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Chapter IV. Complex Integration
IV.8. Goursat’s Theorem—Proofs of Theorems
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Goursat’s Theorem

Goursat’s Theorem

Goursat’s Theorem. Let G be an open set and let f : G → C be a
differentiable function; then f is analytic in G .

Proof. We need to show that f ′ is continuous on each open disk in G , so
without loss of generality we assume G is itself an open disk. Let
T = [a, b, c , a] be a triangular path in G and let ∆ be the closed set
formed by T and its interior. Notice that ∂∆ = T . Use the midpoints of
the sides of ∆ to form four triangles ∆1,∆2,∆3,∆4 inside ∆ as:
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Goursat’s Theorem

Goursat’s Theorem (continued 1)

Proof (continued). The
∫
T f (z) dz =

∑4
j=1

∫
Tj

f (z) dz where Tj = ∂∆j .

Let T (1) be the Tj such that
∣∣∫

T (1) f (z) dz
∣∣ ≥ ∣∣∣∫Tj

f (z) dz
∣∣∣ for

j = 1, 2, 3, 4. The length of each Tj is half the length of T :
`(Tj) = 1

2`(T ). Also, the diameter of Tj is half the diameter of T :

diam(Tj) = 1
2diam(T ). By our choice of T (1) we have∣∣∫

T f (z) dz
∣∣ ≤ 4

∣∣∫
T (1) f (z) dz

∣∣. We now iterate this process and produce a

sequence of triangles {T (n)}∞n=1 such that T (n) along with its interior,
∆(n), we have:

∆(1) ⊃ ∆(2) ⊃ · · · ;

∣∣∣∣∫
T (n)

f (z) dz

∣∣∣∣ ≤ 4

∣∣∣∣∫
T (n+1)

f (z) dz

∣∣∣∣ ,

`(T (n+1)) =
1

2
`(T (n)); diam∆(n+1) =

1

2
diam∆(n).
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Goursat’s Theorem

Goursat’s Theorem (continued 2)

Proof (continued). So inductively:∣∣∣∣∫
T

f (z) dz

∣∣∣∣ ≤ 4n

∣∣∣∣∫
T (n)

f (z) dz

∣∣∣∣ (8.6)

`(T (n)) =

(
1

2

)n

`(T ); diam∆(n) =

(
1

2

)n

diam∆.

Since each ∆(n) is closed and diam∆(n) → 0 as n → 0, then the
nestedness of the ∆(n)’s implies by Cantor’s Theorem (Theorem II.3.6)
that ∩∞n=1∆

(n) = {z0}.

Let ε > 0. Since f is differentiable at z0, we can find δ > 0 such that
B(z0; δ) ⊂ G and ∣∣∣∣ f (z)− f (z0)

z − z0
− f ′(z0)

∣∣∣∣ < ε

whenever 0 < |z − z0| < δ.
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Goursat’s Theorem

Goursat’s Theorem (continued 3)

Proof (continued). Alternatively,

|f (z)− f (z0)− f ′(z0)(z − z0)| ≤ ε|z − z0| (8.9)

whenever |z − z0| < δ. Choose n such that diam∆(n) < (1/2)ndiam∆ < δ.
Since x0 ∈ ∆(n), this implies ∆(n) ⊂ B(z0; δ). Then Cauchy’s Theorem (all
versions!) implies that

∣∣∫
T (n) z dz

∣∣− ∣∣∫
T (n) dz

∣∣ = 0. Hence

∣∣∣∣∫
T (n)

f (z) dz

∣∣∣∣ =

∣∣∣∣∣∣∣∣
∫

T (n)
f (z) dz −

∫
T (n)

f (z0) dz︸ ︷︷ ︸
0

−
∫

T (n)
f ′(z0)z dz︸ ︷︷ ︸

0

+

∫
T (n)

f ′(z0)z0 dz︸ ︷︷ ︸
0

∣∣∣∣∣∣∣∣
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Goursat’s Theorem

Goursat’s Theorem (continued 4)

Proof (continued).∣∣∣∣∫
T (n)

f (z) dz

∣∣∣∣ =

∣∣∣∣∫
T (n)

(f (z)− f (z0)− f ′(z0)(z − z0)) dz

∣∣∣∣
≤

∫
T (n)

|f (z)− f (z0)− f ′(z0)(z − z0)| |dz |

≤ ε

∫
T (n)

|z − z0| |dz | by (8.9)

≤ ε diam∆(n) `(T (n))

= ε

(
1

2

)n

diam∆

(
1

2

)n

`(T )

= ε

(
1

4

)n

diam∆ `(T ).
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Goursat’s Theorem

Goursat’s Theorem (continued 5)

Goursat’s Theorem. Let G be an open set and let f : G → C be a
differentiable function; then f is analytic in G .

Proof (continued). Next,∣∣∣∣∫
T

f (z) dz

∣∣∣∣ ≤ 4n

∣∣∣∣∫
T (n)

f (z) dz

∣∣∣∣ by (8.6)

< 4nε

(
1

4n

)
diam∆ `(T )

= ε diam∆ `(T ).

Since ε > 0 is arbitrary and diam∆, `(T ) are fixed, it follows that∫
T f (z) dz = 0. So by Morera’s Theorem, f is analytic on G .
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