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Lemma IX.3.1

Lemma IX.3.1

Lemma IX.3.1. Let γ : [0, 1] → C be a point and let
{(ft ,Dt) | 0 ≤ t ≤ 1} be an analytic continuation along γ. For 0 ≤ t ≤ 1
let R(t) be the radius of convergence of the power series expansion of ft
about z = γ(t). Then either R(T ) = ∞ or T : [0, 1] → (0,∞) is
continuous.

Proof. If R(t) = ∞ for some t ∈ [0, 1] then ft can be extended to an
entire function f (the power series representation of ft centered at γ(t)).
By the definition of analytic continuation we can conclude
[fs ]γ(s) = [ft ]γ(t) for all s, t ∈ [0, 1] (for example, for each t ∈ [0, 1]
consider the open relative to [0, 1] set (t − δ, t + δ) ∩ [0, 1] where δ is as
given in the definition of analytic continuation; for the resulting open cover
of [0, 1], extract a finite subcover and “walk” across γ picking up
[fs ]γ(s) = [ft ]γ(t) for each of the finite segments of γ).

Since f is entire
and equals each fs on some open set then R(s) = ∞ for all x ∈ [0, 1].
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Lemma IX.3.1

Lemma IX.3.1 (continued 1)

Proof (continued). Suppose R(t) < ∞ for all t ∈ [0, 1]. Fix t and let
τ = γ(t). Let ft =

∑∞
n=0 τn(z − τ)n. By the definition of analytic

continuation there is δ1 > 0 such that |s − t| < δ1 implies
γ(s) ∈ Dt ∩ B(τ ;R(t)) (we have δ > 0 such that γ(s) ∈ Dt for
|s − t| > | < δ and there is δ′ > 0 such that
|γ(s)− γ(t)| = |γ(s)− τ | < R(t) since γ is continuous at t; let
δ1 = min{δ, δ′}) and [fs ]γ(s) = [ft ]γ(s). Fix s ∈ [0, 1] with |s − t| < δ1 and
let σ = γ(s). Now ft can be extended to an analytic function on all of
B(τ ;R(t)) (namely, the power series for ft given above). Since
fs(z) = ft(z) on some neighborhood of σ = γ(s), then fs can be extended
so that it is analytic on B(τ ;R(t)) ∪ Ds . So let fs have power series
expansion fs(z) =

∑∞
n=0 σn(z − σ)n about z = σ with radius of

convergence R(s).
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Lemma IX.3.1

Lemma IX.3.1 (continued 2)

Proof (continued). We have:

Since ft(z) = fs(z) on some neighborhood of γ and ft is analytic on
B(τ ;R(t)) then the power series for fs about σ must have radius of
convergence that at least reaches the boundary of B(τ ;R(t)) as shown
above. That is, R(s) is at least as big as the distance from σ to the circle
|z − τ | = R(t). So R(s) ≥ d(σ, {z | |z − τ | = R(t)}) = R(t)− |τ − σ|.
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Lemma IX.3.1

Lemma IX.3.1 (continued 3)

Lemma IX.3.1. Let γ : [0, 1] → C be a point and let
{(ft ,Dt) | 0 ≤ t ≤ 1} be an analytic continuation along γ. For 0 ≤ t ≤ 1
let R(t) be the radius of convergence of the power series expansion of ft
about z = γ(t). Then either R(T ) = ∞ or T : [0, 1] → (0,∞) is
continuous.

Proof (continued). But this gives R(t)− R(s) ≤ |τ − σ| = |γ(t)− γ(s)|.
A similar argument (interchanging the roles of s and t) gives that
R(s)− R(t) ≤ |γ(t)− γ(s)|. Hence |R(t)− R(s)| ≤ |γ(t)− γ(s)| for
|t − s| < δ1. Let t ∈ [0, 1] and let ε > 0. Since γ is continuous at t there
is δ2 > 0 such that |t − s| < δ2 implies |γ(t)− γ(s)| < ε. Let
δ = min{δ1, δ2}. Then for |t − s| < δ we have
|R(t)− R(s)| ≤ |γ(t)− γ(s)| < ε and so R is continuous at T ∈ [0, 1].
Since t is an arbitrary element of [0, 1], R is continuous on [0, 1].
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Lemma IX.3.2

Lemma IX.3.2

Lemma IX.3.2. Let γ : [0, 1] → C be a path from a to b and let
{(ft ,Dt) | 0 ≤ t ≤ 1} be an analytic continuation along path γ. There is a
number ε > 0 such that if σ : [0, 1] → C is any path from a to b with
|γ(t)− σ(t)| < ε for all t ∈ [0, 1], and if {(gt ,Bt) | 0 ≤ t ≤ 1} is any
continuation along σ with [g0]a = [f0]a; then [g1]a = [f1]b.

Proof. For 0 ≤ t ≤ 1, let R(t) be the radius of convergence of the power
series expansion of ft about z = γ(t). By Lemma IX.3.1, either R(t) ≡ 0
or R(t) is continuous and (finite) positive valued. If R(t) ≡ ∞ then there
is entire function f such that f ≡ ft on Dt and f = gt on Bt . In particular,
f = f − 1 on D1, f = g1 on B1, and b ∈ D1 ∩ B1. Since D1 ∩ B − 1 is an
open set then f (z) = f1(z) = g1(z) on some neighborhood of 1 and so
[g1]b = [f1]b. So we now assume R(t) < ∞ for all t ∈ [0, 1], R(t) > 0,
and that R is continuous.

Since R(t) is continuous on [0, 1] then R(t) assumes some positive
minimum value on [0, 1].
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Lemma IX.3.2

Lemma IX.3.2 (continued 1)

Proof (continued). Let

0 < ε <
1

2
{R(t) | 0 ≤ t ≤ 1} (3.3)

and suppose that σ and {(gt ,Bt) | 0 ≤ t ≤ 1} is as hypothesized. Since,
in the definition of analytic continuation, “the sets Dt in the definition can
be enlarged or diminished without affecting the fact that there is a
continuation” (Conway, page 214), we can assume that Dt is a disk
centered at γ(t) with radius R(t). Similarly, assume Bt is a disk centered
at σ(t) on which gt is analytic.

Since |σ(t)− γ(t)| < ε by hypothesis and ε < R(t) by choice of ε then
|σ(t)− γ(t)| < R(t), so σ(t) ∈ Dt , and, since σ(t) ∈ Bt by definition of
Bt , then σ(t) ∈ Bt ∩ Dt . So it makes sense to ask whether gt(z) = ft(z)
for all z ∈ Bt ∩ Dt . If we can show this is the case for t = 1, then the
claim follows. Define T = {t ∈ [0, 1] | ft(z) = gt(z) for all z ∈ Bt ∩ Dt}.
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Lemma IX.3.2

Lemma IX.3.2 (continued 2)

Proof (continued). Similar to the proof of Proposition IX.2.4, we show
that T is a nonempty open and closed subset of [0, 1] and conclude that
T = [0, 1]; that is, 1 ∈ T . By hypothesis, [g0]a = [f0]a and so 0 ∈ T and
T 6= ∅. To show that T is open, fix t ∈ T and choose δ > 0 such that

|γ(s)− γ(t)| < ε, [fs ]γ(s) = [ft ]γ(s),

|σ(s)− σ(t)| < ε, [gs ]σ(s) = [gt ]σ(s), and (3.4)
σ(s) ∈ Bt

whenever |s − t| < δ. Such a δ > 0 exists for the first two conditions by
the definition of analytic continuation and the third condition holds since
σ(t) ∈ Bt ∩ Dt for all t ∈ [0, 1] (as shown above) and σ is continuous (so
σ(s) ∈ Bt for s “sufficiently close” to t).

We now show that
Bs ∩ Bt ∩Ds ∩Dt 6= ∅ for |s − t| < δ (in fact, we show that σ(s) is in the
intersection). If |s − t| < δ then |σ(s)− γ(t)| < ε < R(s) so that
σ(s) ∈ Ds (since Ds is a disk of radius R(s) centered at γ(s)).
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Lemma IX.3.2

Lemma IX.3.2 (continued 3)

Proof (continued). Also, by (3.3)

|σ(s)− γ(t)| = |σ(s)− γ(s) + γ(s)− γ(t)| ≤ |σ(s)− γ(s)|+ |γ(s)− γ(t)|

= ε + ε = 2ε < R(t).

So σ(s) ∈ Dt (since Dt is a disk of radius R(t) centered at γ(t)). By (3.4)
σ(s) ∈ Bt and γ(s) ∈ Bs by the definition of Bs , so
σ(s) ∈ Bs ∩Bt ∩Ds ∩Dt ≡ G . Since t ∈ T by hypothesis, the definition of
T gives that ft(z) = gt(z) for all z ∈ G . From (3.4), [f2]γ(s) = [ft ]γ(s) and
[gs ]σ(s) = [gt ]σ(s)|, or fs(z) = ft(z) for all z ∈ Ds and gs(z) = gt(z) for all
z ∈ Bs . Hence fs(z) = ft(z) and gs(z) = gt(z) for all z ∈ G .

But since G
has a limit point in Bs ∩Ds (all of these sets are nonempty intersections of
open sets) and fs(z) = ft(z) = gt(z) = gs(t) for all z ∈ Bs ∩ Ds and so
s ∈ T . That is, (t − δ, t + δ) ⊂ T and so T is open in [0, 1].

In Exercise IX.3.1, it is shown that T is closed in [0, 1]. The claim then
follows.
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Theorem IX.3.6. Monodromy Theorem

Theorem IX.3.6

Theorem IX.3.6. Monodromy Theorem.
Let (f ,D) be a function element and let G be a region containing D such
that (f ,D) admits unrestricted continuation in G . Let a ∈ D, b ∈ G and
let γ0 and γ1 be paths in G from a to b. Let {(ft ,Dt) | 0 ≤ t ≤ 1} and
{(gt ,Bt) | 0 ≤ t ≤ 1} be analytic continuations of (f ,D) along γ0 and γ1

respectively. If γ0 and γ1 are fixed end point homotopic in G then
[f1]b = [g1]b.

Proof. Since γ0 and γ1 are fixed end point homotopic in G then there is a
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Theorem IX.3.6. Monodromy Theorem

Theorem IX.3.6 (continued 1)

Proof (continued). By Proposition IX.2.4 the two analytic continuations
{(ft ,Dt) | 0 ≤ t ≤ 1} and {(ht,0,Dt,0) | 0 ≤ t ≤ 1} along γ0 yield
[f1]b = [h1,0]b, and the two analytic continuations {(gt ,Bt) | 0 ≤ t ≤ 1}
and {(ht,1,Dt,1) | 0 ≤ t ≤ 1} along γ1 yield [g1]b = [ht,1]b. So the claim
will follow if we show that [h1,0]b = [h1,1]b. Consider the set
U = {u ∈ [0, 1] | [h1,u]b = [h1,0]b}. We now show that U is nonempty and
both open and closed in [0, 1] (so that, since [0, 1] is connected,
U = [0, 1], 1 ∈ U, and the claim follows). Now 0 ∈ U so U 6= ∅.

Next we establish:
Claim 3.7. For u ∈ [0, 1] there is δ > 0 such that if |u − v | < δ then
[h1,u]b = [h1,v ]b.

For a fixed u ∈ [0, 1], Lemma IX.3.2 implies that there is ε > 0 such that if
σ is any path from a to b with |γu(t)− σ(t)| < ε for all t ∈ [0, 1], and if
{(kt ,Et) | 0 ≤ t ≤ 1} is any analytic continuation of (f ,D) along σ, then

[h1,u]b = [k1]b (3.8)
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Theorem IX.3.6. Monodromy Theorem

Theorem IX.3.6 (continued 2)

Proof (continued). Now Γ is continuous and [0, 1]× [0, 1] is compact, to
Γ is uniformly continuous by Theorem II.5.15, so there is a δ > 0 such that
if |u − v | < δ then |γu(t)− γv (t)| = |Γ(t, u)− Γ(t, v)| < ε for all
t ∈ [0, 1]. So with σ = γv , we have by (3.8) that [h1,u]b = [k1]b; with
σ = γu, we have by (3.8) that [h1,v ]b = [k1]b. Therefore [h1,u]b = [h1,v ]b
and Claim 3.7 holds.

Suppose u ∈ U and let δ > 0 be the number given by Claim 3.7. Since
u ∈ U then by the definition of U, [h1,u]b = [h1,0]b. By Claim 3.7, for
|u − v | < δ we have [h1,u]b = [h1,v ]b. So for |u − v | < δ we have
[h1,v ]b = [h1,0]b and so v ∈ U; that is, (u − δ, u + δ) ⊂ U. So U is open in
[0, 1].
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Theorem IX.3.6. Monodromy Theorem

Theorem IX.3.6 (continued 3)

Theorem IX.3.6. Monodromy Theorem.
Let (f ,D) be a function element and let G be a region containing D such
that (f ,D) admits unrestricted continuation in G . Let a ∈ D, b ∈ G and
let γ0 and γ1 be paths in G from a to b. Let {(ft ,Dt) | 0 ≤ t ≤ 1} and
{(gt ,Bt) | 0 ≤ t ≤ 1} be analytic continuations of (f ,D) along γ0 and γ1

respectively. If γ0 and γ1 are fixed end point homotopic in G then
[f1]b = [g1]b.

Proof (continued). If u ∈ U− and let δ > 0 is again as in Claim 3.7 then
there is v ∈ U with |u − v | < δ. By Claim 3.7 we have [h1,u]b = [h1,v ]b.
Since v ∈ U then by the definition of U, [h1,v ]b = [h1,0]b. Therefore
[h1,u]b = [h1,0]b and so u ∈ U. So U contains all its points of closure and
U is closed in [0, 1]. The claim now holds as described above.

() Complex Analysis September 4, 2017 14 / 16



Theorem IX.3.6. Monodromy Theorem

Theorem IX.3.6 (continued 3)

Theorem IX.3.6. Monodromy Theorem.
Let (f ,D) be a function element and let G be a region containing D such
that (f ,D) admits unrestricted continuation in G . Let a ∈ D, b ∈ G and
let γ0 and γ1 be paths in G from a to b. Let {(ft ,Dt) | 0 ≤ t ≤ 1} and
{(gt ,Bt) | 0 ≤ t ≤ 1} be analytic continuations of (f ,D) along γ0 and γ1

respectively. If γ0 and γ1 are fixed end point homotopic in G then
[f1]b = [g1]b.

Proof (continued). If u ∈ U− and let δ > 0 is again as in Claim 3.7 then
there is v ∈ U with |u − v | < δ. By Claim 3.7 we have [h1,u]b = [h1,v ]b.
Since v ∈ U then by the definition of U, [h1,v ]b = [h1,0]b. Therefore
[h1,u]b = [h1,0]b and so u ∈ U. So U contains all its points of closure and
U is closed in [0, 1]. The claim now holds as described above.

() Complex Analysis September 4, 2017 14 / 16



Corollary IX.3.9

Corollary IX.3.9

Corollary IX.3.9. Let (f ,D) be a function element which admits
unrestricted continuation in the simply connected region G . Then there is
an analytic function F : G → C such that F (z) = f (z) for all z ∈ D.

Proof. Fix a ∈ D and let z ∈ G . If γ is a path in G from a to z and
{(ft ,Dt) | 0 ≤ t ≤ 1} is an analytic continuation of (f ,D) along γ (which
exists since (f ,D) admits unrestricted continuation by hypothesis) then let
F (z , γ) = f1(z).

Since G is simply connected then for any path σ in G
from a to z , γ and σ are fixed end point homotopic, so by the Monodromy
Theorem (Theorem IX.3.9) [f1]b = [g1]b (where g1 = F (z , σ) results from
an analytic continuation of (f ,D) along σ); that is, F (z , γ) = F (z , σ).
Thus F (z) defined as F (z) = F (z , γ) is well defined (that is, independent
of the path from a to z).
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Corollary IX.3.9

Corollary IX.3.9 (continued)

Corollary IX.3.9. Let (f ,D) be a function element which admits
unrestricted continuation in the simply connected region G . Then there is
an analytic function F : G → C such that F (z) = f (z) for all z ∈ D.

Proof (continued). To show that F is analytic, let z ∈ G and let γ and
{(ft ,Dt) | 0 ≤ t ≤ 1} be as above. In Exercise IX.3.A it is to be shown
that F (w) = f1(w) for all w in some neighborhood of z (a “simple
argument,” according to Conway on page 221). So F is analytic on this
neighborhood of z . Since z is an arbitrary point in G , then F is analytic
on G .
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