Complex Analysis

Chapter IV. Complex Integration

IV.8. Goursat's Theorem—Proofs of Theorems

Table of contents

(1) Goursat's Theorem

Goursat's Theorem

Goursat's Theorem. Let G be an open set and let $f: G \rightarrow \mathbb{C}$ be a differentiable function; then f is analytic in G.

Proof. We need to show that f^{\prime} is continuous on each open disk in G, so without loss of generality we assume G is itself an open disk. Let $T=[a, b, c, a]$ be a triangular path in G and let Δ be the closed set formed by T and its interior. Notice that $\partial \Delta=T$. Use the midpoints of the sides of Δ to form four triangles $\Delta_{1}, \Delta_{2}, \Delta_{3}, \Delta_{4}$ inside Δ as:

Goursat's Theorem

Goursat's Theorem. Let G be an open set and let $f: G \rightarrow \mathbb{C}$ be a differentiable function; then f is analytic in G.

Proof. We need to show that f^{\prime} is continuous on each open disk in G, so without loss of generality we assume G is itself an open disk. Let $T=[a, b, c, a]$ be a triangular path in G and let Δ be the closed set formed by T and its interior. Notice that $\partial \Delta=T$. Use the midpoints of the sides of Δ to form four triangles $\Delta_{1}, \Delta_{2}, \Delta_{3}, \Delta_{4}$ inside Δ as:

Goursat's Theorem

Goursat's Theorem. Let G be an open set and let $f: G \rightarrow \mathbb{C}$ be a differentiable function; then f is analytic in G.

Proof. We need to show that f^{\prime} is continuous on each open disk in G, so without loss of generality we assume G is itself an open disk. Let $T=[a, b, c, a]$ be a triangular path in G and let Δ be the closed set formed by T and its interior. Notice that $\partial \Delta=T$. Use the midpoints of the sides of Δ to form four triangles $\Delta_{1}, \Delta_{2}, \Delta_{3}, \Delta_{4}$ inside Δ as:

Goursat's Theorem (continued 1)

Proof (continued). The $\int_{T} f(z) d z=\sum_{j=1}^{4} \int_{T_{j}} f(z) d z$ where $T_{j}=\partial \Delta_{j}$. Let $T^{(1)}$ be the T_{j} such that $\left|\int_{T^{(1)}} f(z) d z\right| \geq\left|\int_{T_{j}} f(z) d z\right|$ for $j=1,2,3,4$. The length of each T_{j} is half the length of T : $\ell\left(T_{j}\right)=\frac{1}{2} \ell(T)$. Also, the diameter of T_{j} is half the diameter of T : $\operatorname{diam}\left(T_{j}\right)=\frac{1}{2} \operatorname{diam}(T)$. By our choice of $T^{(1)}$ we have $\left|\int_{T} f(z) d z\right| \leq 4\left|\int_{T^{(1)}} f(z) d z\right|$. We now iterate this process and produce a sequence of triangles $\left\{T^{(n)}\right\}_{n=1}^{\infty}$ such that $T^{(n)}$ along with its interior, $\Delta^{(n)}$, we have:

$$
\begin{gathered}
\Delta^{(1)} \supset \Delta^{(2)} \supset \cdots ;\left|\int_{T^{(n)}} f(z) d z\right| \leq 4\left|\int_{T^{(n+1)}} f(z) d z\right| \\
\ell\left(T^{(n+1)}\right)=\frac{1}{2} \ell\left(T^{(n)}\right) ; \operatorname{diam} \Delta^{(n+1)}=\frac{1}{2} \operatorname{diam} \Delta^{(n)} .
\end{gathered}
$$

Goursat's Theorem (continued 1)

Proof (continued). The $\int_{T} f(z) d z=\sum_{j=1}^{4} \int_{T_{j}} f(z) d z$ where $T_{j}=\partial \Delta_{j}$. Let $T^{(1)}$ be the T_{j} such that $\left|\int_{T^{(1)}} f(z) d z\right| \geq\left|\int_{T_{j}} f(z) d z\right|$ for $j=1,2,3,4$. The length of each T_{j} is half the length of T : $\ell\left(T_{j}\right)=\frac{1}{2} \ell(T)$. Also, the diameter of T_{j} is half the diameter of T : $\operatorname{diam}\left(T_{j}\right)=\frac{1}{2} \operatorname{diam}(T)$. By our choice of $T^{(1)}$ we have $\left|\int_{T} f(z) d z\right| \leq 4\left|\int_{T^{(1)}} f(z) d z\right|$. We now iterate this process and produce a sequence of triangles $\left\{T^{(n)}\right\}_{n=1}^{\infty}$ such that $T^{(n)}$ along with its interior, $\Delta^{(n)}$, we have:

$$
\begin{gathered}
\Delta^{(1)} \supset \Delta^{(2)} \supset \cdots ;\left|\int_{T^{(n)}} f(z) d z\right| \leq 4\left|\int_{T^{(n+1)}} f(z) d z\right|, \\
\ell\left(T^{(n+1)}\right)=\frac{1}{2} \ell\left(T^{(n)}\right) ; \operatorname{diam} \Delta^{(n+1)}=\frac{1}{2} \operatorname{diam} \Delta^{(n)} .
\end{gathered}
$$

Goursat's Theorem (continued 2)

Proof (continued). So inductively:

$$
\begin{gathered}
\left|\int_{T} f(z) d z\right| \leq 4^{n}\left|\int_{T^{(n)}} f(z) d z\right| \\
\ell\left(T^{(n)}\right)=\left(\frac{1}{2}\right)^{n} \ell(T) ; \operatorname{diam} \Delta^{(n)}=\left(\frac{1}{2}\right)^{n} \operatorname{diam} \Delta .
\end{gathered}
$$

Since each $\Delta^{(n)}$ is closed and diam $\Delta^{(n)} \rightarrow 0$ as $n \rightarrow 0$, then the nestedness of the $\Delta^{(n)}$'s implies by Cantor's Theorem (Theorem II.3.6) that $\cap_{n=1}^{\infty} \Delta^{(n)}=\left\{z_{0}\right\}$.

Goursat's Theorem (continued 2)

Proof (continued). So inductively:

$$
\begin{gathered}
\left|\int_{T} f(z) d z\right| \leq 4^{n}\left|\int_{T^{(n)}} f(z) d z\right| \\
\ell\left(T^{(n)}\right)=\left(\frac{1}{2}\right)^{n} \ell(T) ; \operatorname{diam} \Delta^{(n)}=\left(\frac{1}{2}\right)^{n} \operatorname{diam} \Delta .
\end{gathered}
$$

Since each $\Delta^{(n)}$ is closed and $\operatorname{diam} \Delta^{(n)} \rightarrow 0$ as $n \rightarrow 0$, then the nestedness of the $\Delta^{(n)}$'s implies by Cantor's Theorem (Theorem II.3.6) that $\cap_{n=1}^{\infty} \Delta^{(n)}=\left\{z_{0}\right\}$.

Let $\varepsilon>0$. Since f is differentiable at z_{0}, we can find $\delta>0$ such that $B\left(z_{0} ; \delta\right) \subset G$ and

$$
\left|\frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}-f^{\prime}\left(z_{0}\right)\right|
$$

whenever $0<\left|z-z_{0}\right|<\delta$.

Goursat's Theorem (continued 2)

Proof (continued). So inductively:

$$
\begin{gathered}
\left|\int_{T} f(z) d z\right| \leq 4^{n}\left|\int_{T^{(n)}} f(z) d z\right| \\
\ell\left(T^{(n)}\right)=\left(\frac{1}{2}\right)^{n} \ell(T) ; \operatorname{diam} \Delta^{(n)}=\left(\frac{1}{2}\right)^{n} \operatorname{diam} \Delta .
\end{gathered}
$$

Since each $\Delta^{(n)}$ is closed and $\operatorname{diam} \Delta^{(n)} \rightarrow 0$ as $n \rightarrow 0$, then the nestedness of the $\Delta^{(n)}$'s implies by Cantor's Theorem (Theorem II.3.6) that $\cap_{n=1}^{\infty} \Delta^{(n)}=\left\{z_{0}\right\}$.

Let $\varepsilon>0$. Since f is differentiable at z_{0}, we can find $\delta>0$ such that $B\left(z_{0} ; \delta\right) \subset G$ and

$$
\left|\frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}-f^{\prime}\left(z_{0}\right)\right|<\varepsilon
$$

whenever $0<\left|z-z_{0}\right|<\delta$.

Goursat's Theorem (continued 3)

Proof (continued). Alternatively,

$$
\begin{equation*}
\left|f(z)-f\left(z_{0}\right)-f^{\prime}\left(z_{0}\right)\left(z-z_{0}\right)\right| \leq \varepsilon\left|z-z_{0}\right| \tag{8.9}
\end{equation*}
$$

whenever $\left|z-z_{0}\right|<\delta$. Choose n such that $\operatorname{diam} \Delta^{(n)}<(1 / 2)^{n} \operatorname{diam} \Delta<\delta$. Since $x_{0} \in \Delta^{(n)}$, this implies $\Delta^{(n)} \subset B\left(z_{0} ; \delta\right)$. Then Cauchy's Theorem (all versions!) implies that $\left|\int_{T^{(n)}} z d z\right|-\left|\int_{T^{(n)}} d z\right|=0$. Hence

$$
\left|\int_{T^{(n)}} f(z) d z\right|=\mid \int_{T^{(n)}} f(z) d z-\underbrace{\int_{T^{(n)}} f\left(z_{0}\right) d z}_{0}
$$

Goursat's Theorem (continued 3)

Proof (continued). Alternatively,

$$
\begin{equation*}
\left|f(z)-f\left(z_{0}\right)-f^{\prime}\left(z_{0}\right)\left(z-z_{0}\right)\right| \leq \varepsilon\left|z-z_{0}\right| \tag{8.9}
\end{equation*}
$$

whenever $\left|z-z_{0}\right|<\delta$. Choose n such that $\operatorname{diam} \Delta^{(n)}<(1 / 2)^{n} \operatorname{diam} \Delta<\delta$. Since $x_{0} \in \Delta^{(n)}$, this implies $\Delta^{(n)} \subset B\left(z_{0} ; \delta\right)$. Then Cauchy's Theorem (all versions!) implies that $\left|\int_{T^{(n)}} z d z\right|-\left|\int_{T^{(n)}} d z\right|=0$. Hence

$$
\begin{aligned}
& \left|\int_{T^{(n)}} f(z) d z\right|=\mid \int_{T^{(n)}} f(z) d z-\underbrace{\int_{T^{(n)}} f\left(z_{0}\right) d z}_{0} \\
& \quad-\underbrace{\int_{T^{(n)}} f^{\prime}\left(z_{0}\right) z d z}_{0}+\underbrace{\int_{T^{(n)}} f^{\prime}\left(z_{0}\right) z_{0} d z}_{0} \mid
\end{aligned}
$$

Goursat's Theorem (continued 4)

Proof (continued).

$$
\begin{aligned}
\left|\int_{T^{(n)}} f(z) d z\right| & =\left|\int_{T^{(n)}}\left(f(z)-f\left(z_{0}\right)-f^{\prime}\left(z_{0}\right)\left(z-z_{0}\right)\right) d z\right| \\
& \leq \int_{T^{(n)}}\left|f(z)-f\left(z_{0}\right)-f^{\prime}\left(z_{0}\right)\left(z-z_{0}\right)\right||d z| \\
& \leq \varepsilon \int_{T^{(n)}}\left|z-z_{0}\right||d z| \text { by }(8.9) \\
& \leq \varepsilon \operatorname{diam} \Delta^{(n)} \ell\left(T^{(n)}\right) \\
& =\varepsilon\left(\frac{1}{2}\right)^{n} \operatorname{diam} \Delta\left(\frac{1}{2}\right)^{n} \ell(T) \\
& =\varepsilon\left(\frac{1}{4}\right)^{n} \operatorname{diam} \Delta \ell(T) .
\end{aligned}
$$

Goursat's Theorem (continued 5)

Goursat's Theorem. Let G be an open set and let $f: G \rightarrow \mathbb{C}$ be a differentiable function; then f is analytic in G.

Proof (continued). Next,

$$
\begin{aligned}
\left|\int_{T} f(z) d z\right| & \leq 4^{n}\left|\int_{T^{(n)}} f(z) d z\right| \text { by (8.6) } \\
& <4^{n} \varepsilon\left(\frac{1}{4^{n}}\right) \operatorname{diam} \Delta \ell(T) \\
& =\varepsilon \operatorname{diam} \Delta \ell(T) .
\end{aligned}
$$

Since $\varepsilon>0$ is arbitrary and $\operatorname{diam} \Delta, \ell(T)$ are fixed, it follows that $\int_{T} f(z) d z=0$. So by Morera's Theorem, f is analytic on G.

Goursat's Theorem (continued 5)

Goursat's Theorem. Let G be an open set and let $f: G \rightarrow \mathbb{C}$ be a differentiable function; then f is analytic in G.

Proof (continued). Next,

$$
\begin{aligned}
\left|\int_{T} f(z) d z\right| & \leq 4^{n}\left|\int_{T^{(n)}} f(z) d z\right| \text { by (8.6) } \\
& <4^{n} \varepsilon\left(\frac{1}{4^{n}}\right) \operatorname{diam} \Delta \ell(T) \\
& =\varepsilon \operatorname{diam} \Delta \ell(T)
\end{aligned}
$$

Since $\varepsilon>0$ is arbitrary and $\operatorname{diam} \Delta, \ell(T)$ are fixed, it follows that $\int_{T} f(z) d z=0$. So by Morera's Theorem, f is analytic on G.

