Complex Analysis

Chapter IV. Complex Integration IV.4. The Index of a Closed Curve—Proofs of Theorems

John B. Conway

Functions of One Complex Variable I

Second Edition

Deringer

Table of contents

Proposition IV.4.1

Proposition IV.4.1. If $\gamma : [0,1] \to \mathbb{C}$ is a closed rectifiable curve and $a \notin \{\gamma\}$ then

is an integer.

Proof. By Lemma IV.1.19, we can approximate γ with a polygon Γ and then for any $\varepsilon > 0$, we have $\left| \int_{\Gamma} \frac{1}{z-a} dz - \int_{\gamma} \frac{1}{z-a} dz \right| < \varepsilon$. By Proposition IV.1.8, $\int_{\Gamma} \frac{1}{z-a} dz$ can be written as a sum of integrals over the (piecewise smooth) segments of Γ . So, WLOG, we assume γ is smooth.

Proposition IV.4.1

Proposition IV.4.1. If $\gamma : [0,1] \to \mathbb{C}$ is a closed rectifiable curve and $a \notin \{\gamma\}$ then

$$\frac{1}{2\pi i} \int_{\gamma} \frac{1}{z-a} \, dz$$

is an integer.

Proof. By Lemma IV.1.19, we can approximate γ with a polygon Γ and then for any $\varepsilon > 0$, we have $\left| \int_{\Gamma} \frac{1}{z-a} dz - \int_{\gamma} \frac{1}{z-a} dz \right| < \varepsilon$. By Proposition IV.1.8, $\int_{\Gamma} \frac{1}{z-a} dz$ can be written as a sum of integrals over the (piecewise smooth) segments of Γ . So, WLOG, we assume γ is smooth. Define $g : [0,1] \to \mathbb{C}$ as $g(t) = \int_{0}^{t} \frac{\gamma'(s)}{\gamma(s)-a} ds$. Then g(0) = 0 and $g(1) = \int_{\gamma} \frac{1}{z-a} dz$.

Proposition IV.4.1

Proposition IV.4.1. If $\gamma : [0,1] \to \mathbb{C}$ is a closed rectifiable curve and $a \notin \{\gamma\}$ then

$$\frac{1}{2\pi i} \int_{\gamma} \frac{1}{z-a} \, dz$$

is an integer.

Proof. By Lemma IV.1.19, we can approximate γ with a polygon Γ and then for any $\varepsilon > 0$, we have $\left| \int_{\Gamma} \frac{1}{z-a} dz - \int_{\gamma} \frac{1}{z-a} dz \right| < \varepsilon$. By Proposition IV.1.8, $\int_{\Gamma} \frac{1}{z-a} dz$ can be written as a sum of integrals over the (piecewise smooth) segments of Γ . So, WLOG, we assume γ is smooth. Define $g : [0,1] \to \mathbb{C}$ as $g(t) = \int_{0}^{t} \frac{\gamma'(s)}{\gamma(s)-a} ds$. Then g(0) = 0 and $g(1) = \int_{\gamma} \frac{1}{z-a} dz$.

Proposition IV.4.1 (continued)

Proposition IV.4.1. If $\gamma : [0,1] \to \mathbb{C}$ is a closed rectifiable curve and $a \notin \{\gamma\}$ then $\frac{1}{2\pi i} \int_{\gamma} \frac{1}{z-a} dz$ is an integer. **Proof (continued).** Also (by the Fundamental Theorem of Calculus) $g'(t) = \frac{\gamma'(t)}{\gamma(t) - a}$ for $t \in [0,1]$. But then $\frac{d}{dt} [e^{-g(t)}(\gamma(t) - a)] = e^{-g(t)} [\gamma'(t)] + [-g'(t)e^{-g(t)}](\gamma(t) - a)$ $= e^{-g(t)}(\gamma'(t) - g'(t)(\gamma(t) - a)) = e^{-g(t)} \left(\gamma'(t) - \frac{\gamma'(t)}{\gamma(t) - a}(\gamma(t) - a)\right) = 0.$

So $e^{-g(t)}(\gamma(t) - a)$ is constant and $\gamma(0) - a = e^{-g(0)}(\gamma(0) - a) = e^{-g(1)}(\gamma(1) - a)$. Since γ is closed, $\gamma(0) = \gamma(1)$ and hence $e^{-g(1)} = e^{-g(0)} = e^0 = 1$, or $g(1) = 2\pi i k$ for some integer k. That is, $\frac{1}{2\pi i} \int_{\gamma} \frac{1}{z - a} dz = k \in \mathbb{Z}$.

Proposition IV.4.1 (continued)

Proposition IV.4.1. If $\gamma : [0,1] \to \mathbb{C}$ is a closed rectifiable curve and $a \notin \{\gamma\}$ then $\frac{1}{2\pi i} \int_{\gamma} \frac{1}{z-a} dz$ is an integer. **Proof (continued).** Also (by the Fundamental Theorem of Calculus) $g'(t) = rac{\gamma'(t)}{\gamma(t) - a}$ for $t \in [0, 1]$. But then $\frac{d}{dt}[e^{-g(t)}(\gamma(t) - a)] = e^{-g(t)}[\gamma'(t)] + [-g'(t)e^{-g(t)}](\gamma(t) - a)$ $=e^{-g(t)}(\gamma'(t)-g'(t)(\gamma(t)-a))=e^{-g(t)}\left(\gamma'(t)-\frac{\gamma'(t)}{\gamma(t)-a}(\gamma(t)-a)\right)=0.$

So $e^{-g(t)}(\gamma(t) - a)$ is constant and $\gamma(0) - a = e^{-g(0)}(\gamma(0) - a) = e^{-g(1)}(\gamma(1) - a)$. Since γ is closed, $\gamma(0) = \gamma(1)$ and hence $e^{-g(1)} = e^{-g(0)} = e^0 = 1$, or $g(1) = 2\pi ik$ for some integer k. That is, $\frac{1}{2\pi i} \int_{\gamma} \frac{1}{z - a} dz = k \in \mathbb{Z}$.

Theorem IV.4.4

Theorem IV.4.4. Let γ be a closed rectifiable curve in \mathbb{C} . Then $n(\gamma; a)$ is constant for *a* belonging to a component of $G = \mathbb{C} \setminus {\gamma}$. Also, $n(\gamma; a) = 0$ for *a* belonging to the unbounded component of *G*.

Proof. Define $f : G \to \mathbb{C}$ as $f(a) = n(\gamma; a)$. We show that f is continuous (and so constant on the components of G since $n(\gamma; a) \in \mathbb{Z}$). Recall that the components of G are open (by Theorem II.2.9).

Theorem IV.4.4

Theorem IV.4.4. Let γ be a closed rectifiable curve in \mathbb{C} . Then $n(\gamma; a)$ is constant for *a* belonging to a component of $G = \mathbb{C} \setminus {\gamma}$. Also, $n(\gamma; a) = 0$ for *a* belonging to the unbounded component of *G*.

Proof. Define $f : G \to \mathbb{C}$ as $f(a) = n(\gamma; a)$. We show that f is continuous (and so constant on the components of G since $n(\gamma; a) \in \mathbb{Z}$). Recall that the components of G are open (by Theorem II.2.9). For fixed $a \in G$, let $r = d(a; \{\gamma\})$. If $|a - b| < \delta < r/2$, then

$$\begin{aligned} |f(a) - f(b)| &= \frac{1}{2\pi} \left| \int_{\gamma} \left(\frac{1}{z-a} - \frac{1}{z-b} \right) dz \right| \text{ by the definition of } n(\gamma; a) \\ &= \frac{1}{2\pi} \left| \int_{\gamma} \frac{a-b}{(z-a)(z-b)} dz \right| \\ &\leq \frac{|a-b|}{2\pi} \int_{\gamma} \frac{|dz|}{|z-a||z-b|}. \end{aligned}$$

Theorem IV.4.4

Theorem IV.4.4. Let γ be a closed rectifiable curve in \mathbb{C} . Then $n(\gamma; a)$ is constant for *a* belonging to a component of $G = \mathbb{C} \setminus {\gamma}$. Also, $n(\gamma; a) = 0$ for *a* belonging to the unbounded component of *G*.

Proof. Define $f : G \to \mathbb{C}$ as $f(a) = n(\gamma; a)$. We show that f is continuous (and so constant on the components of G since $n(\gamma; a) \in \mathbb{Z}$). Recall that the components of G are open (by Theorem II.2.9). For fixed $a \in G$, let $r = d(a; \{\gamma\})$. If $|a - b| < \delta < r/2$, then

$$\begin{aligned} |f(a) - f(b)| &= \frac{1}{2\pi} \left| \int_{\gamma} \left(\frac{1}{z - a} - \frac{1}{z - b} \right) dz \right| & \text{by the definition of } n(\gamma; a) \\ &= \frac{1}{2\pi} \left| \int_{\gamma} \frac{a - b}{(z - a)(z - b)} dz \right| \\ &\leq \frac{|a - b|}{2\pi} \int_{\gamma} \frac{|dz|}{|z - a||z - b|}. \end{aligned}$$

Theorem IV.4.4 (continued 1)

Theorem IV.4.4. Let γ be a closed rectifiable curve in \mathbb{C} . Then $n(\gamma; a)$ is constant for *a* belonging to a component of $G = \mathbb{C} \setminus {\gamma}$. Also, $n(\gamma; a) = 0$ for *a* belonging to the unbounded component of *G*. **Proof (continued).** But for |a - b| < r/2 and $z \in {\gamma}$, we have $|z - a| \ge r > r/2$ and |z - b| > r/2:

Therefore

$$|f(a) - f(b)| \leq \frac{|a-b|}{2\pi} \int_{\gamma} \frac{|dz|}{|z-a||z-b|} < \frac{\delta}{2\pi} \frac{2}{r} \frac{2}{r} V(\gamma) = \frac{2\delta}{\pi r^2} V(\gamma)$$

since
$$1/|z - a| < r/2$$
 and $1/|z - b| < r/2$.

Theorem IV.4.4 (continued 1)

Theorem IV.4.4. Let γ be a closed rectifiable curve in \mathbb{C} . Then $n(\gamma; a)$ is constant for *a* belonging to a component of $G = \mathbb{C} \setminus {\gamma}$. Also, $n(\gamma; a) = 0$ for *a* belonging to the unbounded component of *G*. **Proof (continued).** But for |a - b| < r/2 and $z \in {\gamma}$, we have $|z - a| \ge r > r/2$ and |z - b| > r/2:

Therefore

$$|f(a)-f(b)| \leq \frac{|a-b|}{2\pi} \int_{\gamma} \frac{|dz|}{|z-a||z-b|} < \frac{\delta}{2\pi} \frac{2}{r} \frac{2}{r} V(\gamma) = \frac{2\delta}{\pi r^2} V(\gamma)$$

since
$$1/|z - a| < r/2$$
 and $1/|z - b| < r/2$.

Theorem IV.4.4 (continued 2)

Theorem IV.4.4. Let γ be a closed rectifiable curve in \mathbb{C} . Then $n(\gamma; a)$ is constant for *a* belonging to a component of $G = \mathbb{C} \setminus {\gamma}$. Also, $n(\gamma; a) = 0$ for *a* belonging to the unbounded component of *G*.

Proof (continued). So if $\varepsilon > 0$ is given, then $\delta = \min\{r/2, \pi r^2 \varepsilon/(2V(\gamma))\}$ implies that $|f(a) - f(b)| < \varepsilon$. Therefore for all $\varepsilon > 0$, there exists $\delta > 0$ such that if $|a - b| < \delta$ then $|f(a) - f(b)| < \varepsilon$. So f is continuous on the components of G. That is, $f(a) = n(\gamma; a)$ is constant on the components of G.

Now let *U* be the unbounded component of *G*. Then there is R > 0 such that $U \supset \{z \mid |z| > R\}$. If $\varepsilon > 0$ choose *a* with |a| > R and $|z - a| > \frac{V(\gamma)}{2\pi\varepsilon}$ for all $z \in \{\gamma\}$. Then $|n(\gamma; a)| = \left|\frac{1}{2\pi i}\int_{\gamma}\frac{1}{z - a}dz\right|$ $\leq \frac{1}{2\pi}V(\gamma)\left(\frac{2\pi\varepsilon}{V(\gamma)}\right) = \varepsilon$. Since ε is arbitrary and $n(\gamma; a)$ is constant for all $a \in G$, then $n(\gamma; a) = 0$ for all $a \in G$.

Theorem IV.4.4 (continued 2)

Theorem IV.4.4. Let γ be a closed rectifiable curve in \mathbb{C} . Then $n(\gamma; a)$ is constant for *a* belonging to a component of $G = \mathbb{C} \setminus {\gamma}$. Also, $n(\gamma; a) = 0$ for *a* belonging to the unbounded component of *G*.

Proof (continued). So if $\varepsilon > 0$ is given, then $\delta = \min\{r/2, \pi r^2 \varepsilon/(2V(\gamma))\}$ implies that $|f(a) - f(b)| < \varepsilon$. Therefore for all $\varepsilon > 0$, there exists $\delta > 0$ such that if $|a - b| < \delta$ then $|f(a) - f(b)| < \varepsilon$. So f is continuous on the components of G. That is, $f(a) = n(\gamma; a)$ is constant on the components of G.

Now let *U* be the unbounded component of *G*. Then there is R > 0 such that $U \supset \{z \mid |z| > R\}$. If $\varepsilon > 0$ choose *a* with |a| > R and $|z - a| > \frac{V(\gamma)}{2\pi\varepsilon}$ for all $z \in \{\gamma\}$. Then $|n(\gamma; a)| = \left|\frac{1}{2\pi i}\int_{\gamma}\frac{1}{z - a}dz\right|$ $\leq \frac{1}{2\pi}V(\gamma)\left(\frac{2\pi\varepsilon}{V(\gamma)}\right) = \varepsilon$. Since ε is arbitrary and $n(\gamma; a)$ is constant for all $a \in G$, then $n(\gamma; a) = 0$ for all $a \in G$.