Complex Analysis

Chapter IV. Complex Integration

IV.6. The Homotopic Version of Cauchy's Theorem and Simple Connectivity—Proofs of Theorems

Table of contents

(1) Proposition IV.6.4
(2) Theorem IV.6.7. Cauchy's Theorem (Third Version)
(3) Corollary IV.6.16
(4) Corollary IV.6.17

Proposition IV.6.4

Proposition IV.6.4. Let G be an open set which is a-star shaped. If γ_{0} is the curve which is constantly equal to a (that is, $\gamma_{0}(t)=a$ for $t \in[0,1]$), then every closed rectifiable curve in G is homotopic to γ_{0}.

Proof. Let γ_{1} be a closed rectifiable curve in G and put $\Gamma(s, t)=t \gamma_{1}(s)+(1-t)$ a. So for each fixed $s, \Gamma(s, t)$ is the segment $\left[\gamma_{1}(s), a\right]$. Since G is a-star shaped, $\Gamma(s, t) \in G$ for all $s, t \in[0,1]$. Г satisfies the required properties of a homotopy "clearly.'

Proposition IV.6.4

Proposition IV.6.4. Let G be an open set which is a-star shaped. If γ_{0} is the curve which is constantly equal to a (that is, $\gamma_{0}(t)=a$ for $t \in[0,1]$), then every closed rectifiable curve in G is homotopic to γ_{0}.

Proof. Let γ_{1} be a closed rectifiable curve in G and put $\Gamma(s, t)=t \gamma_{1}(s)+(1-t) a$. So for each fixed $s, \Gamma(s, t)$ is the segment $\left[\gamma_{1}(s), a\right]$. Since G is a-star shaped, $\Gamma(s, t) \in G$ for all $s, t \in[0,1]$. Г satisfies the required properties of a homotopy "clearly."

Theorem IV.6.7

Theorem IV.6.7. Cauchy's Theorem (Third Version). If γ_{0} and γ_{1} are two closed rectifiable curves in G and $\gamma_{0} \sim \gamma_{1}$, then $\int_{\gamma_{0}} f=\int_{\gamma_{1}} f$ for every function f analytic on G.

Proof. Let $\gamma: I^{2} \rightarrow G$ (where $\left.I=[0,1]\right)$ be the homotopy function from γ_{0} to γ_{1}. Since Γ is continuous and I^{2} is compact, Γ is uniformly continuous and $\Gamma\left(I^{2}\right)$ is a compact subset of G. Since $\mathbb{C} \backslash G$ is closed, the distance from $\Gamma\left(I^{2}\right)$ to $\mathbb{C} \backslash G$ is positive (by Theorem II.5.17), so $d\left(\Gamma\left(I^{2}\right), \mathbb{C} \backslash G\right)=r>0$.

Theorem IV.6.7

Theorem IV.6.7. Cauchy's Theorem (Third Version).

If γ_{0} and γ_{1} are two closed rectifiable curves in G and $\gamma_{0} \sim \gamma_{1}$, then $\int_{\gamma_{0}} f=\int_{\gamma_{1}} f$ for every function f analytic on G.

Proof. Let $\gamma: I^{2} \rightarrow G$ (where $I=[0,1]$) be the homotopy function from γ_{0} to γ_{1}. Since Γ is continuous and I^{2} is compact, Γ is uniformly continuous and $\Gamma\left(I^{2}\right)$ is a compact subset of G. Since $\mathbb{C} \backslash G$ is closed, the distance from $\Gamma\left(I^{2}\right)$ to $\mathbb{C} \backslash G$ is positive (by Theorem II.5.17), so $d\left(\Gamma\left(I^{2}\right), \mathbb{C} \backslash G\right)=r>0$. So by the uniform continuity of Γ, there is $n \in \mathbb{N}$ such that if $d\left((s, t),\left(s^{\prime}, t^{\prime}\right)\right)<2 / n\left(\right.$ or $\left.\left(s-s^{\prime}\right)^{2}+\left(t-t^{\prime}\right)^{2}<4 / n^{2}\right)$ then $\left|\Gamma(s, t)-\Gamma\left(s^{\prime}, t^{\prime}\right)\right|<r$. Define $Z_{j k}=\Gamma\left(\frac{j}{n}, \frac{k}{n}\right)$ for $0 \leq j \leq n, 0 \leq k \leq n$ and put $J_{j k}=\left[\frac{j}{n}, \frac{j+1}{n}\right] \times\left[\frac{k}{n}, \frac{k+1}{n}\right]$ for $0 \leq j \leq n-1,0 \leq k \leq n-1$.

Theorem IV.6.7

Theorem IV.6.7. Cauchy's Theorem (Third Version).

If γ_{0} and γ_{1} are two closed rectifiable curves in G and $\gamma_{0} \sim \gamma_{1}$, then $\int_{\gamma_{0}} f=\int_{\gamma_{1}} f$ for every function f analytic on G.

Proof. Let $\gamma: I^{2} \rightarrow G$ (where $I=[0,1]$) be the homotopy function from γ_{0} to γ_{1}. Since Γ is continuous and I^{2} is compact, Γ is uniformly continuous and $\Gamma\left(I^{2}\right)$ is a compact subset of G. Since $\mathbb{C} \backslash G$ is closed, the distance from $\Gamma\left(I^{2}\right)$ to $\mathbb{C} \backslash G$ is positive (by Theorem II.5.17), so $d\left(\Gamma\left(I^{2}\right), \mathbb{C} \backslash G\right)=r>0$. So by the uniform continuity of Γ, there is $n \in \mathbb{N}$ such that if $d\left((s, t),\left(s^{\prime}, t^{\prime}\right)\right)<2 / n\left(\right.$ or $\left.\left(s-s^{\prime}\right)^{2}+\left(t-t^{\prime}\right)^{2}<4 / n^{2}\right)$ then $\left|\Gamma(s, t)-\Gamma\left(s^{\prime}, t^{\prime}\right)\right|<r$. Define $Z_{j k}=\Gamma\left(\frac{j}{n}, \frac{k}{n}\right)$ for $0 \leq j \leq n, 0 \leq k \leq n$ and put $J_{j k}=\left[\frac{j}{n}, \frac{j+1}{n}\right] \times\left[\frac{k}{n}, \frac{k+1}{n}\right]$ for $0 \leq j \leq n-1,0 \leq k \leq n-1$.

Theorem IV.6.7 (continued 1)

Proof (continued).

Since the diameter of square $J_{j k}$ is $\sqrt{2} / n$, then all points in $J_{j k}$ are within $\sqrt{2} / n<2 / n$ and hence all the images of points in $J_{j k}$ under Γ are within r of each other; that is, $\Gamma\left(J_{j k}\right) \subset B\left(Z_{j k} ; r\right)$. Let $P_{j k}$ be the closed quadrilateral $\left[Z_{j, k}, Z_{j+1, k}, Z_{j+1, k+1}, Z_{j, k+1}, Z_{j, k}\right]$. Because disks are convex, $P_{j k} \subset B\left(Z_{j k} ; r\right)$.

Theorem IV.6.7 (continued 1)

Proof (continued).

Since the diameter of square $J_{j k}$ is $\sqrt{2} / n$, then all points in $J_{j k}$ are within $\sqrt{2} / n<2 / n$ and hence all the images of points in $J_{j k}$ under Γ are within r of each other; that is, $\Gamma\left(J_{j k}\right) \subset B\left(Z_{j k} ; r\right)$. Let $P_{j k}$ be the closed quadrilateral $\left[Z_{j, k}, Z_{j+1, k}, Z_{j+1, k+1}, Z_{j, k+1}, Z_{j, k}\right]$. Because disks are convex, $P_{j k} \subset B\left(Z_{j k} ; r\right)$.

Theorem IV.6.7 (continued 2)

Proof (continued). By Proposition IV.2.15,

$$
\begin{equation*}
\int_{P_{j k}} f(z) d z=0 \tag{6.8}
\end{equation*}
$$

for any function f analytic in G. Let Q_{k} be the closed polygon $\left[Z_{0 k}, Z_{1 k}, \ldots, Z_{n k}\right]$ (a polygon approximation of closed path $\Gamma(s, k / n)$ for $s \in[0,1])$. We will show that
$\int_{\gamma_{0}} f(z) d z=\int_{Q_{0}} f(z) d z=\int_{Q_{1}} f(z) d z=\cdots=\int_{Q_{n}} f(z) d z=\int_{\gamma_{1}} f(z) d z$.
Define $\sigma_{j}(t) \in \gamma_{0}(t)$ for $t \in[j / n,(j+1) / n]$ (so this is just a partition of γ_{0}).

Theorem IV.6.7 (continued 2)

Proof (continued). By Proposition IV.2.15,

$$
\begin{equation*}
\int_{P_{j k}} f(z) d z=0 \tag{6.8}
\end{equation*}
$$

for any function f analytic in G. Let Q_{k} be the closed polygon $\left[Z_{0 k}, Z_{1 k}, \ldots, Z_{n k}\right]$ (a polygon approximation of closed path $\Gamma(s, k / n)$ for $s \in[0,1])$. We will show that
$\int_{\gamma_{0}} f(z) d z=\int_{Q_{0}} f(z) d z=\int_{Q_{1}} f(z) d z=\cdots=\int_{Q_{n}} f(z) d z=\int_{\gamma_{1}} f(z) d z$.
Define $\sigma_{j}(t) \in \gamma_{0}(t)$ for $t \in[j / n,(j+1) / n]$ (so this is just a partition of γ_{0}).

Theorem IV.6.7 (continued 3)

Proof (continued). Then $\sigma_{j}+\left[Z_{j+1,0}, Z_{j 0}\right]$, which is σ_{j} followed by the
 is a closed rectifiable curve in the disk
$B\left(Z_{j 0} ; r\right) \subset G$ (again, uniform continuity of Γ). So
$\int_{\sigma_{j}+\left[z_{j+1,0}, z_{j 0}\right]} f(z) d z=0$, or

$$
\int_{\sigma_{j}} f(z) d z=-\int_{\left[Z_{j+1,0}, z_{j 0}\right]} f(z) d z=\int_{\left[z_{j 0}, z_{j+1,0}\right]} f(z) d z
$$

Summing both sides for $j=0,1, \ldots, n-1$ yields
$\int_{\gamma_{0}} f(z) d z=\int_{Q_{0}} f(z) d z$. Similarly, $\int_{\gamma_{1}} f(z) d z=\int_{Q_{n}} f(z) d z$.

Theorem IV.6.7 (continued 3)

Proof (continued). Then $\sigma_{j}+\left[Z_{j+1,0}, Z_{j 0}\right]$, which is σ_{j} followed by the polygon:

is a closed rectifiable curve in the disk
$B\left(Z_{j 0} ; r\right) \subset G$ (again, uniform continuity of Γ). So $\int_{\sigma_{j}+\left[Z_{j+1,0}, Z_{j 0}\right]} f(z) d z=0$, or

$$
\int_{\sigma_{j}} f(z) d z=-\int_{\left[Z_{j+1,0}, Z_{j 0}\right]} f(z) d z=\int_{\left[Z_{j 0}, Z_{j+1,0}\right]} f(z) d z
$$

Summing both sides for $j=0,1, \ldots, n-1$ yields $\int_{\gamma_{0}} f(z) d z=\int_{Q_{0}} f(z) d z$. Similarly, $\int_{\gamma_{1}} f(z) d z=\int_{Q_{n}} f(z) d z$.

Theorem IV.6.7 (continued 4)

Proof (continued). By (6.8): $\quad \sum_{j=0}^{n-1}\left(\int_{P_{j k}} f(z) d z\right)=0$.
For j and $j+1$ we have:

Notice that the right hand part of $P_{j k}$ and the left hand part of $P_{j+1, k}$ lead to integrals which cancel each other out.

Theorem IV.6.7 (continued 5)

Theorem IV.6.7. Cauchy's Theorem (Third Version).
If γ_{0} and γ_{1} are two closed rectifiable curves in G and $\gamma_{0} \sim \gamma_{1}$, then $\int_{\gamma_{0}} f=\int_{\gamma_{1}} f$ for every function f analytic on G.

Proof (continued). Also, $Z_{0 k}=\Gamma(0, k / n)=\Gamma(1, k / n)=Z_{n k}$ (by the definition of the homotopy) so that $\left[Z_{0, k+1}, Z_{0 k}\right]=-\left[Z_{1 k}, Z_{1, k+1}\right]$. So by (6.9), we see that $\int_{Q_{k}} f(z) d z=\int_{Q_{k+1}} f(z) d z$. Therefore
$\int_{\gamma_{0}} f(z) d z=\int_{Q_{0}} f(z) d z=\int_{Q_{1}} f(z) d z=\cdots=\int_{Q_{n}} f(z) d z=\int_{\gamma_{1}} f(z) d z$.

Theorem IV.6.7 (continued 5)

Theorem IV.6.7. Cauchy's Theorem (Third Version).

If γ_{0} and γ_{1} are two closed rectifiable curves in G and $\gamma_{0} \sim \gamma_{1}$, then $\int_{\gamma_{0}} f=\int_{\gamma_{1}} f$ for every function f analytic on G.

Proof (continued). Also, $Z_{0 k}=\Gamma(0, k / n)=\Gamma(1, k / n)=Z_{n k}$ (by the definition of the homotopy) so that $\left[Z_{0, k+1}, Z_{0 k}\right]=-\left[Z_{1 k}, Z_{1, k+1}\right]$. So by (6.9), we see that $\int_{Q_{k}} f(z) d z=\int_{Q_{k+1}} f(z) d z$. Therefore
$\int_{\gamma_{0}} f(z) d z=\int_{Q_{0}} f(z) d z=\int_{Q_{1}} f(z) d z=\cdots=\int_{Q_{n}} f(z) d z=\int_{\gamma_{1}} f(z) d z$.

Corollary IV.6.16

Corollary IV.6.16. If open G is simply connected and $f: G \rightarrow \mathbb{C}$ is analytic in G then f has a primitive in G.
Proof. Fix point $a \in G$ and let γ_{1} and γ_{2} be any two rectifiable curves in G from a to (variable) point $z \in G$. Since G is open and connected, there is always a path between any two points in G by Theorem II.2.3; this is called "path connected"). Then by the Cauchy Theorem (Fourth Version), $0=\int_{\gamma_{1}-\gamma_{2}} f=\int_{\gamma_{1}} f-\int_{\gamma_{2}} f$, and so $\int_{\gamma_{1}} f=\int_{\gamma_{2}} f$.

Corollary IV.6.16

Corollary IV.6.16. If open G is simply connected and $f: G \rightarrow \mathbb{C}$ is analytic in G then f has a primitive in G.
Proof. Fix point $a \in G$ and let γ_{1} and γ_{2} be any two rectifiable curves in G from a to (variable) point $z \in G$. Since G is open and connected, there is always a path between any two points in G by Theorem II.2.3; this is called "path connected"). Then by the Cauchy Theorem (Fourth Version), $0=\int_{\gamma_{1}-\gamma_{2}} f=\int_{\gamma_{1}} f-\int_{\gamma_{2}} f$, and so $\int_{\gamma_{1}} f=\int_{\gamma_{2}} f$. So if we define $F(z)=\int_{\gamma} f$ where γ is any path from a to z, then F is well-defined (i.e., independent of γ). Of course, F is a primitive of f. If $z_{0} \in G$ and $r>0$ is such that $B\left(z_{0} ; r\right) \subset G$ (remember, G is open), and then let γ be a path from a to z_{0}. For $z \in B\left(z_{0} ; r\right)$, let $\gamma_{z}=\gamma+\left[z_{0}, z\right]$;

Corollary IV.6.16

Corollary IV.6.16. If open G is simply connected and $f: G \rightarrow \mathbb{C}$ is analytic in G then f has a primitive in G.
Proof. Fix point $a \in G$ and let γ_{1} and γ_{2} be any two rectifiable curves in G from a to (variable) point $z \in G$. Since G is open and connected, there is always a path between any two points in G by Theorem II.2.3; this is called "path connected"). Then by the Cauchy Theorem (Fourth Version), $0=\int_{\gamma_{1}-\gamma_{2}} f=\int_{\gamma_{1}} f-\int_{\gamma_{2}} f$, and so $\int_{\gamma_{1}} f=\int_{\gamma_{2}} f$. So if we define $F(z)=\int_{\gamma} f$ where γ is any path from a to z, then F is well-defined (i.e., independent of γ). Of course, F is a primitive of f. If $z_{0} \in G$ and $r>0$ is such that $B\left(z_{0} ; r\right) \subset G$ (remember, G is open), and then let γ be a path from a to z_{0}. For $z \in B\left(z_{0} ; r\right)$, let $\gamma_{z}=\gamma+\left[z_{0}, z\right]$:

Corollary IV.6.16

Corollary IV.6.16. If open G is simply connected and $f: G \rightarrow \mathbb{C}$ is analytic in G then f has a primitive in G.
Proof. Fix point $a \in G$ and let γ_{1} and γ_{2} be any two rectifiable curves in G from a to (variable) point $z \in G$. Since G is open and connected, there is always a path between any two points in G by Theorem II.2.3; this is called "path connected"). Then by the Cauchy Theorem (Fourth Version), $0=\int_{\gamma_{1}-\gamma_{2}} f=\int_{\gamma_{1}} f-\int_{\gamma_{2}} f$, and so $\int_{\gamma_{1}} f=\int_{\gamma_{2}} f$. So if we define $F(z)=\int_{\gamma} f$ where γ is any path from a to z, then F is well-defined (i.e., independent of γ). Of course, F is a primitive of f. If $z_{0} \in G$ and $r>0$ is such that $B\left(z_{0} ; r\right) \subset G$ (remember, G is open), and then let γ be a path from a to z_{0}. For $z \in B\left(z_{0} ; r\right)$, let $\gamma_{z}=\gamma+\left[z_{0}, z\right]$:

Corollary IV.6.16 (continued 1)

Proof (continued). Then

$$
\begin{gathered}
\frac{F(z)-F\left(z_{0}\right)}{z-z_{0}}=\frac{1}{z-z_{0}}\left(\int_{\gamma_{z}} f(z) d z-\int_{\gamma} f(z) d z\right) \\
=\frac{1}{z-z_{0}} \int_{\gamma_{z}-\gamma} f(z) d z=\frac{1}{z-z_{0}} \int_{\left[z_{0}, z\right]} f(z) d z
\end{gathered}
$$

Mimicing the proof of Morera's Theorem, this gives

$$
\begin{gathered}
\frac{F(z)-F\left(z_{0}\right)}{z-z_{0}}-f\left(z_{0}\right)=\frac{1}{z-z_{0}} \int_{\left[z_{0}, z\right]}\left(f(z)-f\left(z_{0}\right)\right) d z \\
=\frac{1}{z-z_{0}} \int_{\left[z_{0}, z\right]}\left(f(w)-f\left(z_{0}\right)\right) d w .
\end{gathered}
$$

Corollary IV.6.16 (continued 1)

Proof (continued). Then

$$
\begin{gathered}
\frac{F(z)-F\left(z_{0}\right)}{z-z_{0}}=\frac{1}{z-z_{0}}\left(\int_{\gamma_{z}} f(z) d z-\int_{\gamma} f(z) d z\right) \\
\quad=\frac{1}{z-z_{0}} \int_{\gamma_{z}-\gamma} f(z) d z=\frac{1}{z-z_{0}} \int_{\left[z_{0}, z\right]} f(z) d z
\end{gathered}
$$

Mimicing the proof of Morera's Theorem, this gives

$$
\begin{gathered}
\frac{F(z)-F\left(z_{0}\right)}{z-z_{0}}-f\left(z_{0}\right)=\frac{1}{z-z_{0}} \int_{\left[z_{0}, z\right]}\left(f(z)-f\left(z_{0}\right)\right) d z \\
=\frac{1}{z-z_{0}} \int_{\left[z_{0}, z\right]}\left(f(w)-f\left(z_{0}\right)\right) d w .
\end{gathered}
$$

So

$$
\left|\frac{F(z)-F\left(z_{0}\right)}{z-z_{0}}-f\left(z_{0}\right)\right|=\left|\frac{1}{z-z_{0}} \int_{\left[z_{0}, z\right]}\left(f(w)-f\left(z_{0}\right)\right) d w\right|
$$

Corollary IV.6.16 (continued 2)

Corollary IV.6.16. If open G is simply connected and $f: G \rightarrow \mathbb{C}$ is analytic in G then f has a primitive in G.

Proof (continued).

$$
\begin{array}{rl}
\left\lvert\, \frac{F(z)}{}-F\left(z_{0}\right)\right. \\
z-z_{0} & f\left(z_{0}\right)\left|=\left|\frac{1}{z-z_{0}} \int_{\left[z_{0}, z\right]}\left(f(w)-f\left(z_{0}\right)\right) d w\right|\right. \\
& \leq \frac{1}{\left|z-z_{0}\right|} \int_{\left[z_{0}, z\right]}\left|f(w)-f\left(z_{0}\right)\right||d w| \\
& \leq \frac{1}{\left|z-z_{0}\right|}\left|z-z_{0}\right| \sup \left\{\left|f(w)-f\left(z_{0}\right)\right| \mid w \in\left[z, z_{0}\right]\right\} \\
& =\sup \left\{\left|f(w)-f\left(z_{0}\right)\right| \mid w \in\left[z, z_{0}\right]\right\}
\end{array}
$$

Since f is continuous, $\lim _{z \rightarrow z_{0}} \frac{F(z)-F\left(z_{0}\right)}{z-z_{0}}=f\left(z_{0}\right)$. That is, $F^{\prime}=f$ and f

Corollary IV.6.16 (continued 2)

Corollary IV.6.16. If open G is simply connected and $f: G \rightarrow \mathbb{C}$ is analytic in G then f has a primitive in G.

Proof (continued).

$$
\begin{array}{rl}
\left\lvert\, \frac{F(z)}{}-F\left(z_{0}\right)\right. \\
z-z_{0} & f\left(z_{0}\right)\left|=\left|\frac{1}{z-z_{0}} \int_{\left[z_{0}, z\right]}\left(f(w)-f\left(z_{0}\right)\right) d w\right|\right. \\
& \leq \frac{1}{\left|z-z_{0}\right|} \int_{\left[z_{0}, z\right]}\left|f(w)-f\left(z_{0}\right)\right||d w| \\
& \leq \frac{1}{\left|z-z_{0}\right|}\left|z-z_{0}\right| \sup \left\{\left|f(w)-f\left(z_{0}\right)\right| \mid w \in\left[z, z_{0}\right]\right\} \\
& =\sup \left\{\left|f(w)-f\left(z_{0}\right)\right| \mid w \in\left[z, z_{0}\right]\right\}
\end{array}
$$

Since f is continuous, $\lim _{z \rightarrow z_{0}} \frac{F(z)-F\left(z_{0}\right)}{z-z_{0}}=f\left(z_{0}\right)$. That is, $F^{\prime}=f$ and f has a primitive.

Corollary IV.6.17

Corollary IV.6.17. Let G be simply connected and let $f: G \rightarrow \mathbb{C}$ be an analytic function such that $f(z) \neq 0$ for any $z \in G$. Then there is an analytic function $g: G \rightarrow \mathbb{C}$ such that $f(z)=\exp (g(z))$ (i.e., g is a branch of $\log (f(z))$ on $G)$. If $z_{0} \in G$ and $e^{w_{0}}=f\left(z_{0}\right)$, we may choose g such that $g\left(z_{0}\right)=w_{0}$.

Proof. Since $f(z) \neq 0$ for $z \in G$, then f^{\prime} / f is analytic on G. So by Corollary $6.16, f^{\prime} / f$ has a primitive g_{1}. If $h(z)=\exp \left(g_{1}(z)\right)$ then h is analytic and never 0 . So f / h is analytic with derivative

$$
\begin{aligned}
& \text { Next, } h^{\prime}(z)=\exp \left(g_{1}(z)\right)\left[g_{1}^{\prime}(z)\right]=g_{1}^{\prime}(z) h(z) \text { and so } \\
& \qquad \begin{array}{r}
f^{\prime}(z) h(z)-f(z) h^{\prime}(z)=f^{\prime}(z) h(z)-f(z) g_{1}^{\prime}(z) h(z) \\
=f^{\prime}(z) h(z)-f(z)\left(f^{\prime}(z) / f(z)\right) h(z) \equiv 0 .
\end{array}
\end{aligned}
$$

Corollary IV.6.17

Corollary IV.6.17. Let G be simply connected and let $f: G \rightarrow \mathbb{C}$ be an analytic function such that $f(z) \neq 0$ for any $z \in G$. Then there is an analytic function $g: G \rightarrow \mathbb{C}$ such that $f(z)=\exp (g(z))$ (i.e., g is a branch of $\log (f(z))$ on $G)$. If $z_{0} \in G$ and $e^{w_{0}}=f\left(z_{0}\right)$, we may choose g such that $g\left(z_{0}\right)=w_{0}$.

Proof. Since $f(z) \neq 0$ for $z \in G$, then f^{\prime} / f is analytic on G. So by Corollary $6.16, f^{\prime} / f$ has a primitive g_{1}. If $h(z)=\exp \left(g_{1}(z)\right)$ then h is analytic and never 0 . So f / h is analytic with derivative

$$
\frac{f^{\prime}(z) h(z)-f(z) h^{\prime}(z)}{(h(z))^{2}} .
$$

Next, $h^{\prime}(z)=\exp \left(g_{1}(z)\right)\left[g_{1}^{\prime}(z)\right]=g_{1}^{\prime}(z) h(z)$ and so

$$
\begin{gathered}
f^{\prime}(z) h(z)-f(z) h^{\prime}(z)=f^{\prime}(z) h(z)-f(z) g_{1}^{\prime}(z) h(z) \\
=f^{\prime}(z) h(z)-f(z)\left(f^{\prime}(z) / f(z)\right) h(z) \equiv 0
\end{gathered}
$$

Corollary IV.6.17 (continued)

Corollary IV.6.17. Let G be simply connected and let $f: G \rightarrow \mathbb{C}$ be an analytic function such that $f(z) \neq 0$ for any $z \in G$. Then there is an analytic function $g: G \rightarrow \mathbb{C}$ such that $f(z)=\exp (g(z))$ (i.e., g is a branch of $\log (f(z))$ on $G)$. If $z_{0} \in G$ and $e^{w_{0}}=f\left(z_{0}\right)$, we may choose g such that $g\left(z_{0}\right)=w_{0}$.

Proof (continued). So $\frac{d}{d z}\left[\frac{f(z)}{h(z)}\right]=0$ and $\frac{f(z)}{h(z)}$ is constant on G. That is, $f(z) / h(z)=c$ or $f(z)=c h(z)=c \exp \left(g_{1}(z)\right)$ for some constant c and for c^{\prime} where $c=\exp \left(c^{\prime}\right), f(z)=\exp \left(g_{1}(z)+c^{\prime}\right)$. So $g(z)=g_{1}(z)+c^{\prime}$ is a branch of $\log f(z)$ on G.

Corollary IV.6.17 (continued)

Corollary IV.6.17. Let G be simply connected and let $f: G \rightarrow \mathbb{C}$ be an analytic function such that $f(z) \neq 0$ for any $z \in G$. Then there is an analytic function $g: G \rightarrow \mathbb{C}$ such that $f(z)=\exp (g(z))$ (i.e., g is a branch of $\log (f(z))$ on $G)$. If $z_{0} \in G$ and $e^{w_{0}}=f\left(z_{0}\right)$, we may choose g such that $g\left(z_{0}\right)=w_{0}$.

Proof (continued). So $\frac{d}{d z}\left[\frac{f(z)}{h(z)}\right]=0$ and $\frac{f(z)}{h(z)}$ is constant on G. That is, $f(z) / h(z)=c$ or $f(z)=c h(z)=c \exp \left(g_{1}(z)\right)$ for some constant c and for c^{\prime} where $c=\exp \left(c^{\prime}\right), f(z)=\exp \left(g_{1}(z)+c^{\prime}\right)$. So $g(z)=g_{1}(z)+c^{\prime}$ is a branch of $\log f(z)$ on G. If $z_{0} \in G$ and $e^{w_{0}}=f\left(z_{0}\right)$ then
$w_{0}=\log ^{*}\left(f\left(z_{0}\right)\right)$ for some branch of $\log (f(z))$ on G. Since $g(z)$ is a branch of $\log (f(z))$ on G then by Proposition III.2.19 there is $k \in \mathbb{Z}$ such that $\log ^{*}(f(z))=g(z)+2 \pi i k$ and we may choose this as g to get $g\left(z_{0}\right)=\log ^{*}\left(f\left(z_{0}\right)\right)=w_{0}$.

Corollary IV.6.17 (continued)

Corollary IV.6.17. Let G be simply connected and let $f: G \rightarrow \mathbb{C}$ be an analytic function such that $f(z) \neq 0$ for any $z \in G$. Then there is an analytic function $g: G \rightarrow \mathbb{C}$ such that $f(z)=\exp (g(z))$ (i.e., g is a branch of $\log (f(z))$ on $G)$. If $z_{0} \in G$ and $e^{w_{0}}=f\left(z_{0}\right)$, we may choose g such that $g\left(z_{0}\right)=w_{0}$.

Proof (continued). So $\frac{d}{d z}\left[\frac{f(z)}{h(z)}\right]=0$ and $\frac{f(z)}{h(z)}$ is constant on G. That is, $f(z) / h(z)=c$ or $f(z)=c h(z)=c \exp \left(g_{1}(z)\right)$ for some constant c and for c^{\prime} where $c=\exp \left(c^{\prime}\right), f(z)=\exp \left(g_{1}(z)+c^{\prime}\right)$. So $g(z)=g_{1}(z)+c^{\prime}$ is a branch of $\log f(z)$ on G. If $z_{0} \in G$ and $e^{w_{0}}=f\left(z_{0}\right)$ then $w_{0}=\log ^{*}\left(f\left(z_{0}\right)\right)$ for some branch of $\log (f(z))$ on G. Since $g(z)$ is a branch of $\log (f(z))$ on G then by Proposition III.2.19 there is $k \in \mathbb{Z}$ such that $\log ^{*}(f(z))=g(z)+2 \pi i k$ and we may choose this as g to get $g\left(z_{0}\right)=\log ^{*}\left(f\left(z_{0}\right)\right)=w_{0}$.

