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Proposition IV.6.4

Proposition IV.6.4

Proposition IV.6.4. Let G be an open set which is a-star shaped. If γ0 is
the curve which is constantly equal to a (that is, γ0(t) = a for t ∈ [0, 1]),
then every closed rectifiable curve in G is homotopic to γ0.

Proof. Let γ1 be a closed rectifiable curve in G and put
Γ(s, t) = tγ1(s) + (1− t)a. So for each fixed s, Γ(s, t) is the segment
[γ1(s), a]. Since G is a-star shaped, Γ(s, t) ∈ G for all s, t ∈ [0, 1]. Γ
satisfies the required properties of a homotopy “clearly.”
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Theorem IV.6.7. Cauchy’s Theorem (Third Version)

Theorem IV.6.7

Theorem IV.6.7. Cauchy’s Theorem (Third Version).
If γ0 and γ1 are two closed rectifiable curves in G and γ0 ∼ γ1, then∫
γ0

f =
∫
γ1

f for every function f analytic on G .

Proof. Let γ : I 2 → G (where I = [0, 1]) be the homotopy function from
γ0 to γ1. Since Γ is continuous and I 2 is compact, Γ is uniformly
continuous and Γ(I 2) is a compact subset of G . Since C \ G is closed, the
distance from Γ(I 2) to C \ G is positive (by Theorem II.5.17), so
d(Γ(I 2), C \ G ) = r > 0.

So by the uniform continuity of Γ, there is n ∈ N
such that if d((s, t), (s ′, t ′)) < 2/n (or (s − s ′)2 + (t − t ′)2 < 4/n2) then

|Γ(s, t)− Γ(s ′, t ′)| < r . Define Zjk = Γ
(

j
n , k

n

)
for 0 ≤ j ≤ n, 0 ≤ k ≤ n

and put Jjk =
[

j
n , j+1

n

]
×

[
k
n , k+1

n

]
for 0 ≤ j ≤ n − 1, 0 ≤ k ≤ n − 1.
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Theorem IV.6.7. Cauchy’s Theorem (Third Version)

Theorem IV.6.7 (continued 1)

Proof (continued).

Since the diameter of square Jjk is
√

2/n, then all points in Jjk are within√
2/n < 2/n and hence all the images of points in Jjk under Γ are within r

of each other; that is, Γ(Jjk) ⊂ B(Zjk ; r). Let Pjk be the closed
quadrilateral [Zj ,k ,Zj+1,k ,Zj+1,k+1,Zj ,k+1,Zj ,k ]. Because disks are convex,
Pjk ⊂ B(Zjk ; r).
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Theorem IV.6.7. Cauchy’s Theorem (Third Version)

Theorem IV.6.7 (continued 2)

Proof (continued). By Proposition IV.2.15,∫
Pjk

f (z) dz = 0 (6.8)

for any function f analytic in G . Let Qk be the closed polygon
[Z0k ,Z1k , . . . ,Znk ] (a polygon approximation of closed path Γ(s, k/n) for
s ∈ [0, 1]). We will show that∫

γ0

f (z) dz =

∫
Q0

f (z) dz =

∫
Q1

f (z) dz = · · · =
∫

Qn

f (z) dz =

∫
γ1

f (z) dz .

Define σj(t) ∈ γ0(t) for t ∈ [j/n, (j + 1)/n] (so this is just a partition of
γ0).
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Theorem IV.6.7. Cauchy’s Theorem (Third Version)

Theorem IV.6.7 (continued 3)

Proof (continued). Then σj + [Zj+1,0,Zj0], which is σj followed by the

polygon: is a closed rectifiable curve in the disk

B(Zj0; r) ⊂ G (again, uniform continuity of Γ). So∫
σj+[Zj+1,0,Zj0]

f (z) dz = 0, or∫
σj

f (z) dz = −
∫

[Zj+1,0,Zj0]
f (z) dz =

∫
[Zj0,Zj+1,0]

f (z) dz .

Summing both sides for j = 0, 1, . . . , n − 1 yields∫
γ0

f (z) dz =
∫
Q0

f (z) dz . Similarly,
∫
γ1

f (z) dz =
∫
Qn

f (z) dz .
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Theorem IV.6.7. Cauchy’s Theorem (Third Version)

Theorem IV.6.7 (continued 4)

Proof (continued). By (6.8):
∑n−1

j=0

(∫
Pjk

f (z) dz
)

= 0. (6.9)

For j and j + 1 we have:

Notice that the right hand part of Pjk and the left hand part of Pj+1,k lead
to integrals which cancel each other out.
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Theorem IV.6.7. Cauchy’s Theorem (Third Version)

Theorem IV.6.7 (continued 5)

Theorem IV.6.7. Cauchy’s Theorem (Third Version).
If γ0 and γ1 are two closed rectifiable curves in G and γ0 ∼ γ1, then∫
γ0

f =
∫
γ1

f for every function f analytic on G .

Proof (continued). Also, Z0k = Γ(0, k/n) = Γ(1, k/n) = Znk (by the
definition of the homotopy) so that [Z0,k+1,Z0k ] = −[Z1k ,Z1,k+1]. So by
(6.9), we see that

∫
Qk

f (z) dz =
∫
Qk+1

f (z) dz . Therefore∫
γ0

f (z) dz =

∫
Q0

f (z) dz =

∫
Q1

f (z) dz = · · · =
∫

Qn

f (z) dz =

∫
γ1

f (z) dz .
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Corollary IV.6.16

Corollary IV.6.16

Corollary IV.6.16. If open G is simply connected and f : G → C is
analytic in G then f has a primitive in G .
Proof. Fix point a ∈ G and let γ1 and γ2 be any two rectifiable curves in
G from a to (variable) point z ∈ G . Since G is open and connected, there
is always a path between any two points in G by Theorem II.2.3; this is
called “path connected”). Then by the Cauchy Theorem (Fourth Version),
0 =

∫
γ1−γ2

f =
∫
γ1

f −
∫
γ2

f , and so
∫
γ1

f =
∫
γ2

f .

So if we define

F (z) =
∫
γ f where γ is any path from a to z , then F is well-defined (i.e.,

independent of γ). Of course, F is a primitive of f . If z0 ∈ G and r > 0 is
such that B(z0; r) ⊂ G (remember, G is open), and then let γ be a path
from a to z0. For z ∈ B(z0; r), let γz = γ + [z0, z ]:
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Corollary IV.6.16

Corollary IV.6.16 (continued 1)

Proof (continued). Then

F (z)− F (z0)

z − z0
=

1

z − z0

(∫
γz

f (z) dz −
∫

γ
f (z) dz

)
=

1

z − z0

∫
γz−γ

f (z) dz =
1

z − z0

∫
[z0,z]

f (z) dz .

Mimicing the proof of Morera’s Theorem, this gives

F (z)− F (z0)

z − z0
− f (z0) =

1

z − z0

∫
[z0,z]

(f (z)− f (z0)) dz

=
1

z − z0

∫
[z0,z]

(f (w)− f (z0)) dw .

So ∣∣∣∣F (z)− F (z0)

z − z0
− f (z0)

∣∣∣∣ =

∣∣∣∣∣ 1

z − z0

∫
[z0,z]

(f (w)− f (z0)) dw

∣∣∣∣∣
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Corollary IV.6.16
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Corollary IV.6.16

Corollary IV.6.16 (continued 2)

Corollary IV.6.16. If open G is simply connected and f : G → C is
analytic in G then f has a primitive in G .

Proof (continued).∣∣∣∣F (z)− F (z0)

z − z0
− f (z0)

∣∣∣∣ =

∣∣∣∣∣ 1

z − z0

∫
[z0,z]

(f (w)− f (z0)) dw

∣∣∣∣∣
≤ 1

|z − z0|

∫
[z0,z]

|f (w)− f (z0)| |dw |

≤ 1

|z − z0|
|z − z0| sup{|f (w)− f (z0)| | w ∈ [z , z0]}

= sup{|f (w)− f (z0)| | w ∈ [z , z0]}.

Since f is continuous, lim
z→z0

F (z)− F (z0)

z − z0
= f (z0). That is, F ′ = f and f

has a primitive.
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Corollary IV.6.17

Corollary IV.6.17

Corollary IV.6.17. Let G be simply connected and let f : G → C be an
analytic function such that f (z) 6= 0 for any z ∈ G . Then there is an
analytic function g : G → C such that f (z) = exp(g(z)) (i.e., g is a
branch of log(f (z)) on G ). If z0 ∈ G and ew0 = f (z0), we may choose g
such that g(z0) = w0.

Proof. Since f (z) 6= 0 for z ∈ G , then f ′/f is analytic on G . So by
Corollary 6.16, f ′/f has a primitive g1. If h(z) = exp(g1(z)) then h is
analytic and never 0. So f /h is analytic with derivative

f ′(z)h(z)− f (z)h′(z)

(h(z))2
.

Next, h′(z) = exp(g1(z))[g ′1(z)] = g ′1(z)h(z) and so

f ′(z)h(z)− f (z)h′(z) = f ′(z)h(z)− f (z)g ′1(z)h(z)

= f ′(z)h(z)− f (z)(f ′(z)/f (z))h(z) ≡ 0.
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Corollary IV.6.17

Corollary IV.6.17 (continued)

Corollary IV.6.17. Let G be simply connected and let f : G → C be an
analytic function such that f (z) 6= 0 for any z ∈ G . Then there is an
analytic function g : G → C such that f (z) = exp(g(z)) (i.e., g is a
branch of log(f (z)) on G ). If z0 ∈ G and ew0 = f (z0), we may choose g
such that g(z0) = w0.

Proof (continued). So
d

dz

[
f (z)

h(z)

]
= 0 and

f (z)

h(z)
is constant on G . That

is, f (z)/h(z) = c or f (z) = ch(z) = c exp(g1(z)) for some constant c and
for c ′ where c = exp(c ′), f (z) = exp(g1(z) + c ′). So g(z) = g1(z) + c ′ is
a branch of log f (z) on G .

If z0 ∈ G and ew0 = f (z0) then
w0 = log∗(f (z0)) for some branch of log(f (z)) on G . Since g(z) is a
branch of log(f (z)) on G then by Proposition III.2.19 there is k ∈ Z such
that log∗(f (z)) = g(z) + 2πik and we may choose this as g to get
g(z0) = log∗(f (z0)) = w0.
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Corollary IV.6.17 (continued)
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a branch of log f (z) on G . If z0 ∈ G and ew0 = f (z0) then
w0 = log∗(f (z0)) for some branch of log(f (z)) on G . Since g(z) is a
branch of log(f (z)) on G then by Proposition III.2.19 there is k ∈ Z such
that log∗(f (z)) = g(z) + 2πik and we may choose this as g to get
g(z0) = log∗(f (z0)) = w0.
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Corollary IV.6.17

Corollary IV.6.17 (continued)

Corollary IV.6.17. Let G be simply connected and let f : G → C be an
analytic function such that f (z) 6= 0 for any z ∈ G . Then there is an
analytic function g : G → C such that f (z) = exp(g(z)) (i.e., g is a
branch of log(f (z)) on G ). If z0 ∈ G and ew0 = f (z0), we may choose g
such that g(z0) = w0.

Proof (continued). So
d

dz

[
f (z)

h(z)

]
= 0 and

f (z)

h(z)
is constant on G . That

is, f (z)/h(z) = c or f (z) = ch(z) = c exp(g1(z)) for some constant c and
for c ′ where c = exp(c ′), f (z) = exp(g1(z) + c ′). So g(z) = g1(z) + c ′ is
a branch of log f (z) on G . If z0 ∈ G and ew0 = f (z0) then
w0 = log∗(f (z0)) for some branch of log(f (z)) on G . Since g(z) is a
branch of log(f (z)) on G then by Proposition III.2.19 there is k ∈ Z such
that log∗(f (z)) = g(z) + 2πik and we may choose this as g to get
g(z0) = log∗(f (z0)) = w0.
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