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Theorem IV.3.4. Liouville’s Theorem

Theorem IV.3.4

Theorem IV.3.4. Liouville’s Theorem. If f is a bounded entire function
then f is constant.

Proof. Suppose |f (z)| ≤ M for all z ∈ C. By Cauchy’s Estimate
(Corollary IV.2.14) with n = 1, |f ′(z)| ≤ M/R for any disk B(z ;R). Since
f is entire, the inequality holds for all R and with R →∞ we see that
f ′(z) = 0 for all z ∈ C. Therefore, f is a constant function by Proposition
III.2.10.
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Theorem IV.3.5. Fundamental Theorem of Algebra

Theorem IV.3.5

Theorem IV.3.5. Fundamental Theorem of Algebra.
If p(z) is a nonconstant polynomial then there is a complex number a with
p(a) = 0.

Proof. Suppose not. ASSUME p(z) 6= 0 for all z ∈ C. Let f (z) = 1/p(z).
Then f is an entire function. If p is not constant, then
p(z) = anz

n + an−1z
n−1 + · · ·+ a1z + a0 where n ≥ 1 and so

lim
z→∞

|p(z)| = lim
z→∞

∣∣zn(an + an−1z
−1 + · · ·+ a0z

−n)
∣∣

= lim
z→∞

|z |n lim
z→∞

∣∣an + an−1z
−1 + · · ·+ a0z

−n
∣∣

= ∞.

So lim
z→∞

f (z) = lim
z→∞

1

p(z)
= 0. Therefore, for some R > 0 we have

|f (z)| < 1 for |z | > R.
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Theorem IV.3.5. Fundamental Theorem of Algebra

Theorem IV.3.5 (continued)

Theorem IV.3.5. Fundamental Theorem of Algebra.
If p(z) is a nonconstant polynomial then there is a complex number a with
p(a) = 0.

Proof (continued). Since f is continuous on B(0;R) and B(0;R) is
compact, there is a constant M > 0 such that |f (z)| ≤ M for |z | ≤ R by
Corollary II.5.2. Then f is an entire function bounded by max{M, 1}. By
Liouville’s Theorem (Theorem IV.3.4), f must be constant and so p is
constant, a CONTRADICTION. So the assumption that p(z) 6= 0 for all
z ∈ C is false and p has some zero in C.
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Theorem IV.3.7

Theorem IV.3.7

Theorem IV.3.7. Let G be a connected open set and let f : G → C be
analytic. The following are equivalent.

(a) f ≡ 0 on G ,

(b) there is a point a ∈ G such that f (n)(a) = 0 for all n ∈ Z,
n ≥ 0, and

(c) the set {z ∈ G | f (z) = 0} has a limit point in G .

Proof. “Clearly” (a) implies both (b) and (c) (even in the real setting).

(c)⇒(b) Let a ∈ G be a limit point of Z = {z ∈ G | f (z) = 0} and let
R > 0 be such that B(a;R) ⊂ G . Since f is analytic, then f is continuous
(on G ); since a is a limit point of Z then a = limn→∞{zn} for some
sequence {zn} ⊂ Z . So 0 = limn→∞ f (zn) = f (limx→∞ zn) = f (a).
ASSUME there is n ∈ N such that f (a) = f ′(a) = · · · = f (n−1)(a) = 0 and
f (n)(a) 6= 0. Since f is analytic, a power series of f is of the form
f (z) =

∑∞
k=n ak(z − a)k for |z − a| < R.
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Theorem IV.3.7

Theorem IV.3.7 (continued 1)

Theorem IV.3.7. Let G be a connected open set and let f : G → C be
analytic. The following are equivalent.

(b) there is a point a ∈ G such that f (n)(a) = 0 for all n ∈ Z,
n ≥ 0, and

(c) the set {z ∈ G | f (z) = 0} has a limit point in G .

Proof (continued) (c)⇒(b). Define g(z) =
∑∞

k=n ak(z − a)k−n. Then g
is analytic in B(a;R), f (z) = (z − a)ng(z), and g(a) = an 6= 0 (since
f (n)(a)/n! = an 6= 0). Since g is analytic in B(a;R), we can find r where
0 < r < R such that g(z) 6= 0 for |z − a| < r (if not, we can repeat the
above argument on continuous g to show g(a) = 0, a contradiction).
Since a is a limit point of G , there is a point b with f (b) = 0 and
0 < |b − a| < r . But then f (b) = 0 = (b − a)ng(b) and so g(b) = 0,
CONTRADICTING the fact that g is zero-free in B(a; r). Therefore, the
assumption that such an n ∈ N exists is false and part (b) holds.
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Theorem IV.3.7

Theorem IV.3.7 (continued 2)

Theorem IV.3.7. Let G be a connected open set and let f : G → C be
analytic. The following are equivalent.

(a) f ≡ 0 on G ,
(b) there is a point a ∈ G such that f (n)(a) = 0 for all n ∈ Z,

n ≥ 0.

Proof (continued). (b)⇒(a) Let A = {z ∈ G | f (n)(z) = 0 for all
n ≥ 0}. By hypothesis, A 6= ∅. [We now show that A is both open in G
and closed in G . Since G is connected, then A = G ; see Definition II.2.1.]
(1) Let a ∈ A ∩ G and let {zk} ⊂ A be a sequence such that lim{zk} = a.
Since each f (n) is continuous, f (n)(a) = lim f (n)(zk) = 0 for all n ≥ 0. So
a ∈ A, A = A ∩ G and A is closed in G .

(2) Let a ∈ A and let R > 0 be
such that B(a;R) ⊂ G . Then f (z) =

∑
an(z − a)n for |z − a| < R where

an = 1
n! f

(n)(a) = 0 for each n ≥ 0 (by the definition of set A). Hence
f (z) = 0 for all z ∈ B(a;R) and so B(a;R) ⊂ A and A is open in G .
Therefore A = G , f (n)(z) = 0 for all n ≥ 0 and for all z ∈ G . That is,
f (z) = 0 on G and (a) holds.
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Corollary IV.3.9

Corollary IV.3.9

Corollary IV.3.9. If f is analytic on an open connected set G and f is not
identically zero then for each a ∈ G with f (a) = 0, there is n ∈ N and an
analytic function g : G → C such that g(a) 6= 0 and f (z) = (z − a)ng(z)
for all z ∈ G . That is, each zero of f has finite multiplicity.

Proof. By Theorem IV.3.7, there is a largest n ∈ N such that f (k)(a) = 0
for 0 ≤ k < n. Define g(z) = f (z)/(z − a)n for z 6= a and
g(a) = f (n)(a)/n!. Then g is analytic on G \ {a}.

To show g is analytic at
z = a, we write f as a series f (z) =

∑∞
k=n ak(z − a)k (as in the proof of

Theorem IV.3.7) and then we have g(z) =
∑∞

k=n ak(z − a)k−n for z 6= a,
but an = f (n)(a)/n! and so g is continuous at z = a and
f (z) = (z − a)ng(z). Since g is written as a series, of course it is
analytic.
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Theorem IV.3.11. Maximum Modulus Theorem

Theorem IV.3.11

Theorem IV.3.11. Maximum Modulus Theorem.
If G is a region and f : G → C is an analytic function such that there is a
point a ∈ G with |f (a)| ≥ |f (z)| for all z ∈ G , then f is constant.

Proof. Let B(a; r) ⊂ G , γ(t) = a + re it , t ∈ [0, 2π]. By Proposition
IV.2.6,

f (a) =
1

2πi

∫
γ

f (w)

w − a
dw =

1

2πi

∫ 2π

0

f (γ(t))

γ(t)− a
γ′(t) dt

=
1

2πi

∫ 2π

0

f (a + re it)

re it
ire it dt =

1

2π

∫ 2π

0
f (a + re it) dt.

Suppose |f (a)| ≥ |f (z)| for all z ∈ G . Then

|f (a)| ≤ 1

2π

∫ 2π

0
|f (a+re it)| dt ≤ 1

2π

∫ 2π

0
|f (a)| dt =

1

2π
|f (a)|2π = |f (a)|.
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Theorem IV.3.11. Maximum Modulus Theorem

Theorem IV.3.11 (continued)

Theorem IV.3.11. Maximum Modulus Theorem.
If G is a region and f : G → C is an analytic function such that there is a
point a ∈ G with |f (a)| ≥ |f (z)| for all z ∈ G , then f is constant.

Proof (continued). So |f (a)| = 1

2π

∫ 2π

0
|f (a + re it)| dt and

0 = 2π|f (a)| −
∫ 2π

0
|f (a + re it)| dt =

∫ 2π

0
(|f (a)| − |f (a + re it)| dt.

We’ve assumed |f (a)| ≥ |f (a + re it)|, so the integrand above is
nonnegative. Since the integrand is continuous and the integral is 0, the
integrand must be 0. That is, |f (a)| = |f (a+ re it)| for all t ∈ [0, 2π]. Since
r is arbitrary, this means any disk B(a;R) ⊂ G is mapped to something of
modulus |f (a)|. That is, f maps B(a;R) to {z | |z | = |f (a)|}. By Exercise
III.3.17, f is constant on B(a;R), say f (z) = α on B(a;R). By Corollary
IV.3.8, f (z) = α for all z ∈ G , and f is constant on G .
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Theorem IV.3.11 (continued)

Theorem IV.3.11. Maximum Modulus Theorem.
If G is a region and f : G → C is an analytic function such that there is a
point a ∈ G with |f (a)| ≥ |f (z)| for all z ∈ G , then f is constant.

Proof (continued). So |f (a)| = 1

2π

∫ 2π
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∫ 2π

0
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We’ve assumed |f (a)| ≥ |f (a + re it)|, so the integrand above is
nonnegative. Since the integrand is continuous and the integral is 0, the
integrand must be 0. That is, |f (a)| = |f (a+ re it)| for all t ∈ [0, 2π]. Since
r is arbitrary, this means any disk B(a;R) ⊂ G is mapped to something of
modulus |f (a)|. That is, f maps B(a;R) to {z | |z | = |f (a)|}. By Exercise
III.3.17, f is constant on B(a;R), say f (z) = α on B(a;R). By Corollary
IV.3.8, f (z) = α for all z ∈ G , and f is constant on G .
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