Complex Analysis

Chapter IV. Complex Integration

IV.7. Counting Zeros; The Open Mapping Theorem—Proofs of Theorems

John B. Conway

Functions of One Complex Variable I

Second Edition

Deringer

Complex Analysis

3 Theorem IV.7.5. The Open Mapping Theorem

4 Corollary IV.7.6

Theorem IV.7.2. Let G be a region and let f be an analytic function on G with zeros a_1, a_2, \ldots, a_m (repeated according to multiplicity). If γ is a closed rectifiable curve in G which does not pass through any point a_k and if $\gamma \sim 0$ in G, then

$$\frac{1}{2\pi i}\int_{\gamma}\frac{f'(z)}{f(z)}\,dz=\sum_{k=1}^m n(\gamma;a_k).$$

Proof. By Corollary IV.3.9, we can factor f as $f(z) = (z - a_1)(z - a_2) \cdots (z - a_m)g(z)$ where g is analytic on G and $g(z) \neq 0$ in G. We get from the product rule:

$$\frac{f'(z)}{f(z)} = \frac{1}{z - a_1} + \frac{1}{z - a_2} + \dots + \frac{1}{z - a_m} + \frac{g'(z)}{g(z)}.$$

Theorem IV.7.2. Let G be a region and let f be an analytic function on G with zeros a_1, a_2, \ldots, a_m (repeated according to multiplicity). If γ is a closed rectifiable curve in G which does not pass through any point a_k and if $\gamma \sim 0$ in G, then

$$\frac{1}{2\pi i}\int_{\gamma}\frac{f'(z)}{f(z)}\,dz=\sum_{k=1}^m n(\gamma;a_k).$$

Proof. By Corollary IV.3.9, we can factor f as $f(z) = (z - a_1)(z - a_2) \cdots (z - a_m)g(z)$ where g is analytic on G and $g(z) \neq 0$ in G. We get from the product rule:

$$\frac{f'(z)}{f(z)} = \frac{1}{z - a_1} + \frac{1}{z - a_2} + \dots + \frac{1}{z - a_m} + \frac{g'(z)}{g(z)}.$$

Theorem IV.7.2 (continued)

Proof. Since $\gamma \approx 0$,

$$\int_{\gamma} \frac{f'(z)}{f(z)} dz = \int_{\gamma} \left(\frac{1}{z - a_1} + \frac{1}{z - a_2} + \dots + \frac{1}{z - a_m} + \frac{g'(z)}{g(z)} \right) dz$$

= $2\pi i (n(\gamma; a_1) + n(\gamma; a_2) + \dots + n(\gamma; a_m)) + \int_{\gamma} \frac{g'(z)}{g(z)} dz$
by the definition of winding number
= $2\pi i (n(\gamma; a_1) + n(\gamma; a_2) + \dots + n(\gamma; a_m)) + 0$
by Corollary IV.1.22

and the result follows.

Example IV.7.A

Example IV.7.A. Evaluate
$$\int_{\gamma} \frac{2z+1}{z^2+z+1} dz$$
 where $\gamma(t) = 2e^{it}$ for $t \in [0, 2\pi]$.

Solution. Well, $z^2 + z + 1$ has zeros at two points ω_1 and ω_2 where $|\omega_1| = |\omega_2| = 1$ (since $z^3 - 1 = (z - 1)(z^2 + z + 1)$). So by Theorem IV.7.2 with $f(z) = z^2 + 1$, we have

$$\int_{\gamma} \frac{2z+1}{z^2+z+1} \, dz = 2\pi i (n(\gamma;\omega_1) + n(\gamma;\omega_2)) = 4\pi i.$$

(Does
$$\frac{2z+1}{z^2+z+1}$$
 have a primitive on γ ?)

Example IV.7.A

Example IV.7.A. Evaluate
$$\int_{\gamma} \frac{2z+1}{z^2+z+1} dz$$
 where $\gamma(t) = 2e^{it}$ for $t \in [0, 2\pi]$.

Solution. Well, $z^2 + z + 1$ has zeros at two points ω_1 and ω_2 where $|\omega_1| = |\omega_2| = 1$ (since $z^3 - 1 = (z - 1)(z^2 + z + 1)$). So by Theorem IV.7.2 with $f(z) = z^2 + 1$, we have

$$\int_{\gamma} \frac{2z+1}{z^2+z+1} dz = 2\pi i (n(\gamma;\omega_1)+n(\gamma;\omega_2)) = 4\pi i.$$

(Does
$$\frac{2z+1}{z^2+z+1}$$
 have a primitive on γ ?) \Box

Theorem IV.7.5. The Open Mapping Theorem.

Let G be a region (open connected set) and suppose that f is a nonconstant analytic function on G. Then for any open set U in G, F(U) is open.

Proof. Let $U \subset G$ be open and let $\alpha \in f(U)$. Then $\alpha = f(a)$ for some $a \in U$.

Theorem IV.7.5. The Open Mapping Theorem.

Let G be a region (open connected set) and suppose that f is a nonconstant analytic function on G. Then for any open set U in G, F(U) is open.

Proof. Let $U \subset G$ be open and let $\alpha \in f(U)$. Then $\alpha = f(a)$ for some $a \in U$. Since U is open, there is $\varepsilon > 0$ with $B(a; \varepsilon) \subset U$ and by Theorem IV.7.4 this ε can be chosen, along with $\delta > 0$, such that $f(B(a; \varepsilon)) \supset B(\alpha; \delta)$. So $B(\alpha; \delta) \subset f(B(a; \varepsilon)) \subset f(U)$, and therefore f(U) is open.

Theorem IV.7.5. The Open Mapping Theorem.

Let G be a region (open connected set) and suppose that f is a nonconstant analytic function on G. Then for any open set U in G, F(U) is open.

Proof. Let $U \subset G$ be open and let $\alpha \in f(U)$. Then $\alpha = f(a)$ for some $a \in U$. Since U is open, there is $\varepsilon > 0$ with $B(a; \varepsilon) \subset U$ and by Theorem IV.7.4 this ε can be chosen, along with $\delta > 0$, such that $f(B(a; \varepsilon)) \supset B(\alpha; \delta)$. So $B(\alpha; \delta) \subset f(B(a; \varepsilon)) \subset f(U)$, and therefore f(U) is open.

Corollary IV.7.6. Suppose $f : G \to \mathbb{C}$ is one to one, analytic and $f(G) = \Omega$. Then $f^{-1} : \Omega \to \mathbb{C}$ is analytic and $(f^{-1})'(\omega) = 1/f'(z)$ where $\omega = f(z)$.

Proof. By the Open Mapping Theorem (Theorem IV.7.5), f^{-1} has inverse images of open sets open and so f^{-1} is continuous, AND $f(G) = \Omega$ is open. Since $z = f^{-1}(f(z))$, the result follows by Proposition III.2.20.

Corollary IV.7.6. Suppose $f : G \to \mathbb{C}$ is one to one, analytic and $f(G) = \Omega$. Then $f^{-1} : \Omega \to \mathbb{C}$ is analytic and $(f^{-1})'(\omega) = 1/f'(z)$ where $\omega = f(z)$.

Proof. By the Open Mapping Theorem (Theorem IV.7.5), f^{-1} has inverse images of open sets open and so f^{-1} is continuous, AND $f(G) = \Omega$ is open. Since $z = f^{-1}(f(z))$, the result follows by Proposition III.2.20.