Complex Analysis

Chapter IV. Complex Integration

IV.4. The Index of a Closed Curve—Proofs of Theorems

Table of contents

(1) Proposition IV.4.1
(2) Theorem IV.4.4

Proposition IV.4.1

Proposition IV.4.1. If $\gamma:[0,1] \rightarrow \mathbb{C}$ is a closed rectifiable curve and $a \notin\{\gamma\}$ then

$$
\frac{1}{2 \pi i} \int_{\gamma} \frac{1}{z-a} d z
$$

is an integer.
Proof. By Lemma IV.1.19, we can approximate γ with a polygon「 and then for any $\varepsilon>0$, we have $\left|\int_{\Gamma} \frac{1}{z-a} d z-\int_{\gamma} \frac{1}{z-a} d z\right|<\varepsilon$. By Proposition IV.1.8, $\int_{\Gamma} \frac{1}{z-a} d z$ can be written as a sum of integrals over the (piecewise smooth) segments of Γ. So, WLOG, we assume γ is smooth.

Proposition IV.4.1

Proposition IV.4.1. If $\gamma:[0,1] \rightarrow \mathbb{C}$ is a closed rectifiable curve and $a \notin\{\gamma\}$ then

$$
\frac{1}{2 \pi i} \int_{\gamma} \frac{1}{z-a} d z
$$

is an integer.
Proof. By Lemma IV.1.19, we can approximate γ with a polygon 「 and then for any $\varepsilon>0$, we have $\left|\int_{\Gamma} \frac{1}{z-a} d z-\int_{\gamma} \frac{1}{z-a} d z\right|<\varepsilon$. By Proposition IV.1.8, $\int_{\Gamma} \frac{1}{z-a} d z$ can be written as a sum of integrals over the (piecewise smooth) segments of Γ. So, WLOG, we assume γ is smooth. Define $g:[0,1] \rightarrow \mathbb{C}$ as $g(t)=\int_{0}^{t} \frac{\gamma^{\prime}(s)}{\gamma(s)-a} d s$. Then $g(0)=0$ and $g(1)=\int_{\gamma} \frac{1}{z-a} d z$.

Proposition IV.4.1

Proposition IV.4.1. If $\gamma:[0,1] \rightarrow \mathbb{C}$ is a closed rectifiable curve and $a \notin\{\gamma\}$ then

$$
\frac{1}{2 \pi i} \int_{\gamma} \frac{1}{z-a} d z
$$

is an integer.
Proof. By Lemma IV.1.19, we can approximate γ with a polygon「 and then for any $\varepsilon>0$, we have $\left|\int_{\Gamma} \frac{1}{z-a} d z-\int_{\gamma} \frac{1}{z-a} d z\right|<\varepsilon$. By
Proposition IV.1.8, $\int_{\Gamma} \frac{1}{z-a} d z$ can be written as a sum of integrals over the (piecewise smooth) segments of Γ. So, WLOG, we assume γ is
smooth. Define $g:[0,1] \rightarrow \mathbb{C}$ as $g(t)=\int_{0}^{t} \frac{\gamma^{\prime}(s)}{\gamma(s)-a} d s$. Then $g(0)=0$ and $g(1)=\int_{\gamma} \frac{1}{z-a} d z$.

Proposition IV.4.1 (continued)

Proposition IV.4.1. If $\gamma:[0,1] \rightarrow \mathbb{C}$ is a closed rectifiable curve and $a \notin\{\gamma\}$ then $\frac{1}{2 \pi i} \int_{\gamma} \frac{1}{z-a} d z$ is an integer.
Proof (continued). Also (by the Fundamental Theorem of Calculus) $g^{\prime}(t)=\frac{\gamma^{\prime}(t)}{\gamma(t)-a}$ for $t \in[0,1]$. But then

$$
\frac{d}{d t}\left[e^{-g(t)}(\gamma(t)-a)\right]=e^{-g(t)}\left[\gamma^{\prime}(t)\right]+\left[-g^{\prime}(t) e^{-g(t)}\right](\gamma(t)-a)
$$

$=e^{-g(t)}\left(\gamma^{\prime}(t)-g^{\prime}(t)(\gamma(t)-a)\right)=e^{-g(t)}\left(\gamma^{\prime}(t)-\frac{\gamma^{\prime}(t)}{\gamma(t)-a}(\gamma(t)-a)\right)=0$.
So $e^{-g(t)}(\gamma(t)-a)$ is constant and
$\gamma(0)-a=e^{-g(0)}(\gamma(0)-a)=e^{-g(1)}(\gamma(1)-a)$. Since γ is closed,
$\gamma(0)=\gamma(1)$ and hence $e^{-g(1)}=e^{-g(0)}=e^{0}=1$, or $g(1)=2 \pi i k$ for
some integer k. That is, $\frac{1}{2 \pi i} \int_{\gamma} \frac{1}{z-a} d z=k \in \mathbb{Z}$.

Proposition IV.4.1 (continued)

Proposition IV.4.1. If $\gamma:[0,1] \rightarrow \mathbb{C}$ is a closed rectifiable curve and $a \notin\{\gamma\}$ then $\frac{1}{2 \pi i} \int_{\gamma} \frac{1}{z-a} d z$ is an integer.
Proof (continued). Also (by the Fundamental Theorem of Calculus) $g^{\prime}(t)=\frac{\gamma^{\prime}(t)}{\gamma(t)-a}$ for $t \in[0,1]$. But then

$$
\frac{d}{d t}\left[e^{-g(t)}(\gamma(t)-a)\right]=e^{-g(t)}\left[\gamma^{\prime}(t)\right]+\left[-g^{\prime}(t) e^{-g(t)}\right](\gamma(t)-a)
$$

$=e^{-g(t)}\left(\gamma^{\prime}(t)-g^{\prime}(t)(\gamma(t)-a)\right)=e^{-g(t)}\left(\gamma^{\prime}(t)-\frac{\gamma^{\prime}(t)}{\gamma(t)-a}(\gamma(t)-a)\right)=0$.
So $e^{-g(t)}(\gamma(t)-a)$ is constant and $\gamma(0)-a=e^{-g(0)}(\gamma(0)-a)=e^{-g(1)}(\gamma(1)-a)$. Since γ is closed, $\gamma(0)=\gamma(1)$ and hence $e^{-g(1)}=e^{-g(0)}=e^{0}=1$, or $g(1)=2 \pi i k$ for some integer k. That is, $\frac{1}{2 \pi i} \int_{\gamma} \frac{1}{z-a} d z=k \in \mathbb{Z}$.

Theorem IV.4.4

Theorem IV.4.4. Let γ be a closed rectifiable curve in \mathbb{C}. Then $n(\gamma ; a)$ is constant for a belonging to a component of $G=\mathbb{C} \backslash\{\gamma\}$. Also, $n(\gamma ; a)=0$ for a belonging to the unbounded component of G.

Proof. Define $f: G \rightarrow \mathbb{C}$ as $f(a)=n(\gamma ; a)$. We show that f is continuous (and so constant on the components of G since $n(\gamma ; a) \in \mathbb{Z}$). Recall that the components of G are open (by Theorem II.2.9).

Theorem IV.4.4

Theorem IV.4.4. Let γ be a closed rectifiable curve in \mathbb{C}. Then $n(\gamma ; a)$ is constant for a belonging to a component of $G=\mathbb{C} \backslash\{\gamma\}$. Also, $n(\gamma ; a)=0$ for a belonging to the unbounded component of G.

Proof. Define $f: G \rightarrow \mathbb{C}$ as $f(a)=n(\gamma ; a)$. We show that f is continuous (and so constant on the components of G since $n(\gamma ; a) \in \mathbb{Z}$). Recall that the components of G are open (by Theorem II.2.9). For fixed $a \in G$, let
$r=d(a ;\{\gamma\})$. If $|a-b|<\delta<r / 2$, then

Theorem IV.4.4

Theorem IV.4.4. Let γ be a closed rectifiable curve in \mathbb{C}. Then $n(\gamma ; a)$ is constant for a belonging to a component of $G=\mathbb{C} \backslash\{\gamma\}$. Also, $n(\gamma ; a)=0$ for a belonging to the unbounded component of G.

Proof. Define $f: G \rightarrow \mathbb{C}$ as $f(a)=n(\gamma ; a)$. We show that f is continuous (and so constant on the components of G since $n(\gamma ; a) \in \mathbb{Z}$). Recall that the components of G are open (by Theorem II.2.9). For fixed $a \in G$, let $r=d(a ;\{\gamma\})$. If $|a-b|<\delta<r / 2$, then

$$
\begin{aligned}
|f(a)-f(b)| & =\frac{1}{2 \pi}\left|\int_{\gamma}\left(\frac{1}{z-a}-\frac{1}{z-b}\right) d z\right| \text { by the definition of } n(\gamma ; a) \\
& =\frac{1}{2 \pi}\left|\int_{\gamma} \frac{a-b}{(z-a)(z-b)} d z\right| \\
& \leq \frac{|a-b|}{2 \pi} \int_{\gamma} \frac{|d z|}{|z-a||z-b|}
\end{aligned}
$$

Theorem IV.4.4 (continued 1)

Theorem IV.4.4. Let γ be a closed rectifiable curve in \mathbb{C}. Then $n(\gamma ; a)$ is constant for a belonging to a component of $G=\mathbb{C} \backslash\{\gamma\}$. Also, $n(\gamma ; a)=0$ for a belonging to the unbounded component of G. Proof (continued). But for $|a-b|<r / 2$ and $z \in\{\gamma\}$, we have $|z-a| \geq r>r / 2$ and $|z-b|>r / 2$:

Therefore

$$
|f(a)-f(b)| \leq \frac{|a-b|}{2 \pi} \int_{\gamma} \frac{|d z|}{|z-a||z-b|}<\frac{\delta}{2 \pi} \frac{2}{r} \frac{2}{r} V(\gamma)=\frac{2 \delta}{\pi r^{2}} V(\gamma)
$$

Theorem IV.4.4 (continued 1)

Theorem IV.4.4. Let γ be a closed rectifiable curve in \mathbb{C}. Then $n(\gamma ; a)$ is constant for a belonging to a component of $G=\mathbb{C} \backslash\{\gamma\}$. Also, $n(\gamma ; a)=0$ for a belonging to the unbounded component of G.
Proof (continued). But for $|a-b|<r / 2$ and $z \in\{\gamma\}$, we have $|z-a| \geq r>r / 2$ and $|z-b|>r / 2$:

Therefore

$$
|f(a)-f(b)| \leq \frac{|a-b|}{2 \pi} \int_{\gamma} \frac{|d z|}{|z-a||z-b|}<\frac{\delta}{2 \pi} \frac{2}{r} \frac{2}{r} V(\gamma)=\frac{2 \delta}{\pi r^{2}} V(\gamma)
$$

since $1 /|z-a|<r / 2$ and $1 /|z-b|<r / 2$.

Theorem IV.4.4 (continued 2)

Theorem IV.4.4. Let γ be a closed rectifiable curve in \mathbb{C}. Then $n(\gamma ; a)$ is constant for a belonging to a component of $G=\mathbb{C} \backslash\{\gamma\}$. Also, $n(\gamma ; a)=0$ for a belonging to the unbounded component of G.

Proof (continued). So if $\varepsilon>0$ is given, then $\delta=\min \left\{r / 2, \pi r^{2} \varepsilon /(2 V(\gamma))\right\}$ implies that $|f(a)-f(b)|<\varepsilon$. Therefore for all $\varepsilon>0$, there exists $\delta>0$ such that if $|a-b|<\delta$ then $|f(a)-f(b)|<\varepsilon$. So f is continuous on the components of G. That is, $f(a)=n(\gamma ; a)$ is constant on the components of G.

Theorem IV.4.4 (continued 2)

Theorem IV.4.4. Let γ be a closed rectifiable curve in \mathbb{C}. Then $n(\gamma ; a)$ is constant for a belonging to a component of $G=\mathbb{C} \backslash\{\gamma\}$. Also, $n(\gamma ; a)=0$ for a belonging to the unbounded component of G.

Proof (continued). So if $\varepsilon>0$ is given, then $\delta=\min \left\{r / 2, \pi r^{2} \varepsilon /(2 V(\gamma))\right\}$ implies that $|f(a)-f(b)|<\varepsilon$. Therefore for all $\varepsilon>0$, there exists $\delta>0$ such that if $|a-b|<\delta$ then $|f(a)-f(b)|<\varepsilon$. So f is continuous on the components of G. That is, $f(a)=n(\gamma ; a)$ is constant on the components of G.

Now let U be the unbounded component of G. Then there is $R>0$ such that $U \supset\{z||z|>R\}$. If $\varepsilon>0$ choose a with $|a|>R$ and
$|z-a|>\frac{V(\gamma)}{2 \pi \varepsilon}$ for all $z \in\{\gamma\}$. Then $|n(\gamma ; a)|=\left|\frac{1}{2 \pi i} \int_{\gamma} \frac{1}{z-a} d z\right|$
$\leq \frac{1}{2 \pi} V(\gamma)\left(\frac{2 \pi \varepsilon}{V(\gamma)}\right)=\varepsilon$. Since ε is arbitrary and $n(\gamma ; a)$ is constant for all $a \in G$, then $n(\gamma ; a)=0$ for all $a \in G$.

