Complex Analysis

Chapter IV. Complex Integration

IV.7. Counting Zeros; The Open Mapping Theorem—Proofs of Theorems

Table of contents

(1) Theorem IV.7.2
(2) Example IV.7.A
(3) Theorem IV.7.5. The Open Mapping Theorem
(4) Corollary IV.7.6

Theorem IV.7.2

Theorem IV.7.2. Let G be a region and let f be an analytic function on G with zeros $a_{1}, a_{2}, \ldots, a_{m}$ (repeated according to multiplicity). If γ is a closed rectifiable curve in G which does not pass through any point a_{k} and if $\gamma \sim 0$ in G, then

$$
\frac{1}{2 \pi i} \int_{\gamma} \frac{f^{\prime}(z)}{f(z)} d z=\sum_{k=1}^{m} n\left(\gamma ; a_{k}\right)
$$

Proof. By Corollary IV.3.9, we can factor f as

$f(z)=\left(z-a_{1}\right)\left(z-a_{2}\right) \cdots\left(z-a_{m}\right) g(z)$ where g is analytic on G and $g(z) \neq 0$ in G. We get from the product rule:

Theorem IV.7.2

Theorem IV.7.2. Let G be a region and let f be an analytic function on G with zeros $a_{1}, a_{2}, \ldots, a_{m}$ (repeated according to multiplicity). If γ is a closed rectifiable curve in G which does not pass through any point a_{k} and if $\gamma \sim 0$ in G, then

$$
\frac{1}{2 \pi i} \int_{\gamma} \frac{f^{\prime}(z)}{f(z)} d z=\sum_{k=1}^{m} n\left(\gamma ; a_{k}\right)
$$

Proof. By Corollary IV.3.9, we can factor f as $f(z)=\left(z-a_{1}\right)\left(z-a_{2}\right) \cdots\left(z-a_{m}\right) g(z)$ where g is analytic on G and $g(z) \neq 0$ in G. We get from the product rule:

$$
\frac{f^{\prime}(z)}{f(z)}=\frac{1}{z-a_{1}}+\frac{1}{z-a_{2}}+\cdots+\frac{1}{z-a_{m}}+\frac{g^{\prime}(z)}{g(z)}
$$

Theorem IV.7.2 (continued)

Proof. Since $\gamma \approx 0$,

$$
\begin{aligned}
\int_{\gamma} \frac{f^{\prime}(z)}{f(z)} d z & =\int_{\gamma}\left(\frac{1}{z-a_{1}}+\frac{1}{z-a_{2}}+\cdots+\frac{1}{z-a_{m}}+\frac{g^{\prime}(z)}{g(z)}\right) d z \\
& =2 \pi i\left(n\left(\gamma ; a_{1}\right)+n\left(\gamma ; a_{2}\right)+\cdots+n\left(\gamma ; a_{m}\right)\right)+\int_{\gamma} \frac{g^{\prime}(z)}{g(z)} d z
\end{aligned}
$$

by the definition of winding number

$$
=2 \pi i\left(n\left(\gamma ; a_{1}\right)+n\left(\gamma ; a_{2}\right)+\cdots+n\left(\gamma ; a_{m}\right)\right)+0
$$ by Corollary IV.1.22

and the result follows.

Example IV.7.A

Example IV.7.A. Evaluate $\int_{\gamma} \frac{2 z+1}{z^{2}+z+1} d z$ where $\gamma(t)=2 e^{i t}$ for $t \in[0,2 \pi]$.

Solution. Well, $z^{2}+z+1$ has zeros at two points ω_{1} and ω_{2} where $\left|\omega_{1}\right|=\left|\omega_{2}\right|=1\left(\right.$ since $\left.z^{3}-1=(z-1)\left(z^{2}+z+1\right)\right)$. So by Theorem IV.7.2 with $f(z)=z^{2}+1$, we have

$$
\int_{\gamma} \frac{2 z+1}{z^{2}+z+1} d z=2 \pi i\left(n\left(\gamma ; \omega_{1}\right)+n\left(\gamma ; \omega_{2}\right)\right)=4 \pi i .
$$

(Does $\frac{2 z+1}{z^{2}+z+1}$ have a primitive on γ ?) \square

Example IV.7.A

Example IV.7.A. Evaluate $\int_{\gamma} \frac{2 z+1}{z^{2}+z+1} d z$ where $\gamma(t)=2 e^{i t}$ for $t \in[0,2 \pi]$.

Solution. Well, $z^{2}+z+1$ has zeros at two points ω_{1} and ω_{2} where $\left|\omega_{1}\right|=\left|\omega_{2}\right|=1$ (since $z^{3}-1=(z-1)\left(z^{2}+z+1\right)$). So by Theorem IV.7.2 with $f(z)=z^{2}+1$, we have

$$
\int_{\gamma} \frac{2 z+1}{z^{2}+z+1} d z=2 \pi i\left(n\left(\gamma ; \omega_{1}\right)+n\left(\gamma ; \omega_{2}\right)\right)=4 \pi i
$$

(Does $\frac{2 z+1}{z^{2}+z+1}$ have a primitive on γ ?) \square

Theorem IV.7.5

Theorem IV.7.5. The Open Mapping Theorem.
Let G be a region (open connected set) and suppose that f is a nonconstant analytic function on G. Then for any open set U in $G, F(U)$ is open.

Proof. Let $U \subset G$ be open and let $\alpha \in f(U)$. Then $\alpha=f(a)$ for some
$a \in U$.

Theorem IV.7.5

Theorem IV.7.5. The Open Mapping Theorem.

Let G be a region (open connected set) and suppose that f is a nonconstant analytic function on G. Then for any open set U in $G, F(U)$ is open.

Proof. Let $U \subset G$ be open and let $\alpha \in f(U)$. Then $\alpha=f(a)$ for some $a \in U$. Since U is open, there is $\varepsilon>0$ with $B(a ; \varepsilon) \subset U$ and by Theorem IV.7.4 this ε can be chosen, along with $\delta>0$, such that $f(B(a ; \varepsilon)) \supset B(\alpha ; \delta)$. So $B(\alpha ; \delta) \subset f(B(a ; \varepsilon)) \subset f(U)$, and therefore $f(U)$ is open.

Theorem IV.7.5

Theorem IV.7.5. The Open Mapping Theorem.

Let G be a region (open connected set) and suppose that f is a nonconstant analytic function on G. Then for any open set U in $G, F(U)$ is open.

Proof. Let $U \subset G$ be open and let $\alpha \in f(U)$. Then $\alpha=f(a)$ for some $a \in U$. Since U is open, there is $\varepsilon>0$ with $B(a ; \varepsilon) \subset U$ and by Theorem IV.7.4 this ε can be chosen, along with $\delta>0$, such that $f(B(a ; \varepsilon)) \supset B(\alpha ; \delta)$. So $B(\alpha ; \delta) \subset f(B(a ; \varepsilon)) \subset f(U)$, and therefore $f(U)$ is open.

Corollary IV.7.6

Corollary IV.7.6. Suppose $f: G \rightarrow \mathbb{C}$ is one to one, analytic and $f(G)=\Omega$. Then $f^{-1}: \Omega \rightarrow \mathbb{C}$ is analytic and $\left(f^{-1}\right)^{\prime}(\omega)=1 / f^{\prime}(z)$ where $\omega=f(z)$.

Proof. By the Open Mapping Theorem (Theorem IV.7.5), f^{-1} has inverse images of open sets open and so f^{-1} is continuous, AND $f(G)=\Omega$ is open. Since $z=f^{-1}(f(z))$, the result follows by Proposition III.2.20.

Corollary IV.7.6

Corollary IV.7.6. Suppose $f: G \rightarrow \mathbb{C}$ is one to one, analytic and $f(G)=\Omega$. Then $f^{-1}: \Omega \rightarrow \mathbb{C}$ is analytic and $\left(f^{-1}\right)^{\prime}(\omega)=1 / f^{\prime}(z)$ where $\omega=f(z)$.

Proof. By the Open Mapping Theorem (Theorem IV.7.5), f^{-1} has inverse images of open sets open and so f^{-1} is continuous, AND $f(G)=\Omega$ is open. Since $z=f^{-1}(f(z))$, the result follows by Proposition III.2.20.

