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Proposition IV.2.1

Proposition IV.2.1

Proposition IV.2.1. Let ϕ : [a, b]× [c , d ] → C be a continuous function

and define g : [c , d ] → C by g(t) =

∫ b

a
ϕ(s, t) ds. Then g is continuous.

Moreover, if
∂ϕ

∂t
exists and is a continuous function on [a, b]× [c , d ] then

g is continuously differentiable and

g ′(t) =

∫ b

a

∂ϕ

∂t
(s, t) ds.

Proof. The proof that g is continuous is left as Exercise IV.2.1.

Now suppose ∂ϕ/∂t exists and is continuous on [a, b]× [c , d ]. Since
[a, b]× [c , d ] is a compact subset of R2 then by Theorem II.5.15, ∂ϕ/∂t is
uniformly continuous on [a, b]× [c , d ]. Now denote ∂ϕ/∂t = ϕ2. Fix a
point t0 is [c , d ] and let ε > 0. So there is δ > 0 such that
|ϕ2(s

′, t ′)− ϕ2(s, t)| < ε whenever (s − s ′)2 + (t − t ′)2 < δ2.
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Proposition IV.2.1

Proposition IV.2.1 (continued 1)

Proof (continued). In particular, |ϕ2(s, t)− ϕ2(s, t0)| < ε whenever
|t − t0| < δ and s ∈ [a, b]. So for |t − t0| < δ and x ∈ [a, b] we have∣∣∣∣∫ t

t0

(ϕ2(s, τ)− ϕ2(s, t0)) dτ

∣∣∣∣ ≤ ε|t − t0|.

But for a fixed s ∈ [a, b], Φ(t) = ϕ(s, t)− tϕ2(s, t0) is a primitive of
ϕ2(s, t)− ϕ2(s, t0), so by the Fundamental Theorem of Calculus we have∣∣∣∣∫ t

t0

(ϕ2(s, τ)− ϕ2(s, t0)) dτ

∣∣∣∣
= |(ϕ(s, t)− tϕ2(s, t0))− (ϕ(s, t0)− t0ϕ2(s, t0))|
= |ϕ(s, t)− ϕ(s, t0)− (t − t0)ϕ2(s, t0)| ≤ ε|t − t0|

and this holds for any s ∈ [a, b] when |t − t0| < δ.
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Proposition IV.2.1 (continued 1)
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Proposition IV.2.1

Proposition IV.2.1 (continued 2)

Proof (continued). Therefore for s ∈ [a, b] and |t − t0| < δ we have∣∣∣∣ϕ(s, t)− ϕ(s, t0)

t − t0
− ϕ2(s, t0)

∣∣∣∣ ≤ ε and

∣∣∣∣∫ b

a

ϕ(s, t)− ϕ(s, t0)

t − t0
ds −

∫ b

a
ϕ2(s, t0) ds

∣∣∣∣ ≤ ε(b − a) or∣∣∣∣g(t)− g(t0)

t − t0
−
∫ b

a
ϕ2(s, t0) ds

∣∣∣∣ ≤ ε(b − a)

since g(t) =

∫ b

a
ϕ(s, t) ds by definition. Therefore for s ∈ [a, b] we have

g ′(t0) =

∫ b

a
ϕ2(s, t0) ds =

∫ b

a

∂ϕ

∂t
(s, t0) ds.
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Proposition IV.2.1

Proposition IV.2.1 (continued 3)

Proposition IV.2.1. Let ϕ : [a, b]× [c , d ] → C be a continuous function

and define g : [c , d ] → C by g(t) =

∫ b

a
ϕ(s, t) ds. Then g is continuous.

Moreover, if
∂ϕ

∂t
exists and is a continuous function on [a, b]× [c , d ] then

g is continuously differentiable and

g ′(t) =

∫ b

a

∂ϕ

∂t
(s, t) ds.

Proof (continued). Since t0 is an arbitrary element of [c , d ] then we have

g ′(t) =

∫ b

a

∂ϕ

∂t
(s, t) ds on [a, b]× [c , d ], as claimed. Since ∂ϕ/∂t is

hypothesized to be continuous then g ′ is continuous by Exercise IV.2.1
(with g and ϕ of the exercise replaced with g ′ and ∂ϕ/∂t here), as
claimed.

() Complex Analysis November 7, 2023 6 / 16



Lemma IV.2.A

Lemma IV.2.A

Lemma IV.2.A. If |z | < 1 then

∫ 2π

0

e is

e is − z
ds = 2π.

Proof. Let ϕ(s, t) =
e is

e is − tz
for 0 ≤ t ≤ 1 and 0 ≤ s ≤ 2π. Since

|z | < 1, ϕ is continuously differentiable. So by Proposition IV.2.1,

g(t) =
∫ 2π
0 ϕ(s, t) ds is continuously differentiable.

Also,

g(0) =

∫ 2π

0
ϕ(s, 0) ds =

∫ 2π

0

e is

e is − 0z
dz =

∫ 2π

0
1 dz = 2π.

Next, g ′(t) =

∫ 2π

0

ze is

(e is − tz)2
ds by Proposition IV.2.1. Notice for

Φ(s) =
zi

e is − tz
(with t fixed) we have Φ′(s) = ze is

(e is−tz)2
and so Φ(s) is a

primitive for
ze is

(e is − tz)2
, and so
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Lemma IV.2.A

Lemma IV.2.A (continued)

Lemma IV.2.A. If |z | < 1 then

∫ 2π

0

e is

e is − z
ds = 2π.

Proof (continued).

g ′(t) =

∫ 2π

0

ze is

(e is − tz)2
ds = Φ(2π)− Φ(0) =

zi

e2πi − tz
− z

e0 − tz
= 0.

Therefore g is constant and g(1) = g(0) = 2π.

That is,

g(1) =

∫ 2π

0

e is

e is − z
dz = 2π.
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Lemma IV.2.A (continued)
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Theorem IV.2.6

Theorem IV.2.6

Proposition IV.2.6. Let f : G → C be analytic and suppose B(a; r) ⊆ G
(r > 0). If γ(t) = a + re it , and 0 ≤ t ≤ 2π. Then

f (z) =
1

2πi

∫
γ

f (w)

w − z
dw

for |z − a| < r .
Proof. Without loss of generality, we assume a = 0 and r = 1 (otherwise,
we consider g(z) = f (a + rz) and G1 = {1

r (z − a) | z ∈ G}). That is,
B(0, 1) ⊂ G .

Fix z where |z | < 1. We then need to show that

f (z) =
1

2πi

∫
γ

f (w)

w − z
dw =

1

2π

∫ 2π

0

f (e is)e is

e is − z
ds.

This is equivalent to

0 =

∫ 2π

0

f (e is)e is

e is − z
ds − 2πf (z) =

∫ 2π

0

(
f (e is)e is

e is − z
− f (z)

)
ds. (∗)
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Theorem IV.2.6

Theorem IV.2.6 (continued 1)

Proof (continued). Let ϕ(s, t) =
f (z + t(e is − z))e is

e is − z
− f (z) for

0 ≤ t ≤ 1 and 0 ≤ s ≤ 2π. Since
|z+t(e is−z)| = |z(1−t)+te is | ≤ |z(1−t)|+t ≤ |1−t|+t = 1−t+t = 1,
then ϕ is well defined (f takes on values in B(0; 1) ⊂ G ) and is

continuously differentiable. Let g(t) =
∫ 2π
0 ϕ(s, t) ds. Then by

Proposition IV.2.1, g is continuously differentiable. Notice that

g(0) =

∫ 2π

0
ϕ(s, 0) ds =

∫ 2π

0

(
f (z)e is

e is − z
− f (z)

)
ds

= f (z)

∫ 2π

0

e is

e is − z
ds − 2πf (z)

= 0 by Lemma IV.2.A

We now show g is constant. By Proposition IV.2.1,
g ′(t) =

∫ 2π
0 ϕ2(s, t) ds where ϕ2(s, t) = e is f ′(z + t(e is − z)) = ∂ϕ/∂t.
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Theorem IV.2.6

Theorem IV.2.6 (continued 2)

Proof (continued). For 0 < t ≤ 1, we have
Φ(s) = −it−1f (z + t(e is − z)) is a primitive of ϕ2(s, t). So
g ′(t) = Φ(2π)− Φ(0) = 0 for 0 < t ≤ 1. Since g ′ is continuous, we must
have g ′(t) = 0 for 0 ≤ t ≤ 1. Therefore g(t) is constant on [0, 1] and
g(1) = g(0) = 0.

That is,

g(1) =

∫ 2π

0
ϕ(s, 1) ds =

∫ 2π

0

(
f (z + 1(e is − z))e is

e is − z
− f (z)

)
ds

=

∫ 2π

0

(
f (e is)e is

e is − z
− f (z)

)
ds = 0.

This is (∗) and the result follows.
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− f (z)

)
ds = 0.

This is (∗) and the result follows.
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Lemma IV.2.7

Lemma IV.2.7

Lemma IV.2.7. Let γ be a rectifiable curve in C and suppose that Fn and
F are continuous on {γ} If F is the uniform limit of Fn on {γ} then∫

γ
F = lim

(∫
γ
Fn

)
.

Proof. Let ε > 0; then there is N ∈ N such that
|Fn(w)− F (w)| < ε/V (γ) for all w ∈ {γ} and n ≥ N.

Then∣∣∣∣∫
γ
F −

∫
γ
Fn

∣∣∣∣ =

∣∣∣∣∫
γ
(F − Fn)

∣∣∣∣
≤

∫
γ
|F (w)− Fn(w)| |dw |by Proposition IV.1.17

<
ε

V (γ)
V (γ) = ε

for all n ≥ N. So
∫
γ F = lim(

∫
γ Fn).
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Theorem IV.2.8. “Analytic” Implies Power Series

Theorem IV.2.8

Theorem IV.2.8. Let f be analytic in B(a;R). Then

f (z) =
∞∑

n=0

an(z − a)n for |z − a| < R where an = f (n)(a)/n! and this

series has radius of convergence ≥ R.

Proof. Let 0 < r < R and then B(a; r) ⊂ B(a;R). If γ(t) = a + re it ,

t ∈ [0, 2π], then by Proposition IV.2.6, f (z) =
1

2πi

∫
γ

f (w)

w − z
dw for

|z − a| < r .

For |z − a| < r and w ∈ {γ},
|f (w)||z − a|n

|w − a|n+1
≤ M

r

(
|z − a|

r

)n

where M = max{|f (w)| | |w − a| = r}.

Since |z − a|/r < 1, the Weierstrass M-Test (with Mn = M(|z − a|/r)n/r)

implies that
∞∑

n=1

f (w)(z − a)n

(w − a)n+1
converges uniformly for w ∈ {γ}.
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Theorem IV.2.8. “Analytic” Implies Power Series

Theorem IV.2.8 (continued)

Proof (continued). From Note IV.2.A we have

f (z) =
1

2πi

∫
γ

f (w)

w − z
dw by Proposition IV.2.6

=
1

2πi

∫
γ

(
f (w)

w − a

∞∑
n=0

(
z − a

w − a

)n
)

dw

=
∞∑

n=0

(
1

2πi

∫
γ

f (w)

(w − a)n+1
dw

)
(z − a)n by Lemma IV.2.7.

Next set an =
1

2πi

∫
γ

f (w)

(w − a)n+1
dw and we have

f (z) =
∑∞

n=0 an(z − a)n where the series converges if |z − a| < r . By
Proposition III.2.5, an = f (n)(a)/n!.

So each an is (1) independent of z ,
(2) independent of {γ}, and (3) independent of r . Since r was chosen
arbitrarily and < R, then the series representation holds for all z such that
|z − a| < R and the radius of convergence of the series is at least R.
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Theorem IV.2.14. Cauchy’s Estimate

Theorem IV.2.14

Theorem IV.2.14. Cauchy’s Estimate. Let f be analytic in B(a;R) and
suppose |f (z)| ≤ M for all z ∈ B(a;R). Then

|f (n)(a)| ≤ n!M

Rn
.

Proof. By Corollary IV.2.13, for r < R we have

|f (n)(a)| =

∣∣∣∣ n!

2πi

∫
γ

f (w)

(w − a)n+1
dw

∣∣∣∣ where γ(t) = a + re it , t ∈ [0, 2π]

≤ n!

2π

∫
γ

∣∣∣∣ f (w)

(w − a)n+1

∣∣∣∣ |dw | by Proposition IV.1.17(b)

≤ n!

2π

M

rn+1
(2πr) by Proposition IV.1.17(b)

=
n!M

rn
.

Now let r → R− and the result follows.
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Proposition IV.2.15

Proposition IV.2.15

Proposition IV.2.15. Let f be analytic in B(a;R) and suppose γ is a
closed rectifiable curve in B(a;R). Then f has a primitive in B(a;R) and
so
∫
γ f = 0.

Proof. We know by Theorem IV.2.8, that an analytic function has a power
series representation: f (z) =

∑∞
n=0 an(z − a)n for z ∈ B(a : R). Define

F (z) =
∞∑

n=0

an

n + 1
(z − a)n+1 = (z − a)

∞∑
n=0

an

n + 1
(z − a)n.

Then, by definition, the radius of convergence of F is

1

lim
∣∣∣ an
n+1

∣∣∣1/n
=

lim(n + 1)1/n

lim|an|1/n
=

1

lim|an|1/n

and so the radius of convergence of F is the same as the radius of
convergence of f . So F is defined on B(a;R). Also, by Proposition III.2.5,
F ′(z) = f (z). So F is a primitive of f and by Corollary IV.1.22,∫
γ f = 0.
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