Complex Analysis

Chapter IX. Analytic Continuation and Riemann Surfaces IX.4. Topological Spaces and Neighborhood Systems—Proofs of Theorems

John B. Conway

Functions of One Complex Variable I

Second Edition

Deringer

Proposition IX.4.17(b).

(b) If {N_x | x ∈ X} is a neighborhood system on a set X then let T = {U | x in U implies there is a V in N_x such that V ⊂ U}. Then T is a topology on X and N_x ⊂ T for each x.

Proof. Let $\{\mathcal{N}_x \mid x \in X\}$ be a neighborhood system on X and let \mathcal{T} be as described. Then $X \in \mathcal{T}$ trivially and $\emptyset \in \mathcal{T}$ vacuously.

Proposition IX.4.17(b).

(b) If {N_x | x ∈ X} is a neighborhood system on a set X then let T = {U | x in U implies there is a V in N_x such that V ⊂ U}. Then T is a topology on X and N_x ⊂ T for each x.

Proof. Let $\{\mathcal{N}_x \mid x \in X\}$ be a neighborhood system on X and let \mathcal{T} be as described. Then $X \in \mathcal{T}$ trivially and $\emptyset \in \mathcal{T}$ vacuously. Let

 $U_1, U_2, \ldots, U_n \in \mathcal{T}$ and put $U - \bigcap_{j=1}^n U_j$. If $x \in U$ then, by definition of \mathcal{T} , for each j there is $V_j \in \mathcal{N}_x$ such that $V_j \subset U_j$. From part (b) of the definition of \mathcal{N}_x (Definition IX.4.16) and by mathematical induction, there is $V \in \mathcal{N}_x$ such that $V \subset \bigcap_{j=1}^n V_j \subset \bigcap_{j=1}^n U_j = U$. So by the definition of $\mathcal{T}, U \in \mathcal{T}$.

Proposition IX.4.17(b).

(b) If {N_x | x ∈ X} is a neighborhood system on a set X then let T = {U | x in U implies there is a V in N_x such that V ⊂ U}. Then T is a topology on X and N_x ⊂ T for each x.

Proof. Let $\{\mathcal{N}_x \mid x \in X\}$ be a neighborhood system on X and let \mathcal{T} be as described. Then $X \in \mathcal{T}$ trivially and $\emptyset \in \mathcal{T}$ vacuously. Let $U_1, U_2, \ldots, U_n \in \mathcal{T}$ and put $U - \bigcap_{j=1}^n U_j$. If $x \in U$ then, by definition of \mathcal{T} , for each j there is $V_j \in \mathcal{N}_x$ such that $V_j \subset U_j$. From part (b) of the definition of \mathcal{N}_x (Definition IX.4.16) and by mathematical induction, there is $V \in \mathcal{N}_x$ such that $V \subset \bigcap_{j=1}^n V_j \subset \bigcap_{j=1}^n U_j = U$. So by the definition of \mathcal{T} , $U \in \mathcal{T}$. If $U_i \in \mathcal{T}$ for all $i \in I$ then for a given $s \in \bigcup_{i \in I} U_i$, there is $i' \in I$ with $x \in U_{i'}$. Since $U_{i'} \in \mathcal{T}$ there is $V \in \mathcal{N}_x$ with $V \subset U_{i'}$ (by the definition of \mathcal{T}). Then $V \subset \bigcup_{i \in I} U_i$ and so $\bigcup_{i \in I} U_i \in \mathcal{T}$. Therefore, \mathcal{T} is a topology on X.

Proposition IX.4.17(b).

(b) If {N_x | x ∈ X} is a neighborhood system on a set X then let T = {U | x in U implies there is a V in N_x such that V ⊂ U}. Then T is a topology on X and N_x ⊂ T for each x.

Proof. Let $\{\mathcal{N}_x \mid x \in X\}$ be a neighborhood system on X and let \mathcal{T} be as described. Then $X \in \mathcal{T}$ trivially and $\emptyset \in \mathcal{T}$ vacuously. Let $U_1, U_2, \ldots, U_n \in \mathcal{T}$ and put $U - \bigcap_{j=1}^n U_j$. If $x \in U$ then, by definition of \mathcal{T} , for each j there is $V_j \in \mathcal{N}_x$ such that $V_j \subset U_j$. From part (b) of the definition of \mathcal{N}_x (Definition IX.4.16) and by mathematical induction, there is $V \in \mathcal{N}_x$ such that $V \subset \bigcap_{j=1}^n V_j \subset \bigcap_{j=1}^n U_j = U$. So by the definition of $\mathcal{T}, U \in \mathcal{T}$. If $U_i \in \mathcal{T}$ for all $i \in I$ then for a given $s \in \bigcup_{i \in I} U_i$, there is $i' \in I$ with $x \in U_{i'}$. Since $U_{i'} \in \mathcal{T}$ there is $V \in \mathcal{N}_x$ with $V \subset U_{i'}$ (by the definition of \mathcal{T}). Then $V \subset \bigcup_{i \in I} U_i$ and so $\bigcup_{i \in I} U_i \in \mathcal{T}$. Therefore, \mathcal{T} is a topology on X.

Proposition IX.4.17(b) (continued)

Proposition IX.4.17(b).

(b) If {N_x | x ∈ X} is a neighborhood system on a set X then let T = {U | x in U implies there is a V in N_x such that V ⊂ U}. Then T is a topology on X and N_x ⊂ T for each x.

Proof (continued). Fix $x \in X$ and let $U \in \mathcal{N}_x$. If $y \in U$ then for $V \in \mathcal{N}_y$ we have $y \in U \cap V$ and so by part (c) of the definition of neighborhood system (Definition IX.4.16; we take z in the definition to be y here) there is $W \in \mathcal{N}_y$ such that $W \subset U \cap V \subset U$. So, by the definition of \mathcal{T} , $U \in \mathcal{T}$ and hence $\mathcal{N}_x \subset \mathcal{T}$, as claimed.