\prime}(t)=\Phi(2 \pi)-\Phi(0)=0$ for $0<t \leq 1$. Since g^{\prime} is continuous, we must have $g^{\prime}(t)=0$ for $0 \leq t \leq 1$. Therefore $g(t)$ is constant on [0,1$]$ and $g(1)=g(0)=0$. That is,

$$
\begin{gathered}
g(1)=\int_{0}^{2 \pi} \varphi(s, 1) d s=\int_{0}^{2 \pi}\left(\frac{f\left(z+1\left(e^{i s}-z\right)\right) e^{i s}}{e^{i s}-z}-f(z)\right) d s \\
=\int_{0}^{2 \pi}\left(\frac{f\left(e^{i s}\right) e^{i s}}{e^{i s}-z}-f(z)\right) d s=0
\end{gathered}
$$

This is $(*)$ and the result follows.

Theorem IV.2.6 (continued 2)

Proof (continued). For $0<t \leq 1$, we have $\Phi(s)=-i t^{-1} f\left(z+t\left(e^{i s}-z\right)\right)$ is a primitive of $\varphi_{2}(s, t)$. So $g^{\prime}(t)=\Phi(2 \pi)-\Phi(0)=0$ for $0<t \leq 1$. Since g^{\prime} is continuous, we must have $g^{\prime}(t)=0$ for $0 \leq t \leq 1$. Therefore $g(t)$ is constant on $[0,1]$ and $g(1)=g(0)=0$. That is,

$$
\begin{gathered}
g(1)=\int_{0}^{2 \pi} \varphi(s, 1) d s=\int_{0}^{2 \pi}\left(\frac{f\left(z+1\left(e^{i s}-z\right)\right) e^{i s}}{e^{i s}-z}-f(z)\right) d s \\
=\int_{0}^{2 \pi}\left(\frac{f\left(e^{i s}\right) e^{i s}}{e^{i s}-z}-f(z)\right) d s=0
\end{gathered}
$$

This is $(*)$ and the result follows.

Lemma IV.2.7

Lemma IV.2.7. Let γ be a rectifiable curve in \mathbb{C} and suppose that F_{n} and F are continuous on $\{\gamma\}$ If F is the uniform limit of F_{n} on $\{\gamma\}$ then $\int_{\gamma} F=\lim \left(\int_{\gamma} F_{n}\right)$.
Proof. Let $\varepsilon>0$; then there is $N \in \mathbb{N}$ such that $\left|F_{n}(w)-F(w)\right|<\varepsilon / V(\gamma)$ for all $w \in\{\gamma\}$ and $n \geq N$.

Lemma IV.2.7

Lemma IV.2.7. Let γ be a rectifiable curve in \mathbb{C} and suppose that F_{n} and F are continuous on $\{\gamma\}$ If F is the uniform limit of F_{n} on $\{\gamma\}$ then
$\int_{\gamma} F=\lim \left(\int_{\gamma} F_{n}\right)$.
Proof. Let $\varepsilon>0$; then there is $N \in \mathbb{N}$ such that $\left|F_{n}(w)-F(w)\right|<\varepsilon / V(\gamma)$ for all $w \in\{\gamma\}$ and $n \geq N$. Then

$$
\begin{aligned}
\left|\int_{\gamma} F-\int_{\gamma} F_{n}\right| & =\left|\int_{\gamma}\left(F-F_{n}\right)\right| \\
& \leq \int_{\gamma}\left|F(w)-F_{n}(w)\right||d w| \text { by Proposition IV.1.17 } \\
& <\frac{\varepsilon}{V(\gamma)} V(\gamma)=\varepsilon
\end{aligned}
$$

for all $n \geq N$. So $\int_{\gamma} F=\lim \left(\int_{\gamma} F_{n}\right)$.

Lemma IV.2.7

Lemma IV.2.7. Let γ be a rectifiable curve in \mathbb{C} and suppose that F_{n} and F are continuous on $\{\gamma\}$ If F is the uniform limit of F_{n} on $\{\gamma\}$ then
$\int_{\gamma} F=\lim \left(\int_{\gamma} F_{n}\right)$.
Proof. Let $\varepsilon>0$; then there is $N \in \mathbb{N}$ such that $\left|F_{n}(w)-F(w)\right|<\varepsilon / V(\gamma)$ for all $w \in\{\gamma\}$ and $n \geq N$. Then

$$
\begin{aligned}
\left|\int_{\gamma} F-\int_{\gamma} F_{n}\right| & =\left|\int_{\gamma}\left(F-F_{n}\right)\right| \\
& \leq \int_{\gamma}\left|F(w)-F_{n}(w)\right||d w| \text { by Proposition IV.1.17 } \\
& <\frac{\varepsilon}{V(\gamma)} V(\gamma)=\varepsilon
\end{aligned}
$$

for all $n \geq N$. So $\int_{\gamma} F=\lim \left(\int_{\gamma} F_{n}\right)$.

Theorem IV.2.8

Theorem IV.2.8. Let f be analytic in $B(a ; R)$. Then
$f(z)=\sum_{n=0}^{\infty} a_{n}(z-a)^{n}$ for $|z-a|<R$ where $a_{n}=f^{(n)}(a) / n!$ and this series has radius of convergence $\geq R$.

Proof. Let $0<r<R$ and then $\bar{B}(a ; r) \subset B(a ; R)$. If $\gamma(t)=a+r e^{i t}$, $t \in[0,2 \pi]$, then by Proposition IV.2.6, $f(z)=\frac{1}{2 \pi i} \int_{\gamma} \frac{f(w)}{w-z} d w$ for $|z-a|<r$.

Theorem IV.2.8

Theorem IV.2.8. Let f be analytic in $B(a ; R)$. Then
$f(z)=\sum_{n=0}^{\infty} a_{n}(z-a)^{n}$ for $|z-a|<R$ where $a_{n}=f^{(n)}(a) / n!$ and this series has radius of convergence $\geq R$.

Proof. Let $0<r<R$ and then $\bar{B}(a ; r) \subset B(a ; R)$. If $\gamma(t)=a+r e^{i t}$,
$t \in[0,2 \pi]$, then by Proposition IV.2.6, $f(z)=\frac{1}{2 \pi i} \int_{\gamma} \frac{f(w)}{w-z} d w$ for $|z-a|<r$. For $|z-a|<r$ and $w \in\{\gamma\}$,
$\frac{|f(w)||z-a|^{n}}{|w-a|^{n+1}} \leq \frac{M}{r}\left(\frac{|z-a|}{r}\right)$

$$
\text { where } M=\max \{|f(w)|| | w-a \mid=r\} \text {. }
$$

Theorem IV.2.8

Theorem IV.2.8. Let f be analytic in $B(a ; R)$. Then
$f(z)=\sum_{n=0}^{\infty} a_{n}(z-a)^{n}$ for $|z-a|<R$ where $a_{n}=f^{(n)}(a) / n!$ and this series has radius of convergence $\geq R$.

Proof. Let $0<r<R$ and then $\bar{B}(a ; r) \subset B(a ; R)$. If $\gamma(t)=a+r e^{i t}$,
$t \in[0,2 \pi]$, then by Proposition IV.2.6, $f(z)=\frac{1}{2 \pi i} \int_{\gamma} \frac{f(w)}{w-z} d w$ for
$|z-a|<r$. For $|z-a|<r$ and $w \in\{\gamma\}$,
$\frac{|f(w)||z-a|^{n}}{|w-a|^{n+1}} \leq \frac{M}{r}\left(\frac{|z-a|}{r}\right)^{n}$ where $M=\max \{|f(w)|| | w-a \mid=r\}$.
Since $|z-a| / r<1$, the Weierstrass M-Test (with $\left.M_{n}=M(|z-a| / r)^{n} / r\right)$
implies that

Theorem IV.2.8

Theorem IV.2.8. Let f be analytic in $B(a ; R)$. Then
$f(z)=\sum_{n=0}^{\infty} a_{n}(z-a)^{n}$ for $|z-a|<R$ where $a_{n}=f^{(n)}(a) / n!$ and this series has radius of convergence $\geq R$.

Proof. Let $0<r<R$ and then $\bar{B}(a ; r) \subset B(a ; R)$. If $\gamma(t)=a+r e^{i t}$, $t \in[0,2 \pi]$, then by Proposition IV.2.6, $f(z)=\frac{1}{2 \pi i} \int_{\gamma} \frac{f(w)}{w-z} d w$ for $|z-a|<r$. For $|z-a|<r$ and $w \in\{\gamma\}$, $\frac{|f(w)||z-a|^{n}}{|w-a|^{n+1}} \leq \frac{M}{r}\left(\frac{|z-a|}{r}\right)^{n}$ where $M=\max \{|f(w)|| | w-a \mid=r\}$.
Since $|z-a| / r<1$, the Weierstrass M-Test (with $M_{n}=M(|z-a| / r)^{n} / r$) implies that $\sum_{n=1}^{\infty} \frac{f(w)(z-a)^{n}}{(w-a)^{n+1}}$ converges uniformly for $w \in\{\gamma\}$.

Theorem IV.2.8 (continued)

Proof (continued). From Note IV.2.A we have

$$
f(z)=\frac{1}{2 \pi i} \int_{\gamma} \frac{f(w)}{w-z} d w \text { by Proposition IV.2.6 }
$$

$$
\begin{aligned}
& =\frac{1}{2 \pi i} \int_{\gamma}\left(\frac{f(w)}{w-a} \sum_{n=0}^{\infty}\left(\frac{z-a}{w-a}\right)^{n}\right) d w \\
& =\sum_{n=0}^{\infty}\left(\frac{1}{2 \pi i} \int_{\gamma} \frac{f(w)}{(w-a)^{n+1}} d w\right)(z-a)^{n} \text { by Lemma IV.2.7. }
\end{aligned}
$$

Next set $a_{n}=\frac{1}{2 \pi i} \int_{\gamma} \frac{f(w)}{(w-a)^{n+1}} d w$ and we have
$f(z)=\sum_{n=0}^{\infty} a_{n}(z-a)^{n}$ where the series converges if $|z-a|<r$. By Proposition III.2.5, $a_{n}=f^{(n)}(a) / n!$.

Theorem IV.2.8 (continued)

Proof (continued). From Note IV.2.A we have

$$
\begin{aligned}
f(z) & =\frac{1}{2 \pi i} \int_{\gamma} \frac{f(w)}{w-z} d w \text { by Proposition IV.2.6 } \\
& =\frac{1}{2 \pi i} \int_{\gamma}\left(\frac{f(w)}{w-a} \sum_{n=0}^{\infty}\left(\frac{z-a}{w-a}\right)^{n}\right) d w \\
& =\sum_{n=0}^{\infty}\left(\frac{1}{2 \pi i} \int_{\gamma} \frac{f(w)}{(w-a)^{n+1}} d w\right)(z-a)^{n} \text { by Lemma IV.2.7. }
\end{aligned}
$$

Next set $a_{n}=\frac{1}{2 \pi i} \int_{\gamma} \frac{f(w)}{(w-a)^{n+1}} d w$ and we have $f(z)=\sum_{n=0}^{\infty} a_{n}(z-a)^{n}$ where the series converges if $|z-a|<r$. By Proposition III.2.5, $a_{n}=f^{(n)}(a) / n$!. So each a_{n} is (1) independent of z, (2) independent of $\{\gamma\}$, and (3) independent of r. Since r was chosen arbitrarily and $<R$, then the series representation holds for all z such that $|z-a|<R$ and the radius of convergence of the series is at least R.

Theorem IV.2.8 (continued)

Proof (continued). From Note IV.2.A we have

$$
\begin{aligned}
f(z) & =\frac{1}{2 \pi i} \int_{\gamma} \frac{f(w)}{w-z} d w \text { by Proposition IV.2.6 } \\
& =\frac{1}{2 \pi i} \int_{\gamma}\left(\frac{f(w)}{w-a} \sum_{n=0}^{\infty}\left(\frac{z-a}{w-a}\right)^{n}\right) d w \\
& =\sum_{n=0}^{\infty}\left(\frac{1}{2 \pi i} \int_{\gamma} \frac{f(w)}{(w-a)^{n+1}} d w\right)(z-a)^{n} \text { by Lemma IV.2.7. }
\end{aligned}
$$

Next set $a_{n}=\frac{1}{2 \pi i} \int_{\gamma} \frac{f(w)}{(w-a)^{n+1}} d w$ and we have $f(z)=\sum_{n=0}^{\infty} a_{n}(z-a)^{n}$ where the series converges if $|z-a|<r$. By Proposition III.2.5, $a_{n}=f^{(n)}(a) / n$!. So each a_{n} is (1) independent of z, (2) independent of $\{\gamma\}$, and (3) independent of r. Since r was chosen arbitrarily and $<R$, then the series representation holds for all z such that $|z-a|<R$ and the radius of convergence of the series is at least R.

Theorem IV.2.14

Theorem IV.2.14. Cauchy's Estimate. Let f be analytic in $B(a ; R)$ and suppose $|f(z)| \leq M$ for all $z \in B(a ; R)$. Then

$$
\left|f^{(n)}(a)\right| \leq \frac{n!M}{R^{n}}
$$

Proof. By Corollary IV.2.13, for $r<R$ we have

$$
\begin{aligned}
\left|f^{(n)}(a)\right| & =\left|\frac{n!}{2 \pi i} \int_{\gamma} \frac{f(w)}{(w-a)^{n+1}} d w\right| \text { where } \gamma(t)=a+r e^{i t}, t \in[0,2 \pi] \\
& \leq \frac{n!}{2 \pi} \int_{\gamma}\left|\frac{f(w)}{(w-a)^{n+1}}\right||d w| \text { by Proposition IV.1.17(b) } \\
& \leq \frac{n!}{2 \pi} \frac{M}{r^{n+1}}(2 \pi r) \text { by Proposition IV.1.17(b) } \\
& =\frac{n!M}{r^{n}} .
\end{aligned}
$$

Theorem IV.2.14

Theorem IV.2.14. Cauchy's Estimate. Let f be analytic in $B(a ; R)$ and suppose $|f(z)| \leq M$ for all $z \in B(a ; R)$. Then

$$
\left|f^{(n)}(a)\right| \leq \frac{n!M}{R^{n}}
$$

Proof. By Corollary IV.2.13, for $r<R$ we have

$$
\begin{aligned}
\left|f^{(n)}(a)\right| & =\left|\frac{n!}{2 \pi i} \int_{\gamma} \frac{f(w)}{(w-a)^{n+1}} d w\right| \text { where } \gamma(t)=a+r e^{i t}, t \in[0,2 \pi] \\
& \leq \frac{n!}{2 \pi} \int_{\gamma}\left|\frac{f(w)}{(w-a)^{n+1}}\right||d w| \text { by Proposition IV.1.17(b) } \\
& \leq \frac{n!}{2 \pi} \frac{M}{r^{n+1}}(2 \pi r) \text { by Proposition IV.1.17(b) } \\
& =\frac{n!M}{r^{n}} .
\end{aligned}
$$

Now let $r \rightarrow R^{-}$and the result follows.

Proposition IV.2.15

Proposition IV.2.15. Let f be analytic in $B(a ; R)$ and suppose γ is a closed rectifiable curve in $B(a ; R)$. Then f has a primitive in $B(a ; R)$ and so $\int_{\gamma} f=0$.
Proof. We know by Theorem IV.2.8, that an analytic function has a power series representation: $f(z)=\sum_{n=0}^{\infty} a_{n}(z-a)^{n}$ for $z \in B(a: R)$. Define

$$
F(z)=\sum_{n=0}^{\infty} \frac{a_{n}}{n+1}(z-a)^{n+1}=(z-a) \sum_{n=0}^{\infty} \frac{a_{n}}{n+1}(z-a)^{n} .
$$

Proposition IV.2.15

Proposition IV.2.15. Let f be analytic in $B(a ; R)$ and suppose γ is a closed rectifiable curve in $B(a ; R)$. Then f has a primitive in $B(a ; R)$ and so $\int_{\gamma} f=0$.
Proof. We know by Theorem IV.2.8, that an analytic function has a power series representation: $f(z)=\sum_{n=0}^{\infty} a_{n}(z-a)^{n}$ for $z \in B(a: R)$. Define

$$
F(z)=\sum_{n=0}^{\infty} \frac{a_{n}}{n+1}(z-a)^{n+1}=(z-a) \sum_{n=0}^{\infty} \frac{a_{n}}{n+1}(z-a)^{n} .
$$

Then, by definition, the radius of convergence of F is

and so the radius of convergence of F is the same as the radius of convergence of f. So F is defined on $B(a ; R)$.

Proposition IV.2.15

Proposition IV.2.15. Let f be analytic in $B(a ; R)$ and suppose γ is a closed rectifiable curve in $B(a ; R)$. Then f has a primitive in $B(a ; R)$ and so $\int_{\gamma} f=0$.
Proof. We know by Theorem IV.2.8, that an analytic function has a power series representation: $f(z)=\sum_{n=0}^{\infty} a_{n}(z-a)^{n}$ for $z \in B(a: R)$. Define

$$
F(z)=\sum_{n=0}^{\infty} \frac{a_{n}}{n+1}(z-a)^{n+1}=(z-a) \sum_{n=0}^{\infty} \frac{a_{n}}{n+1}(z-a)^{n} .
$$

Then, by definition, the radius of convergence of F is

$$
\frac{1}{\overline{\lim }\left|\frac{a_{n}}{n+1}\right|^{1 / n}}=\frac{\lim (n+1)^{1 / n}}{\overline{\lim }\left|a_{n}\right|^{1 / n}}=\frac{1}{\overline{\lim }\left|a_{n}\right|^{1 / n}}
$$

and so the radius of convergence of F is the same as the radius of convergence of f. So F is defined on $B(a ; R)$. Also, by Proposition III.2.5, $F^{\prime}(z)=f(z)$. So F is a primitive of f and by Corollary IV.1.22,

Proposition IV.2.15

Proposition IV.2.15. Let f be analytic in $B(a ; R)$ and suppose γ is a closed rectifiable curve in $B(a ; R)$. Then f has a primitive in $B(a ; R)$ and so $\int_{\gamma} f=0$.
Proof. We know by Theorem IV.2.8, that an analytic function has a power series representation: $f(z)=\sum_{n=0}^{\infty} a_{n}(z-a)^{n}$ for $z \in B(a: R)$. Define

$$
F(z)=\sum_{n=0}^{\infty} \frac{a_{n}}{n+1}(z-a)^{n+1}=(z-a) \sum_{n=0}^{\infty} \frac{a_{n}}{n+1}(z-a)^{n} .
$$

Then, by definition, the radius of convergence of F is

$$
\frac{1}{\overline{\lim }\left|\frac{a_{n}}{n+1}\right|^{1 / n}}=\frac{\lim (n+1)^{1 / n}}{\overline{\lim }\left|a_{n}\right|^{1 / n}}=\frac{1}{\overline{\lim }\left|a_{n}\right|^{1 / n}}
$$

and so the radius of convergence of F is the same as the radius of convergence of f. So F is defined on $B(a ; R)$. Also, by Proposition III.2.5, $F^{\prime}(z)=f(z)$. So F is a primitive of f and by Corollary IV.1.22, $\int_{\gamma} f=0$.

