Complex Analysis

Chapter IV. Complex Integration

IV.2. Power Series Representation of Analytic Functions-Proofs

John B. Conway

Functions of One Complex Variable I

Second Edition

Complex Analysis

Table of contents

- Proposition IV.2.1
- 2 Lemma IV.2.A
- 3 Theorem IV.2.6
- 4 Lemma IV.2.7
- 5 Theorem IV.2.8. "Analytic" Implies Power Series
- 6 Theorem IV.2.14. Cauchy's Estimate
- Proposition IV.2.15

Proposition IV.2.1. Let $\varphi : [a, b] \times [c, d] \to \mathbb{C}$ be a continuous function and define $g : [c, d] \to \mathbb{C}$ by $g(t) = \int_{a}^{b} \varphi(s, t) \, ds$. Then g is continuous. Moreover, if $\frac{\partial \varphi}{\partial t}$ exists and is a continuous function on $[a, b] \times [c, d]$ then g is continuously differentiable and

$$g'(t) = \int_a^b \frac{\partial \varphi}{\partial t}(s,t) \, ds.$$

Proof. The proof that g is continuous is left as Exercise IV.2.1.

Proposition IV.2.1. Let $\varphi : [a, b] \times [c, d] \to \mathbb{C}$ be a continuous function and define $g : [c, d] \to \mathbb{C}$ by $g(t) = \int_{a}^{b} \varphi(s, t) \, ds$. Then g is continuous. Moreover, if $\frac{\partial \varphi}{\partial t}$ exists and is a continuous function on $[a, b] \times [c, d]$ then g is continuously differentiable and

$$g'(t) = \int_a^b \frac{\partial \varphi}{\partial t}(s,t) \, ds.$$

Proof. The proof that g is continuous is left as Exercise IV.2.1.

Now suppose $\partial \varphi / \partial t$ exists and is continuous on $[a, b] \times [c, d]$. Since $[a, b] \times [c, d]$ is a compact subset of \mathbb{R}^2 then by Theorem II.5.15, $\partial \varphi / \partial t$ is uniformly continuous on $[a, b] \times [c, d]$. Now denote $\partial \varphi / \partial t = \varphi_2$. Fix a point t_0 is [c, d] and let $\varepsilon > 0$. So there is $\delta > 0$ such that $|\varphi_2(s', t') - \varphi_2(s, t)| < \varepsilon$ whenever $(s - s')^2 + (t - t')^2 < \delta^2$.

Proposition IV.2.1. Let $\varphi : [a, b] \times [c, d] \to \mathbb{C}$ be a continuous function and define $g : [c, d] \to \mathbb{C}$ by $g(t) = \int_{a}^{b} \varphi(s, t) \, ds$. Then g is continuous. Moreover, if $\frac{\partial \varphi}{\partial t}$ exists and is a continuous function on $[a, b] \times [c, d]$ then g is continuously differentiable and

$$g'(t) = \int_a^b \frac{\partial \varphi}{\partial t}(s,t) \, ds.$$

Proof. The proof that g is continuous is left as Exercise IV.2.1.

Now suppose $\partial \varphi / \partial t$ exists and is continuous on $[a, b] \times [c, d]$. Since $[a, b] \times [c, d]$ is a compact subset of \mathbb{R}^2 then by Theorem II.5.15, $\partial \varphi / \partial t$ is uniformly continuous on $[a, b] \times [c, d]$. Now denote $\partial \varphi / \partial t = \varphi_2$. Fix a point t_0 is [c, d] and let $\varepsilon > 0$. So there is $\delta > 0$ such that $|\varphi_2(s', t') - \varphi_2(s, t)| < \varepsilon$ whenever $(s - s')^2 + (t - t')^2 < \delta^2$.

Proposition IV.2.1 (continued 1)

Proof (continued). In particular, $|\varphi_2(s,t) - \varphi_2(s,t_0)| < \varepsilon$ whenever $|t - t_0| < \delta$ and $s \in [a, b]$. So for $|t - t_0| < \delta$ and $x \in [a, b]$ we have

$$\left|\int_{t_0}^t (\varphi_2(s,\tau) - \varphi_2(s,t_0)) \, d\tau\right| \leq \varepsilon |t-t_0|.$$

But for a fixed $s \in [a, b]$, $\Phi(t) = \varphi(s, t) - t\varphi_2(s, t_0)$ is a primitive of $\varphi_2(s, t) - \varphi_2(s, t_0)$, so by the Fundamental Theorem of Calculus we have

$$\left|\int_{t_0}^t (\varphi_2(s,\tau) - \varphi_2(s,t_0))\,d\tau\right|$$

$$= |(\varphi(s,t) - t\varphi_2(s,t_0)) - (\varphi(s,t_0) - t_0\varphi_2(s,t_0))|$$

$$= |\varphi(s,t) - \varphi(s,t_0) - (t-t_0)\varphi_2(s,t_0)| \le \varepsilon |t-t_0|$$

and this holds for any $s \in [a, b]$ when $|t - t_0| < \delta$.

Proposition IV.2.1 (continued 1)

Proof (continued). In particular, $|\varphi_2(s,t) - \varphi_2(s,t_0)| < \varepsilon$ whenever $|t - t_0| < \delta$ and $s \in [a, b]$. So for $|t - t_0| < \delta$ and $x \in [a, b]$ we have

$$\left|\int_{t_0}^t (\varphi_2(s,\tau) - \varphi_2(s,t_0)) \, d\tau\right| \leq \varepsilon |t-t_0|.$$

But for a fixed $s \in [a, b]$, $\Phi(t) = \varphi(s, t) - t\varphi_2(s, t_0)$ is a primitive of $\varphi_2(s, t) - \varphi_2(s, t_0)$, so by the Fundamental Theorem of Calculus we have

$$\left|\int_{t_0}^t (\varphi_2(s,\tau)-\varphi_2(s,t_0))\,d\tau\right|$$

$$= |(\varphi(s,t) - t\varphi_2(s,t_0)) - (\varphi(s,t_0) - t_0\varphi_2(s,t_0))| \\ = |\varphi(s,t) - \varphi(s,t_0) - (t-t_0)\varphi_2(s,t_0)| \le \varepsilon |t-t_0|$$

and this holds for any $s \in [a, b]$ when $|t - t_0| < \delta$.

Proposition IV.2.1 (continued 2)

Proof (continued). Therefore for $s \in [a, b]$ and $|t - t_0| < \delta$ we have

$$\left| rac{arphi(s,t) - arphi(s,t_0)}{t - t_0} - arphi_2(s,t_0)
ight| \leq arepsilon ext{ and }$$

$$\left| \int_{a}^{b} \frac{\varphi(s,t) - \varphi(s,t_0)}{t - t_0} \, ds - \int_{a}^{b} \varphi_2(s,t_0) \, ds \right| \le \varepsilon(b-a) \text{ or}$$
$$\left| \frac{g(t) - g(t_0)}{t - t_0} - \int_{a}^{b} \varphi_2(s,t_0) \, ds \right| \le \varepsilon(b-a)$$

since $g(t) = \int_{a}^{b} \varphi(s, t) \, ds$ by definition. Therefore for $s \in [a, b]$ we have

$$g'(t_0) = \int_a^b \varphi_2(s, t_0) \, ds = \int_a^b \frac{\partial \varphi}{\partial t}(s, t_0) \, ds.$$

Proposition IV.2.1 (continued 3)

Proposition IV.2.1. Let $\varphi : [a, b] \times [c, d] \to \mathbb{C}$ be a continuous function and define $g : [c, d] \to \mathbb{C}$ by $g(t) = \int_{a}^{b} \varphi(s, t) \, ds$. Then g is continuous. Moreover, if $\frac{\partial \varphi}{\partial t}$ exists and is a continuous function on $[a, b] \times [c, d]$ then g is continuously differentiable and

$$g'(t) = \int_a^b \frac{\partial \varphi}{\partial t}(s,t) \, ds.$$

Proof (continued). Since t_0 is an arbitrary element of [c, d] then we have $g'(t) = \int_a^b \frac{\partial \varphi}{\partial t}(s, t) \, ds$ on $[a, b] \times [c, d]$, as claimed. Since $\partial \varphi / \partial t$ is hypothesized to be continuous then g' is continuous by Exercise IV.2.1 (with g and φ of the exercise replaced with g' and $\partial \varphi / \partial t$ here), as claimed.

Lemma IV.2.A. If |z| < 1 then $\int_0^{2\pi} \frac{e^{is}}{e^{is} - z} ds = 2\pi$. **Proof.** Let $\varphi(s, t) = \frac{e^{is}}{e^{is} - tz}$ for $0 \le t \le 1$ and $0 \le s \le 2\pi$. Since |z| < 1, φ is continuously differentiable. So by Proposition IV.2.1, $g(t) = \int_0^{2\pi} \varphi(s, t) ds$ is continuously differentiable.

Lemma IV.2.A. If
$$|z| < 1$$
 then $\int_0^{2\pi} \frac{e^{is}}{e^{is} - z} ds = 2\pi$.
Proof. Let $\varphi(s, t) = \frac{e^{is}}{e^{is} - tz}$ for $0 \le t \le 1$ and $0 \le s \le 2\pi$. Since $|z| < 1$, φ is continuously differentiable. So by Proposition IV.2.1, $g(t) = \int_0^{2\pi} \varphi(s, t) ds$ is continuously differentiable. Also,

$$g(0) = \int_0^{2\pi} \varphi(s,0) \, ds = \int_0^{2\pi} \frac{e^{is}}{e^{is} - 0z} \, dz = \int_0^{2\pi} 1 \, dz = 2\pi.$$

Next, $g'(t) = \int_0^{2\pi} \frac{ze^{is}}{(e^{is} - tz)^2} \, ds$ by Proposition IV.2.1.

Lemma IV.2.A. If
$$|z| < 1$$
 then $\int_{0}^{2\pi} \frac{e^{is}}{e^{is} - z} ds = 2\pi$.
Proof. Let $\varphi(s, t) = \frac{e^{is}}{e^{is} - tz}$ for $0 \le t \le 1$ and $0 \le s \le 2\pi$. Since $|z| < 1$, φ is continuously differentiable. So by Proposition IV.2.1, $g(t) = \int_{0}^{2\pi} \varphi(s, t) ds$ is continuously differentiable. Also,

$$g(0) = \int_0^{2\pi} \varphi(s,0) \, ds = \int_0^{2\pi} \frac{e^{is}}{e^{is} - 0z} \, dz = \int_0^{2\pi} 1 \, dz = 2\pi.$$

Next, $g'(t) = \int_0^{2\pi} \frac{ze^{is}}{(e^{is} - tz)^2} ds$ by Proposition IV.2.1. Notice for $\Phi(s) = \frac{zi}{e^{is} - tz}$ (with t fixed) we have $\Phi'(s) = \frac{ze^{is}}{(e^{is} - tz)^2}$ and so $\Phi(s)$ is a primitive for $\frac{ze^{is}}{(e^{is} - tz)^2}$, and so

Lemma IV.2.A. If
$$|z| < 1$$
 then $\int_{0}^{2\pi} \frac{e^{is}}{e^{is} - z} ds = 2\pi$.
Proof. Let $\varphi(s, t) = \frac{e^{is}}{e^{is} - tz}$ for $0 \le t \le 1$ and $0 \le s \le 2\pi$. Since $|z| < 1$, φ is continuously differentiable. So by Proposition IV.2.1, $g(t) = \int_{0}^{2\pi} \varphi(s, t) ds$ is continuously differentiable. Also,

$$g(0) = \int_0^{2\pi} \varphi(s,0) \, ds = \int_0^{2\pi} \frac{e^{is}}{e^{is} - 0z} \, dz = \int_0^{2\pi} 1 \, dz = 2\pi.$$

Next, $g'(t) = \int_0^{2\pi} \frac{ze^{is}}{(e^{is} - tz)^2} ds$ by Proposition IV.2.1. Notice for $\Phi(s) = \frac{zi}{e^{is} - tz}$ (with t fixed) we have $\Phi'(s) = \frac{ze^{is}}{(e^{is} - tz)^2}$ and so $\Phi(s)$ is a primitive for $\frac{ze^{is}}{(e^{is} - tz)^2}$, and so

Lemma IV.2.A (continued)

Lemma IV.2.A. If
$$|z| < 1$$
 then $\int_0^{2\pi} \frac{e^{is}}{e^{is}-z} ds = 2\pi$.

Proof (continued).

$$g'(t) = \int_0^{2\pi} \frac{ze^{is}}{(e^{is} - tz)^2} \, ds = \Phi(2\pi) - \Phi(0) = \frac{zi}{e^{2\pi i} - tz} - \frac{z}{e^0 - tz} = 0.$$

Therefore g is constant and $g(1) = g(0) = 2\pi$.

Lemma IV.2.A (continued)

Lemma IV.2.A. If
$$|z| < 1$$
 then $\int_0^{2\pi} rac{e^{is}}{e^{is}-z} \, ds = 2\pi.$

Proof (continued).

$$g'(t) = \int_0^{2\pi} rac{z e^{is}}{(e^{is} - tz)^2} \, ds = \Phi(2\pi) - \Phi(0) = rac{zi}{e^{2\pi i} - tz} - rac{z}{e^0 - tz} = 0.$$

Therefore g is constant and $g(1) = g(0) = 2\pi$. That is,

$$g(1) = \int_0^{2\pi} \frac{e^{is}}{e^{is} - z} \, dz = 2\pi.$$

Lemma IV.2.A (continued)

Lemma IV.2.A. If
$$|z| < 1$$
 then $\int_0^{2\pi} \frac{e^{is}}{e^{is}-z} ds = 2\pi$.

Proof (continued).

$$g'(t) = \int_0^{2\pi} \frac{z e^{is}}{(e^{is} - tz)^2} \, ds = \Phi(2\pi) - \Phi(0) = \frac{zi}{e^{2\pi i} - tz} - \frac{z}{e^0 - tz} = 0.$$

Therefore g is constant and $g(1) = g(0) = 2\pi$. That is,

$$g(1) = \int_0^{2\pi} \frac{e^{is}}{e^{is} - z} \, dz = 2\pi.$$

Theorem IV.2.6

Proposition IV.2.6. Let $f : G \to \mathbb{C}$ be analytic and suppose $\overline{B}(a; r) \subseteq G$ (r > 0). If $\gamma(t) = a + re^{it}$, and $0 \le t \le 2\pi$. Then

$$f(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{w - z} \, dw$$

for |z - a| < r.

Proof. Without loss of generality, we assume a = 0 and r = 1 (otherwise, we consider g(z) = f(a + rz) and $G_1 = \{\frac{1}{r}(z - a) \mid z \in G\}$). That is, $\overline{B}(0,1) \subset G$.

Theorem IV.2.6

Proposition IV.2.6. Let $f : G \to \mathbb{C}$ be analytic and suppose $\overline{B}(a; r) \subseteq G$ (r > 0). If $\gamma(t) = a + re^{it}$, and $0 \le t \le 2\pi$. Then

$$f(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{w - z} \, dw$$

for |z - a| < r.

Proof. Without loss of generality, we assume a = 0 and r = 1 (otherwise, we consider g(z) = f(a + rz) and $G_1 = \{\frac{1}{r}(z - a) \mid z \in G\}$). That is, $\overline{B}(0,1) \subset G$. Fix z where |z| < 1. We then need to show that

$$f(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{w-z} \, dw = \frac{1}{2\pi} \int_{0}^{2\pi} \frac{f(e^{is})e^{is}}{e^{is}-z} \, ds.$$

Theorem IV.2.6

Proposition IV.2.6. Let $f : G \to \mathbb{C}$ be analytic and suppose $\overline{B}(a; r) \subseteq G$ (r > 0). If $\gamma(t) = a + re^{it}$, and $0 \le t \le 2\pi$. Then

$$f(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{w - z} \, dw$$

for |z - a| < r.

Proof. Without loss of generality, we assume a = 0 and r = 1 (otherwise, we consider g(z) = f(a + rz) and $G_1 = \{\frac{1}{r}(z - a) \mid z \in G\}$). That is, $\overline{B}(0,1) \subset G$. Fix z where |z| < 1. We then need to show that

$$f(z) = rac{1}{2\pi i} \int_{\gamma} rac{f(w)}{w-z} \, dw = rac{1}{2\pi} \int_{0}^{2\pi} rac{f(e^{is})e^{is}}{e^{is}-z} \, ds.$$

This is equivalent to

$$0 = \int_0^{2\pi} \frac{f(e^{is})e^{is}}{e^{is} - z} \, ds - 2\pi f(z) = \int_0^{2\pi} \left(\frac{f(e^{is})e^{is}}{e^{is} - z} - f(z)\right) \, ds. \quad (*)$$

Theorem IV.2.6

Proposition IV.2.6. Let $f : G \to \mathbb{C}$ be analytic and suppose $\overline{B}(a; r) \subseteq G$ (r > 0). If $\gamma(t) = a + re^{it}$, and $0 \le t \le 2\pi$. Then

$$f(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{w-z} \, dw$$

for |z - a| < r.

Proof. Without loss of generality, we assume a = 0 and r = 1 (otherwise, we consider g(z) = f(a + rz) and $G_1 = \{\frac{1}{r}(z - a) \mid z \in G\}$). That is, $\overline{B}(0,1) \subset G$. Fix z where |z| < 1. We then need to show that

$$f(z) = rac{1}{2\pi i} \int_{\gamma} rac{f(w)}{w-z} \, dw = rac{1}{2\pi} \int_{0}^{2\pi} rac{f(e^{is})e^{is}}{e^{is}-z} \, ds.$$

This is equivalent to

$$0 = \int_0^{2\pi} \frac{f(e^{is})e^{is}}{e^{is} - z} \, ds - 2\pi f(z) = \int_0^{2\pi} \left(\frac{f(e^{is})e^{is}}{e^{is} - z} - f(z) \right) \, ds. \quad (*)$$

Theorem IV.2.6 (continued 1)

Proof (continued). Let
$$\varphi(s,t) = \frac{f(z+t(e^{is}-z))e^{is}}{e^{is}-z} - f(z)$$
 for $0 \le t \le 1$ and $0 \le s \le 2\pi$. Since $|z+t(e^{is}-z)| = |z(1-t)+te^{is}| \le |z(1-t)|+t \le |1-t|+t = 1-t+t = 1$, then φ is well defined (*f* takes on values in $\overline{B}(0;1) \subset G$) and is continuously differentiable. Let $g(t) = \int_0^{2\pi} \varphi(s,t) \, ds$. Then by Proposition IV.2.1, *g* is continuously differentiable. Notice that

$$g(0) = \int_0^{2\pi} \varphi(s,0) \, ds = \int_0^{2\pi} \left(\frac{f(z)e^{is}}{e^{is} - z} - f(z) \right) \, ds$$
$$= f(z) \int_0^{2\pi} \frac{e^{is}}{e^{is} - z} \, ds - 2\pi f(z)$$
$$= 0 \text{ by Lemma IV.2.A}$$

Theorem IV.2.6 (continued 1)

Proof (continued). Let
$$\varphi(s, t) = \frac{f(z + t(e^{is} - z))e^{is}}{e^{is} - z} - f(z)$$
 for $0 \le t \le 1$ and $0 \le s \le 2\pi$. Since $|z+t(e^{is}-z)| = |z(1-t)+te^{is}| \le |z(1-t)|+t \le |1-t|+t = 1-t+t = 1$, then φ is well defined (f takes on values in $\overline{B}(0; 1) \subset G$) and is continuously differentiable. Let $g(t) = \int_0^{2\pi} \varphi(s, t) \, ds$. Then by Proposition IV.2.1, g is continuously differentiable. Notice that

$$g(0) = \int_0^{2\pi} \varphi(s,0) \, ds = \int_0^{2\pi} \left(\frac{f(z)e^{is}}{e^{is} - z} - f(z) \right) \, ds$$
$$= f(z) \int_0^{2\pi} \frac{e^{is}}{e^{is} - z} \, ds - 2\pi f(z)$$
$$= 0 \text{ by Lemma IV.2.A}$$

We now show g is constant. By Proposition IV.2.1, $g'(t) = \int_0^{2\pi} \varphi_2(s, t) \, ds$ where $\varphi_2(s, t) = e^{is} f'(z + t(e^{is} - z)) = \partial \varphi / \partial t$.

Theorem IV.2.6 (continued 1)

Proof (continued). Let
$$\varphi(s,t) = \frac{f(z+t(e^{is}-z))e^{is}}{e^{is}-z} - f(z)$$
 for $0 \le t \le 1$ and $0 \le s \le 2\pi$. Since $|z+t(e^{is}-z)| = |z(1-t)+te^{is}| \le |z(1-t)|+t \le |1-t|+t = 1-t+t = 1$, then φ is well defined (f takes on values in $\overline{B}(0;1) \subset G$) and is continuously differentiable. Let $g(t) = \int_0^{2\pi} \varphi(s,t) \, ds$. Then by Proposition IV.2.1, g is continuously differentiable. Notice that

$$g(0) = \int_{0}^{2\pi} \varphi(s,0) \, ds = \int_{0}^{2\pi} \left(\frac{f(z)e^{is}}{e^{is} - z} - f(z) \right) \, ds$$

= $f(z) \int_{0}^{2\pi} \frac{e^{is}}{e^{is} - z} \, ds - 2\pi f(z)$
= 0 by Lemma IV.2.A

We now show g is constant. By Proposition IV.2.1, $g'(t) = \int_0^{2\pi} \varphi_2(s, t) \, ds$ where $\varphi_2(s, t) = e^{is} f'(z + t(e^{is} - z)) = \partial \varphi / \partial t$.

Theorem IV.2.6 (continued 2)

Proof (continued). For $0 < t \le 1$, we have $\Phi(s) = -it^{-1}f(z + t(e^{is} - z))$ is a primitive of $\varphi_2(s, t)$. So $g'(t) = \Phi(2\pi) - \Phi(0) = 0$ for $0 < t \le 1$. Since g' is continuous, we must have g'(t) = 0 for $0 \le t \le 1$. Therefore g(t) is constant on [0, 1] and g(1) = g(0) = 0.

Theorem IV.2.6 (continued 2)

Proof (continued). For $0 < t \le 1$, we have $\Phi(s) = -it^{-1}f(z + t(e^{is} - z))$ is a primitive of $\varphi_2(s, t)$. So $g'(t) = \Phi(2\pi) - \Phi(0) = 0$ for $0 < t \le 1$. Since g' is continuous, we must have g'(t) = 0 for $0 \le t \le 1$. Therefore g(t) is constant on [0, 1] and g(1) = g(0) = 0. That is,

$$g(1) = \int_0^{2\pi} \varphi(s, 1) \, ds = \int_0^{2\pi} \left(\frac{f(z + 1(e^{is} - z))e^{is}}{e^{is} - z} - f(z) \right) \, ds$$
$$= \int_0^{2\pi} \left(\frac{f(e^{is})e^{is}}{e^{is} - z} - f(z) \right) \, ds = 0.$$

This is (*) and the result follows.

Theorem IV.2.6 (continued 2)

Proof (continued). For $0 < t \le 1$, we have $\Phi(s) = -it^{-1}f(z + t(e^{is} - z))$ is a primitive of $\varphi_2(s, t)$. So $g'(t) = \Phi(2\pi) - \Phi(0) = 0$ for $0 < t \le 1$. Since g' is continuous, we must have g'(t) = 0 for $0 \le t \le 1$. Therefore g(t) is constant on [0, 1] and g(1) = g(0) = 0. That is,

$$g(1) = \int_0^{2\pi} \varphi(s, 1) \, ds = \int_0^{2\pi} \left(\frac{f(z + 1(e^{is} - z))e^{is}}{e^{is} - z} - f(z) \right) \, ds$$
$$= \int_0^{2\pi} \left(\frac{f(e^{is})e^{is}}{e^{is} - z} - f(z) \right) \, ds = 0.$$

This is (*) and the result follows.

Lemma IV.2.7

Lemma IV.2.7. Let γ be a rectifiable curve in \mathbb{C} and suppose that F_n and F are continuous on $\{\gamma\}$ If F is the uniform limit of F_n on $\{\gamma\}$ then $\int_{\gamma} F = \lim \left(\int_{\gamma} F_n\right)$. **Proof.** Let $\varepsilon > 0$; then there is $N \in \mathbb{N}$ such that $|F_n(w) - F(w)| < \varepsilon/V(\gamma)$ for all $w \in \{\gamma\}$ and $n \ge N$.

Lemma IV.2.7

Lemma IV.2.7. Let γ be a rectifiable curve in \mathbb{C} and suppose that F_n and F are continuous on $\{\gamma\}$ If F is the uniform limit of F_n on $\{\gamma\}$ then $\int_{\Omega} F = \lim \left(\int_{\Omega} F_n \right).$ **Proof.** Let $\varepsilon > 0$; then there is $N \in \mathbb{N}$ such that $|F_n(w) - F(w)| < \varepsilon/V(\gamma)$ for all $w \in \{\gamma\}$ and $n \ge N$. Then $\left| \int_{\infty} F - \int_{\infty} F_n \right| = \left| \int_{\infty} (F - F_n) \right|$ $\leq \int |F(w) - F_n(w)| |dw|$ by Proposition IV.1.17 $< \frac{\varepsilon}{V(\gamma)}V(\gamma) = \varepsilon$

for all $n \ge N$. So $\int_{\gamma} F = \lim(\int_{\gamma} F_n)$.

Lemma IV.2.7

Lemma IV.2.7. Let γ be a rectifiable curve in \mathbb{C} and suppose that F_n and F are continuous on $\{\gamma\}$ If F is the uniform limit of F_n on $\{\gamma\}$ then $\int_{\Omega} F = \lim \left(\int_{\Omega} F_n \right).$ **Proof.** Let $\varepsilon > 0$; then there is $N \in \mathbb{N}$ such that $|F_n(w) - F(w)| < \varepsilon/V(\gamma)$ for all $w \in \{\gamma\}$ and $n \ge N$. Then $\left|\int_{\Omega} F - \int_{\Omega} F_n\right| = \left|\int_{\Omega} (F - F_n)\right|$ $\leq \int_{\mathbb{T}} |F(w) - F_n(w)| |dw|$ by Proposition IV.1.17 $< \frac{\varepsilon}{V(\gamma)}V(\gamma) = \varepsilon$

for all $n \ge N$. So $\int_{\gamma} F = \lim(\int_{\gamma} F_n)$.

Theorem IV.2.8. Let f be analytic in B(a; R). Then $f(z) = \sum_{n=0}^{\infty} a_n(z-a)^n$ for |z-a| < R where $a_n = f^{(n)}(a)/n!$ and this series has radius of convergence $\ge R$.

Proof. Let 0 < r < R and then $\overline{B}(a; r) \subset B(a; R)$. If $\gamma(t) = a + re^{it}$, $t \in [0, 2\pi]$, then by Proposition IV.2.6, $f(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{w - z} dw$ for |z - a| < r.

Theorem IV.2.8. Let f be analytic in B(a; R). Then

 $f(z) = \sum_{n=0}^{\infty} a_n (z-a)^n$ for |z-a| < R where $a_n = f^{(n)}(a)/n!$ and this

series has radius of convergence $\geq R$.

Proof. Let 0 < r < R and then $\overline{B}(a; r) \subset B(a; R)$. If $\gamma(t) = a + re^{it}$, $t \in [0, 2\pi]$, then by Proposition IV.2.6, $f(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{w - z} dw$ for |z - a| < r. For |z - a| < r and $w \in \{\gamma\}$, $\frac{|f(w)||z - a|^n}{|w - a|^{n+1}} \leq \frac{M}{r} \left(\frac{|z - a|}{r}\right)^n$ where $M = \max\{|f(w)| \mid |w - a| = r\}$.

Theorem IV.2.8. Let f be analytic in B(a; R). Then

 $f(z) = \sum_{n=0} a_n (z-a)^n$ for |z-a| < R where $a_n = f^{(n)}(a)/n!$ and this

series has radius of convergence $\geq R$.

Proof. Let 0 < r < R and then $\overline{B}(a; r) \subset B(a; R)$. If $\gamma(t) = a + re^{it}$, $t \in [0, 2\pi]$, then by Proposition IV.2.6, $f(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{w - z} dw$ for |z - a| < r. For |z - a| < r and $w \in \{\gamma\}$, $\frac{|f(w)||z - a|^n}{|w - a|^{n+1}} \leq \frac{M}{r} \left(\frac{|z - a|}{r}\right)^n$ where $M = \max\{|f(w)| \mid |w - a| = r\}$. Since |z - a|/r < 1, the Weierstrass *M*-Test (with $M_n = M(|z - a|/r)^n/r$) implies that $\sum_{n=1}^{\infty} \frac{f(w)(z - a)^n}{(w - a)^{n+1}}$ converges uniformly for $w \in \{\gamma\}$.

Theorem IV.2.8. Let f be analytic in B(a; R). Then

 $f(z) = \sum_{n=0} a_n (z-a)^n$ for |z-a| < R where $a_n = f^{(n)}(a)/n!$ and this

series has radius of convergence $\geq R$.

Proof. Let 0 < r < R and then $\overline{B}(a; r) \subset B(a; R)$. If $\gamma(t) = a + re^{it}$, $t \in [0, 2\pi]$, then by Proposition IV.2.6, $f(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{w - z} dw$ for |z - a| < r. For |z - a| < r and $w \in \{\gamma\}$, $\frac{|f(w)||z - a|^n}{|w - a|^{n+1}} \leq \frac{M}{r} \left(\frac{|z - a|}{r}\right)^n$ where $M = \max\{|f(w)| \mid |w - a| = r\}$. Since |z - a|/r < 1, the Weierstrass *M*-Test (with $M_n = M(|z - a|/r)^n/r$) implies that $\sum_{n=1}^{\infty} \frac{f(w)(z - a)^n}{(w - a)^{n+1}}$ converges uniformly for $w \in \{\gamma\}$.

13 / 16

Theorem IV.2.8. "Analytic" Implies Power Series

Theorem IV.2.8 (continued)

Proof (continued). From Note IV.2.A we have

$$f(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{w-z} dw \text{ by Proposition IV.2.6}$$

$$= \frac{1}{2\pi i} \int_{\gamma} \left(\frac{f(w)}{w-a} \sum_{n=0}^{\infty} \left(\frac{z-a}{w-a} \right)^n \right) dw$$

$$= \sum_{n=0}^{\infty} \left(\frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{(w-a)^{n+1}} dw \right) (z-a)^n \text{ by Lemma IV.2.7.}$$
lext set $a_n = \frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{(w-a)^{n+1}} dw$ and we have
$$(z) = \sum_{n=0}^{\infty} a_n (z-a)^n \text{ where the series converges if } |z-a| < r. \text{ By Proposition III.2.5, } a_n = f^{(n)}(a)/n!.$$

N f Theorem IV.2.8. "Analytic" Implies Power Series

Theorem IV.2.8 (continued)

Proof (continued). From Note IV.2.A we have

$$f(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{w-z} dw \text{ by Proposition IV.2.6}$$

$$= \frac{1}{2\pi i} \int_{\gamma} \left(\frac{f(w)}{w-a} \sum_{n=0}^{\infty} \left(\frac{z-a}{w-a} \right)^n \right) dw$$

$$= \sum_{n=0}^{\infty} \left(\frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{(w-a)^{n+1}} dw \right) (z-a)^n \text{ by Lemma IV.2.7.}$$
Next set $a_n = \frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{(w-a)^{n+1}} dw$ and we have
$$f(z) = \sum_{n=0}^{\infty} a_n (z-a)^n \text{ where the series converges if } |z-a| < r. \text{ By Proposition III.2.5, } a_n = f^{(n)}(a)/n!. \text{ So each } a_n \text{ is (1) independent of } z,$$
(2) independent of $\{\gamma\}$, and (3) independent of $r. \text{ Since } r \text{ was chosen arbitrarily and } < R, \text{ then the series representation holds for all $z \text{ such that } z - a | < R \text{ and the radius of convergence of the series is at least } R.$$

Complex Analysis

Theorem IV.2.8. "Analytic" Implies Power Series

Theorem IV.2.8 (continued)

ſ

Proof (continued). From Note IV.2.A we have

$$\begin{split} f(z) &= \frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{w-z} \, dw \text{ by Proposition IV.2.6} \\ &= \frac{1}{2\pi i} \int_{\gamma} \left(\frac{f(w)}{w-a} \sum_{n=0}^{\infty} \left(\frac{z-a}{w-a} \right)^n \right) dw \\ &= \sum_{n=0}^{\infty} \left(\frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{(w-a)^{n+1}} \, dw \right) (z-a)^n \text{ by Lemma IV.2.7.} \\ \text{Next set } a_n &= \frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{(w-a)^{n+1}} \, dw \text{ and we have} \\ f(z) &= \sum_{n=0}^{\infty} a_n (z-a)^n \text{ where the series converges if } |z-a| < r. \text{ By Proposition III.2.5, } a_n &= f^{(n)}(a)/n!. \text{ So each } a_n \text{ is (1) independent of } z, \\ (2) \text{ independent of } \{\gamma\}, \text{ and (3) independent of } r. \text{ Since } r \text{ was chosen} \\ arbitrarily \text{ and } < R, \text{ then the series representation holds for all } z \text{ such that} \\ |z-a| < R \text{ and the radius of convergence of the series is at least } R. \end{split}$$

Theorem IV.2.14. Cauchy's Estimate. Let f be analytic in B(a; R) and suppose $|f(z)| \le M$ for all $z \in B(a; R)$. Then

$$|f^{(n)}(a)| \leq \frac{n!M}{R^n}.$$

Proof. By Corollary IV.2.13, for r < R we have

$$|f^{(n)}(a)| = \left| \frac{n!}{2\pi i} \int_{\gamma} \frac{f(w)}{(w-a)^{n+1}} dw \right| \text{ where } \gamma(t) = a + re^{it}, t \in [0, 2\pi]$$

$$\leq \frac{n!}{2\pi} \int_{\gamma} \left| \frac{f(w)}{(w-a)^{n+1}} \right| |dw| \text{ by Proposition IV.1.17(b)}$$

$$\leq \frac{n!}{2\pi} \frac{M}{r^{n+1}} (2\pi r) \text{ by Proposition IV.1.17(b)}$$

$$= \frac{n!M}{r^{n}}.$$

Now let $r \rightarrow R^-$ and the result follows.

- C

Theorem IV.2.14. Cauchy's Estimate. Let f be analytic in B(a; R) and suppose $|f(z)| \le M$ for all $z \in B(a; R)$. Then

$$|f^{(n)}(a)| \leq \frac{n!M}{R^n}.$$

Proof. By Corollary IV.2.13, for r < R we have

$$|f^{(n)}(a)| = \left| \frac{n!}{2\pi i} \int_{\gamma} \frac{f(w)}{(w-a)^{n+1}} dw \right| \text{ where } \gamma(t) = a + re^{it}, t \in [0, 2\pi]$$

$$\leq \frac{n!}{2\pi} \int_{\gamma} \left| \frac{f(w)}{(w-a)^{n+1}} \right| |dw| \text{ by Proposition IV.1.17(b)}$$

$$\leq \frac{n!}{2\pi} \frac{M}{r^{n+1}} (2\pi r) \text{ by Proposition IV.1.17(b)}$$

$$= \frac{n!M}{r^{n}}.$$

Now let $r \rightarrow R^-$ and the result follows.

()

Proposition IV.2.15. Let f be analytic in B(a; R) and suppose γ is a closed rectifiable curve in B(a; R). Then f has a primitive in B(a; R) and so $\int_{\gamma} f = 0$.

Proof. We know by Theorem IV.2.8, that an analytic function has a power series representation: $f(z) = \sum_{n=0}^{\infty} a_n(z-a)^n$ for $z \in B(a:R)$. Define

$$F(z) = \sum_{n=0}^{\infty} \frac{a_n}{n+1} (z-a)^{n+1} = (z-a) \sum_{n=0}^{\infty} \frac{a_n}{n+1} (z-a)^n.$$

Proposition IV.2.15. Let f be analytic in B(a; R) and suppose γ is a closed rectifiable curve in B(a; R). Then f has a primitive in B(a; R) and so $\int_{\alpha} f = 0$.

Proof. We know by Theorem IV.2.8, that an analytic function has a power series representation: $f(z) = \sum_{n=0}^{\infty} a_n(z-a)^n$ for $z \in B(a:R)$. Define

$$F(z) = \sum_{n=0}^{\infty} \frac{a_n}{n+1} (z-a)^{n+1} = (z-a) \sum_{n=0}^{\infty} \frac{a_n}{n+1} (z-a)^n.$$

Then, by definition, the radius of convergence of F is

$$\frac{1}{\overline{\lim}\left|\frac{a_n}{n+1}\right|^{1/n}} = \frac{\lim(n+1)^{1/n}}{\overline{\lim}|a_n|^{1/n}} = \frac{1}{\overline{\lim}|a_n|^{1/n}}$$

and so the radius of convergence of F is the same as the radius of convergence of f. So F is defined on B(a; R).

Proposition IV.2.15. Let *f* be analytic in B(a; R) and suppose γ is a closed rectifiable curve in B(a; R). Then *f* has a primitive in B(a; R) and so $\int_{\gamma} f = 0$.

Proof. We know by Theorem IV.2.8, that an analytic function has a power series representation: $f(z) = \sum_{n=0}^{\infty} a_n(z-a)^n$ for $z \in B(a:R)$. Define

$$F(z) = \sum_{n=0}^{\infty} \frac{a_n}{n+1} (z-a)^{n+1} = (z-a) \sum_{n=0}^{\infty} \frac{a_n}{n+1} (z-a)^n.$$

Then, by definition, the radius of convergence of F is

$$\frac{1}{\overline{\lim}\left|\frac{a_n}{n+1}\right|^{1/n}} = \frac{\lim(n+1)^{1/n}}{\lim|a_n|^{1/n}} = \frac{1}{\overline{\lim}|a_n|^{1/n}}$$

and so the radius of convergence of *F* is the same as the radius of convergence of *f*. So *F* is defined on B(a; R). Also, by Proposition III.2.5, F'(z) = f(z). So *F* is a primitive of *f* and by Corollary IV.1.22, $\int_{\infty} f = 0$.

Proposition IV.2.15. Let *f* be analytic in B(a; R) and suppose γ is a closed rectifiable curve in B(a; R). Then *f* has a primitive in B(a; R) and so $\int_{\gamma} f = 0$.

Proof. We know by Theorem IV.2.8, that an analytic function has a power series representation: $f(z) = \sum_{n=0}^{\infty} a_n(z-a)^n$ for $z \in B(a:R)$. Define

$$F(z) = \sum_{n=0}^{\infty} \frac{a_n}{n+1} (z-a)^{n+1} = (z-a) \sum_{n=0}^{\infty} \frac{a_n}{n+1} (z-a)^n.$$

Then, by definition, the radius of convergence of F is

$$\frac{1}{\overline{\lim}\left|\frac{a_n}{n+1}\right|^{1/n}} = \frac{\lim(n+1)^{1/n}}{\lim|a_n|^{1/n}} = \frac{1}{\overline{\lim}|a_n|^{1/n}}$$

and so the radius of convergence of F is the same as the radius of convergence of f. So F is defined on B(a; R). Also, by Proposition III.2.5, F'(z) = f(z). So F is a primitive of f and by Corollary IV.1.22, $\int_{\gamma} f = 0$.