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Proposition 1V.2.1

Proposition IV.2.1. Let ¢ : [a, b] X [¢,d] — C be a continuous function
b

and define g : [¢,d] — C by g(t) = / ©(s, t) ds. Then g is continuous.
a

Moreover, if 2* exists and is a continuous function on [a, b] X [c, d] then
g is continuously differentiable and

b
(1) :/ %(5, £) ds.
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Proposition 1V.2.1

Proposition 1V.2.1

Proposition IV.2.1. Let ¢ : [a, b] X [¢,d] — C be a continuous function
b

and define g : [¢,d] — C by g(t) = / ©(s, t) ds. Then g is continuous.

a
Moreover, if 2* exists and is a continuous function on [a, b] X [c, d] then
g is continuously differentiable and

b
(1) :/ %(5, £) ds.

Proof. The proof that g is continuous is left as Exercise IV.2.1.
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Proposition 1V.2.1

Proposition IV.2.1. Let ¢ : [a, b] X [¢,d] — C be a continuous function
b
and define g : [¢,d] — C by g(t) = / ©(s, t) ds. Then g is continuous.
a
Moreover, if 2* exists and is a continuous function on [a, b] X [c, d] then

g is continuously differentiable and
b
dp
'(t :/ —(s,t)ds.
g0= [ S0

Proof. The proof that g is continuous is left as Exercise IV.2.1.

Now suppose Oy /0t exists and is continuous on [a, b] X [c, d]. Since
[a, b] x [c,d] is a compact subset of R? then by Theorem 11.5.15, O/t is
uniformly continuous on [a, b] x [c, d]. Now denote d¢/0t = ¢,. Fix a
point to is [c, d] and let € > 0. So there is 6 > 0 such that
la(s’, t') — pa(s, t)| < e whenever (s —s')? + (t — t/)? < §°.
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Proposition IV.2.1 (continued 1)

Proof (continued). In particular, |¢2(s, t) — @a(s, to)| < € whenever
|t — to] < 9 and s € [a, b]. So for |t — ty| < & and x € [a, b] we have

/t(%(sa T) — @a(s, to)) d7| < e|t — tol.

to
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Proposition 1V.2.1

Proposition IV.2.1 (continued 1)

Proof (continued). In particular, |¢2(s, t) — @a(s, to)| < € whenever
|t — to] < 9 and s € [a, b]. So for |t — ty| < & and x € [a, b] we have

<elt— to.

[ (eatsm) — gt ) o

to

But for a fixed s € [a, b], ®(t) = ¢(s, t) — tea(s, ty) is a primitive of
©2(s, t) — pa(s, ty), so by the Fundamental Theorem of Calculus we have

[ eatsr) — gt )

to

= [(p(s: 1) = tpa(s, 1)) = ((s, to) — topa(s, to))]
= |e(s,t) — (s, to) — (t — to)pa(s, to)| < e[t — to

and this holds for any s € [a, b] when |t — to| < 6.
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Proposition IV.2.1 (continued 2)

Proof (continued). Therefore for s € [a, b] and |t — tp| < § we have

< e and

"p(& t) — 90(57 tO) _ 902(57 tO)

t—to

/" (s t) — (s, to) o /b pa(s, to) ds

t— 1ty

’g(t)—g(to) — /b ©a(s, tp) ds

t— 1ty

<e(b—a)or

<e(b—a)

b
since g(t) = / ©(s, t) ds by definition. Therefore for s € [a, b] we have
a

b b 3(,0
g’(to)z/ soz(s,to)ds:/ S (s.10) ds.
a a
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Proposition 1V.2.1 (continued 3)

Proposition 1V.2.1. Let ¢ : [a, b] X [c,d] — C be a continuous function
b

and define g : [¢,d] — C by g(t) = / ©(s, t) ds. Then g is continuous.

a
.0 : , , :
Moreover, if 2* exists and is a continuous function on [a, b] X [c, d] then

t
g is continuously differentiable and
b
g = [ G

Proof (continued). Since ty is an arbitrary element of [c, d] then we have
b

g'(t)= / %(s, t)ds on [a, b] x [c,d], as claimed. Since Op/dt is
a

hypothesized to be continuous then g’ is continuous by Exercise IV.2.1
(with g and ¢ of the exercise replaced with g’ and 9y /0t here), as
claimed. O
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Lemma IV.2. A

is

ds = 2.

es —z

2w
Lemma IV.2.A. If |z] < 1 then /
0
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Lemma IV.2.A

Lemma IV.2.A

is

2w
Lemma IV.2.A. If |z] < 1 then / ds = 2m.
0

is
€ for0<t<1land0<s<2m. Since
els —tz
|z| <1, gp is continuously differentiable. So by Proposition IV.2.1,
g(t)= fo (s,t)ds is continuously differentiable.

es —z

Proof. Let ¢(s,t) =
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Lemma IV.2.A

Lemma IV.2.A

is

2w
Lemma IV.2.A. If |z] < 1 then / ds = 2m.
0

es —z
is

Proof. Let ¢(s,t) = eise ; for 0 <t<1land0<s<2n Since
— 1z

|z| <1, gp is continuously differentiable. So by Proposition IV.2.1,
g(t)= fo (s,t)ds is continuously differentiable. Also,

2 2 eis 27
g(O)_/0 cp(s,O)ds—/O e’s—Ode_/() 1dz = 27.
Zeis
)

2w
Next, g'(t) = ————dsbyP ition IV.2.1.
ext, g'( /0 (e — )2 s by Proposition
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Lemma IV.2.A

Lemma IV.2.A

is

ds = 2.

2w
Lemma IV.2.A. If |z] < 1 then /
0

is

es —z

Proof. Let ¢(s,t) =

o for0 <t <1and0<s <2m. Since
— 1z

|z| <1, gp is continuously differentiable. So by Proposition IV.2.1,
g(t)= fo (s,t)ds is continuously differentiable. Also,

2 2 eis 27
g(O)_/0 cp(s,O)ds—/O e’s—Ode_/() 1dz = 27.

2w is
Next, g'(t) :/ z€
CJo

ds by Proposition IV.2.1. Notice for

eIS — tz )
P(s) = e,SZI ; (with t fixed) we have ¢'(s) = (e,feitzy and so ®(s) is a
s __ y4 -
is
primitive for .L, and so
(es — tz)?

Complex Analysis November 7, 2023 7 /16



Lemma IV.2.A (continued)

is

ds = 2m.

2T
Lemma IV.2.A. If |z] < 1 then / -
0 e

—Z
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Lemma IV.2.A

Lemma IV.2.A (continued)

is

ds = 2m.

—Z

2 e
Lemma IV.2.A. If |z] < 1 then / -
0 e
Proof (continued).
is

27 :
’t_/ 2 ds=0(2m) —d(0) = 5 — 0.
g(t) o (e —tz)? ° (2m) (0) e —tz 0 —tz

Therefore g is constant and g(1) = g(0) = 2.
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Lemma IV.2.A

Lemma IV.2.A (continued)

is

2T
Lemma IV.2.A. If |z < 1 then / = ds = 2.
0 e

—Z

Proof (continued).

27 is [
’t_/ _ % ds=—o2n) -0 = ——0 % .
g(t) o (e —tz)? ° (27) 0) emi —tz €0 — ¢tz

Therefore g is constant and g(1) = g(0) = 27. That is,
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Theorem 1V.2.6

Proposition 1V.2.6. Let f : G — C be analytic and suppose B(a; r) C

(r>0). If y(t) =a+re, and 0 < t < 27. Then

f(z) = 217”/ Mf/(iv)z dw
%l

for |z—a|l < r.
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Theorem 1V.2.6

Proposition 1V.2.6. Let f : G — C be analytic and suppose B(a;r) C G
(r>0). If y(t) =a+re, and 0 < t < 27. Then

f(z)zl,/ fw) dw
2 Jyw—z
for |z—a|l < r.

Proof. Without loss of generality, we assume a =0 and r = 1 (otherwise,
we consider g(z) = f(a+ rz) and G = {X(z—a) | z€ G}). Thatis,
B(0,1) C G.
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Theorem 1V.2.6

Proposition 1V.2.6. Let f : G — C be analytic and suppose B(a; r) C

(r>0). If y(t) =a+re, and 0 < t < 27. Then

f(z) = 217”/ Mf/(iv)z dw
%l

for |z—a|l < r.

G

Proof. Without loss of generality, we assume a =0 and r = 1 (otherwise,

B(0,1) C G. Fix z where |z| < 1. We then need to show that

1 f 1 27rf i\ is
f(z)z./ (w) dW:/ fe)e” s,
2w Jyw—z 2 Jg e —z
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Theorem 1V.2.6

Proposition 1V.2.6. Let f : G — C be analytic and suppose B(a;r) C G
(r>0). If y(t) =a+re, and 0 < t < 27. Then

f(z)zl,/ fw) dw
2 Jyw—z
for |z—a|l < r.

Proof. Without loss of generality, we assume a =0 and r = 1 (otherwise,
we consider g(z) = f(a+rz) and Gy = {1(z—a) | z € G}). That'is,

B(0,1) C G. Fix z where |z| < 1. We then need to show that

1 f 1 27rf i\ is
f(z)z./ (w) dW:/ fe)e” s,
2w Jyw—z 2 Jg e —z

This is equivalent to

0= /027r w ds — 2nf(z) = /027T <f(.eis)eis - f(Z)) ds. (%)

et —z et —z
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Theorem 1V.2.6 (continued 1)

f(z+t(e” —z))e™
eis — z

Proof (continued). Let ¢(s,t) = — f(z) for

0<t<1and0<s<2r. Since

|z+t(e®—z2)| = |z(1—t)+te®| < [z(1—t)|+t < [1—t|+t=1—tFt =1,
then ¢ is well defined (f takes on values in B(0;1) C G) and is
continuously differentiable.
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Theorem 1V.2.6 (continued 1)
f(z+t(e” —z))e™

es — z

— f(z) for

Proof (continued). Let ¢(s,t) =
0<t<1and0<s<2r. Since
|z+t(e®—z2)| = |z(1—t)+te®| < [z(1—t)|+t < [1—t|+t=1—tFt =1,
then ¢ is well defined (f takes on values in §(0 1)C G) and is
continuously differentiable. Let g(t fo (s,t)ds. Then by
Proposition IV.2.1, g is contlnuously dlfFerentlabIe Notice that

g(0) = /0 : (s,0) ds = /0 3 (2 (f)_ezs - f(z)) ds

2 e's
= f(z)/ - ds — 2nf(z)
0

es —z
= 0 by Lemma IV.2.A
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Theorem 1V.2.6 (continued 1)
f(z+t(e” —z))e™

es — z

— f(z) for

Proof (continued). Let ¢(s,t) =
0<t<1and0<s<2r. Since
|z+t(e®—z2)| = |z(1—t)+te®| < [z(1—t)|+t < [1—t|+t=1—tFt =1,
then ¢ is well defined (f takes on values in §(0 1)C G) and is
continuously differentiable. Let g(t fo (s,t)ds. Then by
Proposition IV.2.1, g is contlnuously dlfFerentlabIe Notice that

g(0) = /0 : (s,0) ds = /0 3 (2 (f)_ezs - f(z)) ds

2 e's
= f(z)/ - ds — 2nf(z)
0

es —z
= 0 by Lemma IV.2.A

We now show g is constant. By Proposition 1V.2.1,
g'(t) = [ pa(s, t) ds where po(s, t) = e*f'(z + t(e’* — 2)) = Dp/Ot.
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Theorem 1V.2.6 (continued 2)

Proof (continued). For 0 < t <1, we have
O(s) = —it 1f(z + t(e” — z)) is a primitive of (s, t). So
g'(t)=®(2n) —d(0)=0for 0 <t < 1.
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Theorem 1V.2.6 (continued 2)

Proof (continued). For 0 < t <1, we have

O(s) = —it 1f(z + t(e” — z)) is a primitive of (s, t). So

g'(t) = d(27r) — d(0) =0 for 0 < t < 1. Since g’ is continuous, we must
have g'(t) =0 for 0 < t < 1. Therefore g(t) is constant on [0, 1] and

g(1) =g(0)=o0.
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Theorem 1V.2.6 (continued 2)

Proof (continued). For 0 < t <1, we have

O(s) = —it 1f(z + t(e” — z)) is a primitive of (s, t). So

g'(t) = d(27r) — d(0) =0 for 0 < t < 1. Since g’ is continuous, we must
have g'(t) =0 for 0 < t < 1. Therefore g(t) is constant on [0, 1] and
g(1) = g(0) =0. That is,

g(1) = /027r o(s,1) ds = /027r (f(z (e —z))e” f(z)> ds

eis — z

- /027r (fe(fs_)ezs - f(z)) ds = 0.

This is (%) and the result follows. O
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Lemma IV.2.7

Lemma IV.2.7

Lemma IV.2.7. Let v be a rectifiable curve in C and suppose that F, and
F are continuous on {~} If F is the uniform limit of F, on {v} then

LFinm(LFn).
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Lemma IV.2.7

Lemma IV.2.7

Lemma IV.2.7. Let v be a rectifiable curve in C and suppose that F, and
F are continuous on {~} If F is the uniform limit of F, on {v} then

LFinm(LFn).

Proof. Let ¢ > 0; then there is N € N such that
|Fr(w) — F(w)| <e/V(y) for all w € {} and n > N.

Complex Analysis November 7, 2023 12 /16



Lemma IV.2.7

Lemma IV.2.7

Lemma IV.2.7. Let v be a rectifiable curve in C and suppose that F, and
F are continuous on {~} If F is the uniform limit of F, on {v} then

LFinm(LF,,).

Proof. Let € > 0; then there is N € N such that
|Fn(w) — F(w)| <e/V(y) for all w € {y} and n > N. Then

= | )R
< / |F(w (w)| |dw|by Proposition 1V.1.17
v) =
v 0
forall n > N. So [ F =lim([ Fn). O
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Theorem [V.2.8. “Analytic” Implies Power Series

Theorem 1V.2.8

Theorem 1V.2.8. Let f be analytic in B(a; R). Then
f(z) = Zan(z — a)" for |z — a| < R where a, = f(")(a)/n! and this

n=0
series has radius of convergence > R.

Complex Analysis November 7, 2023
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Theorem [V.2.8. “Analytic” Implies Power Series

Theorem 1V.2.8

Theorem 1V.2.8. Let f be analytic in B(a; R). Then

f(z) = Zan(z — a)" for |z — a| < R where a, = f(")(a)/n! and this
n=0
series has radius of convergence > R.

Proof. Let 0 < r < R and then B(a;r) C B(a; R). If y(t) = a + re',

1 f
t € [0,2n], then by Proposition 1V.2.6, f(z) = 2/ (w) dw for
—Z
|lz—al <r.
Complex Analysis November 7, 2023
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Theorem [V.2.8. “Analytic” Implies Power Series

Theorem 1V.2.8

Theorem 1V.2.8. Let f be analytic in B(a; R). Then

f(z) = Zan(z — a)" for |z — a| < R where a, = f(")(a)/n! and this
n=0
series has radius of convergence > R.

Proof. Let 0 < r < R and then B(a;r) C B(a; R). If y(t) = a + re',

1 f(w
t € [0,2n], then by Proposition 1V.2.6, f(z) = 2/()2 dw for
LW —
|z—al <r. For|z—a|<rand we {v},

f(w)l|z—al™ M [|z—a]\"
W < - <’r> where M = max{|f(w)]| | |w — a| = r}.
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Theorem [V.2.8. “Analytic” Implies Power Series

Theorem 1V.2.8

Theorem 1V.2.8. Let f be analytic in B(a; R). Then

f(z) = Zan(z — a)" for |z — a| < R where a, = f(")(a)/n! and this
n=0
series has radius of convergence > R.

Proof. Let 0 < r < R and then B(a;r) C B(a; R). If y(t) = a + re',

1 f(w
t € [0,2n], then by Proposition 1V.2.6, f(z) = 2/()Zdw for
LW —
|z—al <r. For|z—a|<rand we {v},
[f(w)llz—al” _ M [|z—a]\"
WST f Where/\/I:max{\f(W)H ]W—a|:r}.

Since |z — a\/r < 1 the Weierstrass M-Test (with M, = M(|z — a|/r)"/r)
implies that Z

z—a

n+1 converges uniformly for w € {~}.
—a)
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Theorem [V.2.8. “Analytic” Implies Power Series

Theorem 1V.2.8 (continued)

Proof (continued). From Note IV.2.A we have

1 f
f(z) = ,/(W)dw by Proposition 1V.2.6
g

27 w—z

- (s (222) ) e

n=0

_ i (217” /7 (Wf_(vg))ﬂ dw) (z— a)" by Lemma IV.2.7.
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Theorem [V.2.8. “Analytic” Implies Power Series

Theorem 1V.2.8 (continued)

Proof (continued). From Note IV.2.A we have

1 f
f(z) = — Flw) dw by Proposition 1V.2.6
27 )y w—z

<l (G

1 f(w) n
(. /7 T dW) (z—a)" by Lemma IV.2.7.

=\ 27 (w—a)
Next set a, = i & dw and we have
2ri ), (w — a)ntl

f(z) = > 72 an(z — a)” where the series converges if |z — a| < r. By
Proposition 111.2.5, a, = f("(a)/n!.
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Theorem [V.2.8. “Analytic” Implies Power Series

Theorem 1V.2.8 (continued)

Proof (continued). From Note IV.2.A we have

1 f
f(z) = — Flw) dw by Proposition 1V.2.6
27 )y w—z

- (WA56E) )
( 1./(’C(W)n+1dw) (z— )" by Lemma IV.2.7.
Y

2mi w — a)
n=0
1 f
Next set a, = — & dw and we have
2ri ), (w — a)ntl

f(z) = > 72 an(z — a)” where the series converges if |z — a| < r. By
Proposition 111.2.5, a, = f(")(a)/n!. So each a, is (1) independent of z,
(2) independent of {7}, and (3) independent of r. Since r was chosen
arbitrarily and < R, then the series representation holds for all z such that

|z — a] < R and the radius of convergence of the series is at least R. [
Complex Analysis November 7, 2023 14 / 16



Theorem 1V.2.14

Theorem 1V.2.14. Cauchy’s Estimate. Let f be analytic in B(a; R) and
suppose |f(z)| < M for all z € B(a; R). Then

IM
(n) <n
(@) <
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Theorem 1V.2.14

Theorem 1V.2.14. Cauchy’s Estimate. Let f be analytic in B(a; R) and
suppose |f(z)| < M for all z € B(a; R). Then

() < T

Proof. By Corollary IV.2.13, for r < R we have

! f ;
1FM(a) = 2,ZTI'[Y(W—(VA;/))"HC/W’ where y(t) = a+ re', t € [0, 27]
! f
< 2,;/7 (W—(Z))”“ |dw| by Proposition IV.1.17(b)
< M orry by P IV.1.17(b
< 57 51 (2mr) by Proposition (b)
n'M
= rn .
Now let r — R~ and the result follows. 0
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Proposition 1V.2.15

Proposition 1V.2.15

Proposition 1V.2.15. Let f be analytic in B(a; R) and suppose 7 is a

closed rectifiable curve in B(a; R). Then f has a primitive in B(a; R) and
so [ f=0.
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Proposition 1V.2.15

Proposition 1V.2.15

Proposition 1V.2.15. Let f be analytic in B(a; R) and suppose 7 is a
closed rectifiable curve in B(a; R). Then f has a primitive in B(a; R) and
so fv f=0.
Proof. We know by Theorem IV.2.8, that an analytic function has a power
series representation: f(z) = 7" an(z — a)" for z € B(a: R). Define

oo

o0

F(z):Z%(z—a)"H:(z—a)Z (- a)".

n=0 n=0 n+1
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Proposition 1V.2.15

Proposition 1V.2.15. Let f be analytic in B(a; R) and suppose 7 is a
closed rectifiable curve in B(a; R). Then f has a primitive in B(a; R) and
so fv f=0.
Proof. We know by Theorem IV.2.8, that an analytic function has a power
series representation: f(z) = 7" an(z — a)" for z € B(a: R). Define

oo

o
o an 41 dn
F(2) —27n+1(z—a)" =(z-a))» n+1(z—a)”.
n=0 n=0
Then, by definition, the radius of convergence of F is
1 Clim(n+ 1)V 1
— a 1/n limla,|1/n _ma 1/n
o |2 an 2d

and so the radius of convergence of F is the same as the radius of
convergence of f. So F is defined on B(a; R).
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Proposition 1V.2.15

Proposition 1V.2.15. Let f be analytic in B(a; R) and suppose 7 is a
closed rectifiable curve in B(a; R). Then f has a primitive in B(a; R) and
so fv f=0.
Proof. We know by Theorem IV.2.8, that an analytic function has a power
series representation: f(z) = 7" an(z — a)" for z € B(a: R). Define

oo

o
o an 41 dn
F(2) —27n+1(z—a)" =(z-a))» n+1(z—a)”.
n=0 n=0
Then, by definition, the radius of convergence of F is
1 Clim(n+ 1)V 1
— a 1/n limla,|1/n _ma 1/n
o |2 an 2d

and so the radius of convergence of F is the same as the radius of

convergence of f. So F is defined on B(a; R). Also, by Proposition 111.2.5,

F'(z) = f(z). So F is a primitive of f and by Corollary IV.1.22,

Lf:& O
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	Proposition IV.2.1
	Lemma IV.2.A
	Theorem IV.2.6
	Lemma IV.2.7
	Theorem IV.2.8. ``Analytic'' Implies Power Series
	Theorem IV.2.14. Cauchy's Estimate
	Proposition IV.2.15

