Complex Analysis

Chapter IV. Complex Integration

IV.5. Cauchy's Theorem and Integral Formula—Proofs of Theorems

Table of contents

(1) Lemma IV.5.1
(2) Theorem IV.5.4. Cauchy's Integral Formula (First Version)
(3) Theorem IV.5.8
(4) Exercise IV.5.5
(5) Example
(6) Theorem IV.5.10. Morera's Thereom

Lemma IV.5.1

Lemma IV.5.1. Let γ be a rectifiable curve and $\operatorname{suppose} \varphi$ is a function defined and continuous on $\{\gamma\}$. For each $m \geq 1$ let $F_{m}(z)=\int_{\gamma} \varphi(w)(w-z)^{-m} d w$ for $z \notin\{\gamma\}$. Then each F_{m} is analytic on $\mathbb{C} \backslash\{\gamma\}$ and $F_{m}^{\prime}(z)=m F_{m+1}(z)$.

Proof. Fix $a \notin\{\gamma\}$ and let $r=d(a,\{\gamma\})$. If $b \in \mathbb{C}$ satisfies $|a-b|<\delta<r / 2$, then

$$
F_{m}(a)-F_{m}(b)=\int_{\gamma} \frac{\varphi(w)}{(w-a)^{m}} d w-\int_{\gamma} \frac{\varphi(w)}{(w-b)^{m}} d w
$$

by algebra

Lemma IV.5.1

Lemma IV.5.1. Let γ be a rectifiable curve and suppose φ is a function defined and continuous on $\{\gamma\}$. For each $m \geq 1$ let $F_{m}(z)=\int_{\gamma} \varphi(w)(w-z)^{-m} d w$ for $z \notin\{\gamma\}$. Then each F_{m} is analytic on $\mathbb{C} \backslash\{\gamma\}$ and $F_{m}^{\prime}(z)=m F_{m+1}(z)$.

Proof. Fix $a \notin\{\gamma\}$ and let $r=d(a,\{\gamma\})$. If $b \in \mathbb{C}$ satisfies $|a-b|<\delta<r / 2$, then

$$
\begin{aligned}
& F_{m}(a)-F_{m}(b)=\int_{\gamma} \frac{\varphi(w)}{(w-a)^{m}} d w-\int_{\gamma} \frac{\varphi(w)}{(w-b)^{m}} d w \\
&= \int_{\gamma} \varphi(w)\left[\frac{1}{(w-a)^{m}}-\frac{1}{(w-b)^{m}}\right] d w \\
&= \int_{\gamma} \varphi(w)\left(\frac{1}{w-a}-\frac{1}{w-b}\right)\left[\sum_{k=1}^{m} \frac{1}{(w-a)^{k-1}} \frac{1}{(w-b)^{m-k}}\right] d w \\
& \text { by algebra }
\end{aligned}
$$

Lemma IV.5.1 (continued 1)

Proof (continued).

$$
\begin{align*}
&=\int_{\gamma} \varphi(w) \frac{(a-b)}{(w-a)(w-b)}\left[\sum_{k=1}^{m} \frac{1}{(w-a)^{k-1}(w-b)^{m-k}}\right] d w \\
&=\int_{\gamma} \varphi(w)(a-b) {\left[\sum_{k=1}^{m} \frac{1}{(w-a)^{k}(w-b)^{m-k+1}}\right] d w } \\
&=\int_{\gamma} \varphi(w)(a-b) {\left[\frac{1}{(w-a)(w-b)^{m}}+\frac{1}{(w-a)^{2}(w-b)^{m-1}}\right.} \\
&\left.+\cdots+\frac{1}{(w-a)^{m}(w-b)}\right] d w . \tag{5.2}
\end{align*}
$$

(We now mimic the proof of Theorem IV.4.4.) But for $|a-b|<r / 2$ and $w \in\{\gamma\}$ we have that $|w-a| \geq r>r / 2$ and $|w-b| \geq r>r / 2$.

Lemma IV.5.1 (continued 1)

Proof (continued).

$$
\begin{align*}
&=\int_{\gamma} \varphi(w) \frac{(a-b)}{(w-a)(w-b)}\left[\sum_{k=1}^{m} \frac{1}{(w-a)^{k-1}(w-b)^{m-k}}\right] d w \\
&=\int_{\gamma} \varphi(w)(a-b) {\left[\sum_{k=1}^{m} \frac{1}{(w-a)^{k}(w-b)^{m-k+1}}\right] d w } \\
&=\int_{\gamma} \varphi(w)(a-b) {\left[\frac{1}{(w-a)(w-b)^{m}}+\frac{1}{(w-a)^{2}(w-b)^{m-1}}\right.} \\
&\left.+\cdots+\frac{1}{(w-a)^{m}(w-b)}\right] d w . \tag{5.2}
\end{align*}
$$

(We now mimic the proof of Theorem IV.4.4.) But for $|a-b|<r / 2$ and $w \in\{\gamma\}$ we have that $|w-a| \geq r>r / 2$ and $|w-b| \geq r>r / 2$.

Lemma IV.5.1 (continued 2)

Proof (continued). It follows that

$$
\begin{aligned}
\left|F_{m}(a)-F_{m}(b)\right| & \leq|a-b| \max _{w \in\{\gamma\}}|\varphi(w)| \frac{m}{(r / 2)^{m+1}} V(\gamma) \\
& <\delta \max _{w \in\{\gamma\}}|\varphi(w)| \frac{m}{(r / 2)^{m+1}} V(\gamma) .
\end{aligned}
$$

So if $\varepsilon>0$ is given, then by choosing $\delta>0$ to be smaller than $r / 2$ and $(r / 2)^{m+1} \varepsilon$ $\frac{\max _{w \in\{\gamma\}}|\varphi(w)| m V(\gamma)}{}$, we see that F_{m} is continuous.

Fix $a \in \mathbb{C} \backslash\{\gamma\}=G$ and $z \in G, z \neq a$. From (5.2) (with $b=z$) we have

Lemma IV.5.1 (continued 2)

Proof (continued). It follows that

$$
\begin{aligned}
\left|F_{m}(a)-F_{m}(b)\right| & \leq|a-b| \max _{w \in\{\gamma\}}|\varphi(w)| \frac{m}{(r / 2)^{m+1}} V(\gamma) \\
& <\delta \max _{w \in\{\gamma\}}|\varphi(w)| \frac{m}{(r / 2)^{m+1}} V(\gamma) .
\end{aligned}
$$

So if $\varepsilon>0$ is given, then by choosing $\delta>0$ to be smaller than $r / 2$ and $(r / 2)^{m+1} \varepsilon$ $\overline{\max _{w \in\{\gamma\}}|\varphi(w)| m V(\gamma)}$, we see that F_{m} is continuous.

Fix $a \in \mathbb{C} \backslash\{\gamma\}=G$ and $z \in G, z \neq a$. From (5.2) (with $b=z$) we have

$$
\begin{gathered}
\frac{F_{m}(a)-F_{m}(z)}{a-z}=\int_{\gamma} \frac{\varphi(w)}{(w-a)(w-z)^{m}} d w+\int_{\gamma} \frac{\varphi(w)}{(w-a)^{2}(w-z)^{m-1}} \\
+\cdots+\int_{\gamma} \frac{\varphi(w)}{(w-a)^{m}(w-z)} d w .
\end{gathered}
$$

Lemma IV.5.1 (continued 3)

Lemma IV.5.1. Let γ be a rectifiable curve and suppose ϕ is a function defined and continuous on $\{\gamma\}$. For each $m \geq 1$ let $F_{m}(z)=\int_{\gamma} \phi(w)(w-z)^{-m} d w$ for $z \notin\{\gamma\}$. Then each F_{m} is analytic on $\mathbb{C} \backslash\{\gamma\}$ and $F_{m}^{\prime}(z)=m F_{m+1}(z)$.

Proof (continued). By the first part of the proof, each integral on the right hand side is a continuous function of z (z has replaced b in the new notation; to apply the continuity from above, we can let $\varphi(w)$ absorb the power of $w-a$ so that each integral is in the form addressed above) for $z \in G=\mathbb{C} \backslash\{\gamma\}$. So with $z \rightarrow a$ we have

$$
F_{m}^{\prime}(a)=m \int_{\gamma} \frac{\varphi(w)}{(w-a)^{m+1}} d w=m F_{m+1}(a) .
$$

Since $a \notin\{\gamma\}$ is arbitrary, the result follows.

Theorem IV.5.4

Theorem IV.5.4. Cauchy's Integral Formula (First Version).
Let G be an open subset of the plane and $f: G \rightarrow \mathbb{C}$ an analytic function.
If γ is a closed rectifiable curve in G such that $n(\gamma ; w)=0$ for all $w \in \mathbb{C} \backslash G$, then for $a \in G \backslash\{\gamma\}$

$$
n(\gamma ; a) f(a)=\frac{1}{2 \pi i} \int_{\gamma} \frac{f(z)}{z-a} d z
$$

Proof. Define $\varphi: G \times G \rightarrow \mathbb{C}$ by $\varphi(z, w)=\frac{f(z)-f(w)}{z-w}$ if $z \neq w$ and $\varphi(z, z)=f^{\prime}(z)$. Then φ is continuous and for each $w \in G, z \rightarrow \varphi(z, w)$ is analytic (by Exercise IV.5.1).

Theorem IV.5.4

Theorem IV.5.4. Cauchy's Integral Formula (First Version).

Let G be an open subset of the plane and $f: G \rightarrow \mathbb{C}$ an analytic function. If γ is a closed rectifiable curve in G such that $n(\gamma ; w)=0$ for all $w \in \mathbb{C} \backslash G$, then for $a \in G \backslash\{\gamma\}$

$$
n(\gamma ; a) f(a)=\frac{1}{2 \pi i} \int_{\gamma} \frac{f(z)}{z-a} d z
$$

Proof. Define $\varphi: G \times G \rightarrow \mathbb{C}$ by $\varphi(z, w)=\frac{f(z)-f(w)}{z-w}$ if $z \neq w$ and $\varphi(z, z)=f^{\prime}(z)$. Then φ is continuous and for each $w \in G, z \rightarrow \varphi(z, w)$ is analytic (by Exercise IV.5.1). Let $H=\{w \in \mathbb{C} \mid n(\gamma ; w)=0\}$. Since $n(\gamma ; w)$ is continuous and integer-valued on components of $G \backslash\{\gamma\}$ (by Theorem IV.4.4), H is open. Moreover, $H \cup G=\mathbb{C}$ since $n(\gamma ; w)=0$ for all $w \in \mathbb{C} \backslash G$.

Theorem IV.5.4

Theorem IV.5.4. Cauchy's Integral Formula (First Version).

Let G be an open subset of the plane and $f: G \rightarrow \mathbb{C}$ an analytic function. If γ is a closed rectifiable curve in G such that $n(\gamma ; w)=0$ for all $w \in \mathbb{C} \backslash G$, then for $a \in G \backslash\{\gamma\}$

$$
n(\gamma ; a) f(a)=\frac{1}{2 \pi i} \int_{\gamma} \frac{f(z)}{z-a} d z
$$

Proof. Define $\varphi: G \times G \rightarrow \mathbb{C}$ by $\varphi(z, w)=\frac{f(z)-f(w)}{z-w}$ if $z \neq w$ and $\varphi(z, z)=f^{\prime}(z)$. Then φ is continuous and for each $w \in G, z \rightarrow \varphi(z, w)$ is analytic (by Exercise IV.5.1). Let $H=\{w \in \mathbb{C} \mid n(\gamma ; w)=0\}$. Since $n(\gamma ; w)$ is continuous and integer-valued on components of $G \backslash\{\gamma\}$ (by Theorem IV.4.4), H is open. Moreover, $H \cup G=\mathbb{C}$ since $n(\gamma ; w)=0$ for all $w \in \mathbb{C} \backslash G$.

Theorem IV.5.4 (continued 1)

Proof (continued). Define $g: \mathbb{C} \rightarrow \mathbb{C}$ as $g(z)=\int_{\gamma} \varphi(z, w) d w$ if $z \in G$ and $g(z)=\int_{\gamma} \frac{f(w)}{w-z} d w$ if $z \in H$. We need to make sure this piecewise definition is consistent for $z \in G \cap H$. If $z \in G \cap H$ then

$$
\begin{aligned}
\int_{\gamma} \varphi(z, w) d w & =\int_{\gamma} \frac{f(w)-f(z)}{w-z} d w \\
& =\int_{\gamma} \frac{f(w)}{w-z} d w-f(z) \int_{\gamma} \frac{1}{w-z} d w \\
& =\int_{\gamma} \frac{f(w)}{w-z} d w-f(z) n(\gamma ; z) \times 2 \pi i \\
& =\int_{\gamma} \frac{f(w)}{w-z} d w \text { since } n(\gamma ; z)=0 \text { and } z \in H .
\end{aligned}
$$

Hence, G is well-defined.

Theorem IV.5.4 (continued 1)

Proof (continued). Define $g: \mathbb{C} \rightarrow \mathbb{C}$ as $g(z)=\int_{\gamma} \varphi(z, w) d w$ if $z \in G$ and $g(z)=\int_{\gamma} \frac{f(w)}{w-z} d w$ if $z \in H$. We need to make sure this piecewise definition is consistent for $z \in G \cap H$. If $z \in G \cap H$ then

$$
\begin{aligned}
\int_{\gamma} \varphi(z, w) d w & =\int_{\gamma} \frac{f(w)-f(z)}{w-z} d w \\
& =\int_{\gamma} \frac{f(w)}{w-z} d w-f(z) \int_{\gamma} \frac{1}{w-z} d w \\
& =\int_{\gamma} \frac{f(w)}{w-z} d w-f(z) n(\gamma ; z) \times 2 \pi i \\
& =\int_{\gamma} \frac{f(w)}{w-z} d w \text { since } n(\gamma ; z)=0 \text { and } z \in H .
\end{aligned}
$$

Hence, G is well-defined.

Theorem IV.5.4 (continued 2)

Proof (continued). For $z \in G, g(z)$ is analytic by Lemma IV.5.1 with $m=1$ and numerator $f(z)-f(w)$. For $z \in H, g(z)$ is analytic by Lemma IV.5.1 with $m=1$ and numerator $f(w)$. So g is an entire function. By Theorem IV.4.4, H contains a neighborhood of ∞ in \mathbb{C}_{∞}. Since f is bounded on $\{\gamma\}$ and $\lim _{z \rightarrow \infty} 1 /(w-z)=0$ uniformly for $w \in\{\gamma\}$ (both follow since $\{\gamma\}$ is compact), we have

$$
\begin{aligned}
\lim _{z \rightarrow \infty} g(z) & =\lim _{z \rightarrow \infty} \int_{\gamma} \frac{f(w)}{w-z} d w \text { since for } z \text { sufficiently large, } z \in H \\
& =\int_{\gamma}\left(\lim _{z \rightarrow \infty} \frac{f(w)}{w-z}\right) d w \text { by the uniform convergence } \\
& =\int_{\gamma} f(w) \lim _{z \rightarrow \infty} \frac{1}{w-z} d w \\
& =0 \text { since } f(w) \text { is bounded on } \gamma .
\end{aligned}
$$

Theorem IV.5.4 (continued 2)

Proof (continued). For $z \in G, g(z)$ is analytic by Lemma IV.5.1 with $m=1$ and numerator $f(z)-f(w)$. For $z \in H, g(z)$ is analytic by Lemma IV.5.1 with $m=1$ and numerator $f(w)$. So g is an entire function. By Theorem IV.4.4, H contains a neighborhood of ∞ in \mathbb{C}_{∞}. Since f is bounded on $\{\gamma\}$ and $\lim _{z \rightarrow \infty} 1 /(w-z)=0$ uniformly for $w \in\{\gamma\}$ (both follow since $\{\gamma\}$ is compact), we have

$$
\begin{aligned}
\lim _{z \rightarrow \infty} g(z) & =\lim _{z \rightarrow \infty} \int_{\gamma} \frac{f(w)}{w-z} d w \text { since for } z \text { sufficiently large, } z \in H \\
& =\int_{\gamma}\left(\lim _{z \rightarrow \infty} \frac{f(w)}{w-z}\right) d w \text { by the uniform convergence } \\
& =\int_{\gamma} f(w) \lim _{z \rightarrow \infty} \frac{1}{w-z} d w \\
& =0 \text { since } f(w) \text { is bounded on } \gamma .
\end{aligned}
$$

Theorem IV.5.4 (continued 3)

Proof (continued). So there exists $R>0$ such that $|g(z)| \leq 1$ for $|z| \geq R$ (i.e., $z \in \mathbb{C} \backslash B(0 ; R)$). However, g is bounded on $\bar{B}(0 ; R)$ (since g is continuous and $\bar{B}(0 ; R)$ is compact). But then, g is a bounded entire function. So by Liouville's Theorem, g is constant. In fact, $g \equiv 0$ since $\lim _{z \rightarrow \infty} g(z)=0$. So for $a \in G$

$$
\begin{aligned}
0 & =g(a)=\int_{\gamma} \frac{f(z)-f(a)}{z-a} d z \text { since } a \in G(w \text { replaced with } a) \\
& =\int_{\gamma} \frac{f(z)}{z-a} d z-f(a) \int_{\gamma} \frac{1}{z-a} d z \\
& =\int_{\gamma} \frac{f(z)}{z-a} d z-f(a) n(\gamma ; a) 2 \pi i .
\end{aligned}
$$

So,

$$
n(\gamma ; a) f(a)=\frac{1}{2 \pi i} \int_{\gamma} \frac{f(z)}{z-a} d z .
$$

Theorem IV.5.4 (continued 3)

Proof (continued). So there exists $R>0$ such that $|g(z)| \leq 1$ for $|z| \geq R$ (i.e., $z \in \mathbb{C} \backslash B(0 ; R)$). However, g is bounded on $\bar{B}(0 ; R)$ (since g is continuous and $\bar{B}(0 ; R)$ is compact). But then, g is a bounded entire function. So by Liouville's Theorem, g is constant. In fact, $g \equiv 0$ since $\lim _{z \rightarrow \infty} g(z)=0$. So for $a \in G \backslash\{\gamma\}$,

$$
\begin{aligned}
0 & =g(a)=\int_{\gamma} \frac{f(z)-f(a)}{z-a} d z \text { since } a \in G(w \text { replaced with } a) \\
& =\int_{\gamma} \frac{f(z)}{z-a} d z-f(a) \int_{\gamma} \frac{1}{z-a} d z \\
& =\int_{\gamma} \frac{f(z)}{z-a} d z-f(a) n(\gamma ; a) 2 \pi i
\end{aligned}
$$

So,

$$
n(\gamma ; a) f(a)=\frac{1}{2 \pi i} \int_{\gamma} \frac{f(z)}{z-a} d z
$$

Theorem IV.5.8

Theorem IV.5.8. Let G be an open set and $f: G \rightarrow \mathbb{C}$ analytic. If $\gamma_{1}, \gamma_{2}, \ldots, \gamma_{m}$ are closed rectifiable curves in G such that $n\left(\gamma_{1} ; w\right)+n\left(\gamma_{2} ; w\right)+\cdots+n\left(\gamma_{m} ; w\right)=0$ for all $w \in \mathbb{C} \backslash G$ then for $a \in G \backslash\{\gamma\}$ and $k \geq 1$,

$$
f^{(k)}(a) \sum_{j=1}^{m} n\left(\gamma_{j} ; a\right)=k!\sum_{j=1}^{m}\left(\frac{1}{2 \pi i} \int_{\gamma_{j}} \frac{f(z)}{(z-a)^{k+1}} d z\right) .
$$

Proof. Differentiate k times the conclusion of Theorem IV.5.6 with respect to a:

Since $\sum_{j=1}^{m} n\left(\gamma_{j} ; a\right)$ is constant and by repeated application of IV.5.1, the claim follows.

Theorem IV.5.8

Theorem IV.5.8. Let G be an open set and $f: G \rightarrow \mathbb{C}$ analytic. If $\gamma_{1}, \gamma_{2}, \ldots, \gamma_{m}$ are closed rectifiable curves in G such that $n\left(\gamma_{1} ; w\right)+n\left(\gamma_{2} ; w\right)+\cdots+n\left(\gamma_{m} ; w\right)=0$ for all $w \in \mathbb{C} \backslash G$ then for $a \in G \backslash\{\gamma\}$ and $k \geq 1$,

$$
f^{(k)}(a) \sum_{j=1}^{m} n\left(\gamma_{j} ; a\right)=k!\sum_{j=1}^{m}\left(\frac{1}{2 \pi i} \int_{\gamma_{j}} \frac{f(z)}{(z-a)^{k+1}} d z\right) .
$$

Proof. Differentiate k times the conclusion of Theorem IV.5.6 with respect to a:

$$
\frac{d^{k}}{d a^{k}}\left[f(a) \sum_{j=1}^{m} n\left(\gamma_{j} ; a\right)\right]=\frac{d^{k}}{d a^{k}}\left[\frac{1}{2 \pi i} \int_{\gamma} \frac{f(z)}{(z-a)} d z\right] .
$$

Since $\sum_{j=1}^{m} n\left(\gamma_{j} ; a\right)$ is constant and by repeated application of IV.5.1, the claim follows.

Exercise IV.5.5

Exercise IV.5.5. Let γ be a closed rectifiable curve in \mathbb{C} and $\boldsymbol{a} \notin\{\gamma\}$. Show that for $n \geq 2, \int_{\gamma}(z-a)^{-n} d z=0$.

Solution. Define $f(z) \equiv 1$ and $k=n-1$. Applying Theorem IV.5.8 (with $m=1$) gives

$$
f^{(n-1)}(a) n(\gamma ; a)=(n-1)!\frac{1}{2 \pi i} \int_{\gamma} \frac{f(z)}{(z-a)^{n}} d z,
$$

or $0=\int_{\gamma} \frac{f(z)}{(z-a)^{n}} d z\left(\right.$ since $\left.f^{(n-1)}(a)=0\right)$.

Exercise IV.5.5

Exercise IV.5.5. Let γ be a closed rectifiable curve in \mathbb{C} and $\boldsymbol{a} \notin\{\gamma\}$. Show that for $n \geq 2, \int_{\gamma}(z-a)^{-n} d z=0$.

Solution. Define $f(z) \equiv 1$ and $k=n-1$. Applying Theorem IV.5.8 (with $m=1$) gives

$$
f^{(n-1)}(a) n(\gamma ; a)=(n-1)!\frac{1}{2 \pi i} \int_{\gamma} \frac{f(z)}{(z-a)^{n}} d z
$$

or $0=\int_{\gamma} \frac{f(z)}{(z-a)^{n}} d z\left(\right.$ since $\left.f^{(n-1)}(a)=0\right)$.

Example

Example. Compute $\int_{|z|=1} e^{z} z^{-n} d z$. (This is from page 123 of Lars Ahlfors Complex Analysis).

Solution. Here, we take $f(z)=e^{z}, a=0, k=n-1$, and $\gamma(t)=e^{i t}$, $t \in[0,2 \pi]$. Then by Corollary IV.5.9,
$f^{(k)}(a) n(\gamma ; a)=\frac{k!}{2 \pi i} \int_{\gamma} \frac{f(z)}{(z-a)^{k+1}} d z$ implies
$f^{(n-1)}(0) n(\gamma ; 0)=\frac{(n-1)!}{2 \pi i} \int_{\gamma} \frac{f(z)}{(z-0)^{n}} d z$ or
$\left(e^{0}\right)(1)=\frac{(n-1)!}{2 \pi i} \int_{\gamma} \frac{e^{z}}{z^{n}} d z$. So $\int_{\gamma} e^{z} z^{-n} d z=\frac{2 \pi i}{(n-1)!}$.

Example

Example. Compute $\int_{|z|=1} e^{z} z^{-n} d z$. (This is from page 123 of Lars Ahlfors Complex Analysis).

Solution. Here, we take $f(z)=e^{z}, a=0, k=n-1$, and $\gamma(t)=e^{i t}$, $t \in[0,2 \pi]$. Then by Corollary IV.5.9, $f^{(k)}(a) n(\gamma ; a)=\frac{k!}{2 \pi i} \int_{\gamma} \frac{f(z)}{(z-a)^{k+1}} d z$ implies
$f^{(n-1)}(0) n(\gamma ; 0)=\frac{(n-1)!}{2 \pi i} \int_{\gamma} \frac{f(z)}{(z-0)^{n}} d z$ or
$\left(e^{0}\right)(1)=\frac{(n-1)!}{2 \pi i} \int_{\gamma} \frac{e^{z}}{z^{n}} d z$. So $\int_{\gamma} e^{z} z^{-n} d z=\frac{2 \pi i}{(n-1)!}$.

Theorem IV.5.10

Theorem IV.5.10. Morera's Theorem.

Let G be a region and let $f: G \rightarrow \mathbb{C}$ be a continuous function such that $\int_{T} f=0$ for every closed triangular path T in G (i.e., T is a closed polygon with 3 sides); then f is analytic in G.

Proof. Without loss of generality, we assume $G=B(a ; R)$ (otherwise, we can write G as a union of disks). We show that f has a primitive F and then we know F is analytic and hence so is $F^{\prime}=f$. For $z \in G$, define $F(z)=\int_{[a, z]} f(z) d z$. Fix $z_{0} \in G$. Then for any $z \in G$, by hypothesis (since a, z, and z_{0} form a triangle in G),

$$
F(z)=\int_{[a, z]} f(z) d z=\int_{\left[a, z_{0}\right]} f(z) d z+\int_{\left[z_{0}, z\right]} f(z) d z
$$

Hence,

$$
\frac{F(z)-F\left(z_{0}\right)}{z-z_{0}}=\frac{1}{z-z_{0}} \int_{\left[z_{0}, z\right]} f(z) d z
$$

Theorem IV.5.10

Theorem IV.5.10. Morera's Theorem.

Let G be a region and let $f: G \rightarrow \mathbb{C}$ be a continuous function such that $\int_{T} f=0$ for every closed triangular path T in G (i.e., T is a closed polygon with 3 sides); then f is analytic in G.

Proof. Without loss of generality, we assume $G=B(a ; R)$ (otherwise, we can write G as a union of disks). We show that f has a primitive F and then we know F is analytic and hence so is $F^{\prime}=f$. For $z \in G$, define $F(z)=\int_{[a, z]} f(z) d z$. Fix $z_{0} \in G$. Then for any $z \in G$, by hypothesis (since a, z, and z_{0} form a triangle in G),

$$
F(z)=\int_{[a, z]} f(z) d z=\int_{\left[a, z_{0}\right]} f(z) d z+\int_{\left[z_{0}, z\right]} f(z) d z
$$

Hence,

$$
\frac{F(z)-F\left(z_{0}\right)}{z-z_{0}}=\frac{1}{z-z_{0}} \int_{\left[z_{0}, z\right]} f(z) d z
$$

Theorem IV.5.10 (continued 1)

Proof (continued). This gives

$$
\begin{aligned}
\frac{F(z)-F\left(z_{0}\right)}{z-z_{0}}-f\left(z_{0}\right) & =\frac{1}{z-z_{0}} \int_{\left[z_{0}, z\right]}\left(f(z)-f\left(z_{0}\right)\right) d z \\
& =\frac{1}{z-z_{0}} \int_{\left[z_{0}, z\right]}\left(f(w)-f\left(z_{0}\right)\right) d w .
\end{aligned}
$$

So

$$
\begin{aligned}
\left|\frac{F(z)-F\left(z_{0}\right)}{z-z_{0}}-f\left(z_{0}\right)\right| & =\left|\frac{1}{z-z_{0}} \int_{\left[z_{0}, z\right]}\left(f(w)-f\left(z_{0}\right)\right) d w\right| \\
& \leq \frac{1}{\left|z-z_{0}\right|} \int_{\left[z_{0}, z\right]}\left|f(w)-f\left(z_{0}\right)\right||d w| \\
& \leq \frac{\left|z-z_{0}\right|}{\left|z-z_{0}\right|} \sup \left\{\left|f(z)-f\left(z_{0}\right)\right| \mid w \in\left[z, z_{0}\right]\right\} \\
& =\sup \left\{\left|f(w)-f\left(z_{0}\right)\right| \mid w \in\left[z, z_{0}\right]\right\} .
\end{aligned}
$$

Theorem IV.5.10 (continued 2)

Theorem IV.5.10. Morera's Theorem.

Let G be a region and let $f: G \rightarrow \mathbb{C}$ be a continuous function such that $\int_{T} f=0$ for every closed triangular path T in G (i.e., T is a closed polygon with 3 sides); then f is analytic in G.

Proof (continued). Since f is continuous,

$$
\lim _{z \rightarrow z_{0}} \frac{F(z)-F\left(z_{0}\right)}{z-z_{0}}=f\left(z_{0}\right)
$$

So F is analytic and hence $f=F^{\prime}$ is analytic.

