Complex Analysis

Chapter IX. Analytic Continuation and Riemann Surfaces IX.5. The Sheaf of Germs of Analytic Functions on an Open Set—Proofs of Theorems

John B. Conway

Functions of One Complex Variable I

Second Edition

Table of contents

- Theorem IX.5.3
- Proposition IX.5.8
- 3 Corollary IX.5.9
- Theorem IX.5.10
- 5 Theorem IX.5.11
- 6 Theorem IX.5.15

Theorem IX.5.3. For each point $(a, [f]_a)$ in the sheaf $\mathscr{S}(G)$ let

 $\mathcal{N}_{(a,[f]_a)} = \{ \mathsf{N}(g,B) \mid a \in B \text{ and } [g]_a = [f]_a \}.$

Then $\{\mathcal{N}_{(a,[f]_a)} \mid (a,[f]_a) \in \mathscr{S}(G)\}$ is a neighborhood system on $\mathscr{S}(G)$ and the induced topology is Hausdorff. Furthermore, the induced topology makes the projection map $\rho : \mathscr{S}(G) \to G$ continuous.

Proof. Fix $(z, [f]_a)$ in $\mathscr{S}(G)$. We use Definition IX.4.16 to show that $\{\mathcal{N}_{(a,[f]_a)} \mid (a, [f]_a) \in \mathscr{S}(G)\}$ is a neighborhood system on $\mathscr{S}(G)$ (along with the observation that part (c) of the definition implies part (b) of the definition; see page 226 or the note in the class notes after Definition IX.4.16).

Theorem IX.5.3. For each point $(a, [f]_a)$ in the sheaf $\mathscr{S}(G)$ let

$$\mathcal{N}_{(a,[f]_a)} = \{ \mathsf{N}(g,B) \mid a \in B \text{ and } [g]_a = [f]_a \}.$$

Then $\{\mathcal{N}_{(a,[f]_a)} \mid (a,[f]_a) \in \mathscr{S}(G)\}$ is a neighborhood system on $\mathscr{S}(G)$ and the induced topology is Hausdorff. Furthermore, the induced topology makes the projection map $\rho : \mathscr{S}(G) \to G$ continuous.

Proof. Fix $(z, [f]_a)$ in $\mathscr{S}(G)$. We use Definition IX.4.16 to show that $\{\mathcal{N}_{(a,[f]_a)} \mid (a, [f]_a) \in \mathscr{S}(G)\}$ is a neighborhood system on $\mathscr{S}(G)$ (along with the observation that part (c) of the definition implies part (b) of the definition; see page 226 or the note in the class notes after Definition IX.4.16). For part (a) of Definition IX.4.16, notice that $U \in \mathcal{N}_{(a,[f]_a)}$ implies $U = N(g, B) = \{(z, [g]_z) \mid z \in B\}$ for some g and B such that $a \in B$ and $[g]_a = (a, [f]_a)$. Since $a \in B$ then $z = a \in B$ and so $(a, [g]_a) = (a, [f]_a) \in U$.

Theorem IX.5.3. For each point $(a, [f]_a)$ in the sheaf $\mathscr{S}(G)$ let

$$\mathcal{N}_{(a,[f]_a)} = \{ \mathcal{N}(g,B) \mid a \in B \text{ and } [g]_a = [f]_a \}.$$

Then $\{\mathcal{N}_{(a,[f]_a)} \mid (a,[f]_a) \in \mathscr{S}(G)\}$ is a neighborhood system on $\mathscr{S}(G)$ and the induced topology is Hausdorff. Furthermore, the induced topology makes the projection map $\rho : \mathscr{S}(G) \to G$ continuous.

Proof. Fix $(z, [f]_a)$ in $\mathscr{S}(G)$. We use Definition IX.4.16 to show that $\{\mathcal{N}_{(a,[f]_a)} \mid (a, [f]_a) \in \mathscr{S}(G)\}$ is a neighborhood system on $\mathscr{S}(G)$ (along with the observation that part (c) of the definition implies part (b) of the definition; see page 226 or the note in the class notes after Definition IX.4.16). For part (a) of Definition IX.4.16, notice that $U \in \mathcal{N}_{(a,[f]_a)}$ implies $U = N(g, B) = \{(z, [g]_z) \mid z \in B\}$ for some g and B such that $a \in B$ and $[g]_a = (a, [f]_a$. Since $a \in B$ then $z = a \in B$ and so $(a, [g]_a) = (a, [f]_a) \in U$. For condition (c) of Definition IX.4.16, let $N(g_1, B_1), N(g_2, B_2) \in \mathcal{N}_{(a, [f]_a)}$ and let

 $(b, [h]_b) \in N(g_1, B_1) \cap N(g_2, B_2).$ (5.4)

Theorem IX.5.3. For each point $(a, [f]_a)$ in the sheaf $\mathscr{S}(G)$ let

$$\mathcal{N}_{(a,[f]_a)} = \{ \mathcal{N}(g,B) \mid a \in B \text{ and } [g]_a = [f]_a \}.$$

Then $\{\mathcal{N}_{(a,[f]_a)} \mid (a,[f]_a) \in \mathscr{S}(G)\}$ is a neighborhood system on $\mathscr{S}(G)$ and the induced topology is Hausdorff. Furthermore, the induced topology makes the projection map $\rho : \mathscr{S}(G) \to G$ continuous.

Proof. Fix $(z, [f]_a)$ in $\mathscr{S}(G)$. We use Definition IX.4.16 to show that $\{\mathcal{N}_{(a,[f]_a)} \mid (a,[f]_a) \in \mathscr{S}(G)\}$ is a neighborhood system on $\mathscr{S}(G)$ (along with the observation that part (c) of the definition implies part (b) of the definition; see page 226 or the note in the class notes after Definition IX.4.16). For part (a) of Definition IX.4.16, notice that $U \in \mathcal{N}_{(a,[f]_a)}$ implies $U = N(g, B) = \{(z, [g]_z) \mid z \in B\}$ for some g and B such that $a \in B$ and $[g]_a = (a, [f]_a$. Since $a \in B$ then $z = a \in B$ and so $(a, [g]_a) = (a, [f]_a) \in U$. For condition (c) of Definition IX.4.16, let $N(g_1, B_1), N(g_2, B_2) \in \mathcal{N}_{(a, [f]_a)}$ and let

 $(b, [h]_b) \in N(g_1, B_1) \cap N(g_2, B_2).$ (5.4)

Proof (continued). We need to find function element (k, W) such that $N(k, W) \in \mathcal{N}_{(b,[h]_b)}$ and $N(k, W) \subset N(g_1, B_1) \cap N(g_2, B_2)$. If follows from (5.4) and the definition of N(g, B) that $b \in B_1 \sup B_2$ and $[h]_b = [g_1]_b = [g_2]_b$ (as argued above when justifying part(a) of Definition IX.4.16). Since $[h]_b = [g_1]_b = [g_2]_b$ then there is a neighborhood W of b such that $h(z) = g_1(z) = g_2(z)$ for all $z \in W$, and so $W \subset B_1 \cap B_2$. Now $N(h, W) \in \mathcal{N}_{(b,[h]_b)}$.

Proof (continued). We need to find function element (k, W) such that $N(k, W) \in \mathcal{N}_{(b, [h]_{h})}$ and $N(k, W) \subset N(g_1, B_1) \cap N(g_2, B_2)$. If follows from (5.4) and the definition of N(g, B) that $b \in B_1 \sup B_2$ and $[h]_b = [g_1]_b = [g_2]_b$ (as argued above when justifying part(a) of Definition IX.4.16). Since $[h]_b = [g_1]_b = [g_2]_b$ then there is a neighborhood W of b such that $h(z) = g_1(z) = g_2(z)$ for all $z \in W$, and so $W \subset B_1 \cap B_2$. Now $N(h, W) \in \mathcal{N}_{(h, [h]_h)}$. Finally, $N(h, W) = \{(z, [h]_z) \mid z \in W\}$ so for any $(z, [h]_z) \in N(h, W)$, we have $(z, [h]_z) \in N(g_1, B_1) \cap N(g_2, B_2)$ since $z \in W$ implies $z \in B_1 \cap B_2$ and h is defined on W. That is, $N(h, W) \subset N(g_1, B_1) \cap N(g_2, B_2)$. So part (c) of Definition IX.4.16 is satisfied and $\{\mathcal{N}_{(a,[f]_a)} \mid (a,[f]_a) \in \mathscr{S}(G)\}$ is a neighborhood system on

Proof (continued). We need to find function element (k, W) such that $N(k, W) \in \mathcal{N}_{(b, \lceil h \rceil_b)}$ and $N(k, W) \subset N(g_1, B_1) \cap N(g_2, B_2)$. If follows from (5.4) and the definition of N(g, B) that $b \in B_1 \sup B_2$ and $[h]_b = [g_1]_b = [g_2]_b$ (as argued above when justifying part(a) of Definition IX.4.16). Since $[h]_b = [g_1]_b = [g_2]_b$ then there is a neighborhood W of b such that $h(z) = g_1(z) = g_2(z)$ for all $z \in W$, and so $W \subset B_1 \cap B_2$. Now $N(h, W) \in \mathcal{N}_{(h, [h]_k)}$. Finally, $N(h, W) = \{(z, [h]_z) \mid z \in W\}$ so for any $(z, [h]_z) \in N(h, W)$, we have $(z, [h]_z) \in N(g_1, B_1) \cap N(g_2, B_2)$ since $z \in W$ implies $z \in B_1 \cap B_2$ and h is defined on W. That is, $N(h, W) \subset N(g_1, B_1) \cap N(g_2, B_2)$. So part (c) of Definition IX.4.16 is satisfied and $\{\mathcal{N}_{(a,[f]_a)} \mid (a,[f]_a) \in \mathscr{S}(G)\}$ is a neighborhood system on ().

To show the topology induced by the neighborhood system is Hausdorff, we use Corollary IX.4.19. Let $(a, [f]_1)$ and $(b, [g]_b)$ be distinct points of $\mathscr{S}(G)$.

Proof (continued). We need to find function element (k, W) such that $N(k, W) \in \mathcal{N}_{(b, [h]_{h})}$ and $N(k, W) \subset N(g_1, B_1) \cap N(g_2, B_2)$. If follows from (5.4) and the definition of N(g, B) that $b \in B_1 \sup B_2$ and $[h]_b = [g_1]_b = [g_2]_b$ (as argued above when justifying part(a) of Definition IX.4.16). Since $[h]_b = [g_1]_b = [g_2]_b$ then there is a neighborhood W of b such that $h(z) = g_1(z) = g_2(z)$ for all $z \in W$, and so $W \subset B_1 \cap B_2$. Now $N(h, W) \in \mathcal{N}_{(b, [h]_b)}$. Finally, $N(h, W) = \{(z, [h]_z) \mid z \in W\}$ so for any $(z, [h]_z) \in N(h, W)$, we have $(z, [h]_z) \in N(g_1, B_1) \cap N(g_2, B_2)$ since $z \in W$ implies $z \in B_1 \cap B_2$ and h is defined on W. That is, $N(h, W) \subset N(g_1, B_1) \cap N(g_2, B_2)$. So part (c) of Definition IX.4.16 is satisfied and $\{\mathcal{N}_{(a,[f]_a)} \mid (a,[f]_a) \in \mathscr{S}(G)\}$ is a neighborhood system on ().

To show the topology induced by the neighborhood system is Hausdorff, we use Corollary IX.4.19. Let $(a, [f]_1)$ and $(b, [g]_b)$ be distinct points of $\mathscr{S}(G)$.

Proof (continued). We must find neighborhood N(f, A) of $(a, [f]_a)$ and a neighborhood N(g, B) of $(b, [g]_b)$ such that $N(f, A) \cap N(g, B) = \emptyset$. Notice that as part of the neighborhood system, both N(f, A) and (N(g, B) are in fact open sets. Notice that $(a, [f]_1) \neq (b, [g]_b)$ implies that either $a \neq b$, or a = b and $[f]_a \neq [g]_a$. If $a \neq b$ then let A and B be disjoint disks about a and b respectively (which can be done since \mathbb{C} is Hausdorff); then $N(f, A) \cap N(g, B) = \emptyset$. If a = b and $[f]_a \neq [g]_a$, then there is a disk B = B(a; r) such that both f and g are defined on D but $f(z) \neq g(z)$ for 0 < |z - a| < r.

Proof (continued). We must find neighborhood N(f, A) of $(a, [f]_a)$ and a neighborhood N(g, B) of $(b, [g]_b)$ such that $N(f, A) \cap N(g, B) = \emptyset$. Notice that as part of the neighborhood system, both N(f, A) and $(N(g, B) \text{ are in fact open sets. Notice that } (a, [f]_1) \neq (b, [g]_b) \text{ implies}$ that either $a \neq b$, or a = b and $[f]_a \neq [g]_a$. If $a \neq b$ then let A and B be disjoint disks about a and b respectively (which can be done since \mathbb{C} is Hausdorff); then $N(f, A) \cap N(g, B) = \emptyset$. If a = b and $[f]_a \neq [g]_a$, then there is a disk B = B(a; r) such that both f and g are defined on D but $f(z) \neq g(z)$ for 0 < |z - a| < r. (If we negate the condition f(z) = g(z)for all z in some disk centered at a, we get that there is some z' in the disk where $f(z') \neq g(z')$. But since two functions which are equal on a set of points with a limit point must be equal by Corollary IV.3.8, then by the Bolzano-Weierstrass Theorem there can then be only a finite number of points in the disk where the functions are equal. It then follows that the disk D described above exists.)

Proof (continued). We must find neighborhood N(f, A) of $(a, [f]_a)$ and a neighborhood N(g, B) of $(b, [g]_b)$ such that $N(f, A) \cap N(g, B) = \emptyset$. Notice that as part of the neighborhood system, both N(f, A) and $(N(g, B) \text{ are in fact open sets. Notice that } (a, [f]_1) \neq (b, [g]_b) \text{ implies}$ that either $a \neq b$, or a = b and $[f]_a \neq [g]_a$. If $a \neq b$ then let A and B be disjoint disks about a and b respectively (which can be done since \mathbb{C} is Hausdorff); then $N(f, A) \cap N(g, B) = \emptyset$. If a = b and $[f]_a \neq [g]_a$, then there is a disk B = B(a; r) such that both f and g are defined on D but $f(z) \neq g(z)$ for 0 < |z - a| < r. (If we negate the condition f(z) = g(z)for all z in some disk centered at a, we get that there is some z' in the disk where $f(z') \neq g(z')$. But since two functions which are equal on a set of points with a limit point must be equal by Corollary IV.3.8, then by the Bolzano-Weierstrass Theorem there can then be only a finite number of points in the disk where the functions are equal. It then follows that the disk D described above exists.)

Proof (continued). ASSUME $N(f, D) \cap N(g, D) \neq \emptyset$ and that $(z, [h]_z) \in N(f, D) \cap N(g, D)$. Then $z \in D$, $[h]_z = [f]_z$, and $[h]_z = [g]_z$. But then f and g are equal on some neighborhood of z, CONTRADICTING the existence of B(z, ; r) above. So the assumption that $N(f, D) \cap N(g, D) \neq \emptyset$ is false and hence neighborhoods N(f, D) and N(g, D) of $[f]_z$ and $[g]_z$ respectively are disjoint. That is, the induced topology is Hausdorff.

Proof (continued). ASSUME $N(f, D) \cap N(g, D) \neq \emptyset$ and that $(z, [h]_z) \in N(f, D) \cap N(g, D)$. Then $z \in D$, $[h]_z = [f]_z$, and $[h]_z = [g]_z$. But then f and g are equal on some neighborhood of z, CONTRADICTING the existence of B(z, ; r) above. So the assumption that $N(f, D) \cap N(g, D) \neq \emptyset$ is false and hence neighborhoods N(f, D) and N(g, D) of $[f]_z$ and $[g]_z$ respectively are disjoint. That is, the induced topology is Hausdorff.

Finally for the continuity of $\rho : \mathscr{S}(G) \to G$, let $U \subset G$ be open. Let $(x, [f]_z) \in \rho^{-1}(U)$. Then $\rho((z, [f]_z)) = z \in U$. Let $D \subset G$ be a disk containing z on which f is defined and such that $D \subset U$ and $N(f, D) \subset \rho^{-1}(U)$. By Exercise IX.4.3, we have that ρ is continuous.

Proof (continued). ASSUME $N(f, D) \cap N(g, D) \neq \emptyset$ and that $(z, [h]_z) \in N(f, D) \cap N(g, D)$. Then $z \in D$, $[h]_z = [f]_z$, and $[h]_z = [g]_z$. But then f and g are equal on some neighborhood of z, CONTRADICTING the existence of B(z, ; r) above. So the assumption that $N(f, D) \cap N(g, D) \neq \emptyset$ is false and hence neighborhoods N(f, D) and N(g, D) of $[f]_z$ and $[g]_z$ respectively are disjoint. That is, the induced topology is Hausdorff.

Finally for the continuity of $\rho : \mathscr{S}(G) \to G$, let $U \subset G$ be open. Let $(x, [f]_z) \in \rho^{-1}(U)$. Then $\rho((z, [f]_z)) = z \in U$. Let $D \subset G$ be a disk containing z on which f is defined and such that $D \subset U$ and $N(f, D) \subset \rho^{-1}(U)$. By Exercise IX.4.3, we have that ρ is continuous.

Proposition IX.5.8

Proposition IX.5.8. Let G be an open subset of the complex plane and let U be an open connected subset of G such that there is an analytic function f defined on U. Then $N(f, U) = \{(z, [f]_z) \mid z \in U\}$ is arcwise connected in $\mathscr{S}(G)$.

Proof. Let $(a, [f]_a)$ and $(b, [f]_b)$ be any two points in N(f, U). Then $a, b \in U$. Since U is a region, by Theorem II.2.3, there is a (polygonal) path $\gamma : [0,1] \rightarrow U$ from a to b. Define $\sigma : [0,1] \rightarrow N(f, U)$ as $\sigma(t) = (\gamma(t), [f]_{\gamma(t)})$. Then $\sigma(0) = (\gamma(0), [f]_{\gamma(0)}) = (a, [f]_a)$ and $\sigma(1) = (\gamma(1), [f]_{\gamma(1)}) = (b, [f]_b)$. We need to show that σ is continuous.

Proposition IX.5.8

Proposition IX.5.8. Let G be an open subset of the complex plane and let U be an open connected subset of G such that there is an analytic function f defined on U. Then $N(f, U) = \{(z, [f]_z) \mid z \in U\}$ is arcwise connected in $\mathscr{S}(G)$.

Proof. Let $(a, [f]_a)$ and $(b, [f]_b)$ be any two points in N(f, U). Then $a, b \in U$. Since U is a region, by Theorem II.2.3, there is a (polygonal) path $\gamma : [0, 1] \rightarrow U$ from a to b. Define $\sigma : [0, 1] \rightarrow N(f, U)$ as $\sigma(t) = (\gamma(t), [f]_{\gamma(t)})$. Then $\sigma(0) = (\gamma(0), [f]_{\gamma(0)}) = (a, [f]_a)$ and $\sigma(1) = (\gamma(1), [f]_{\gamma(1)}) = (b, [f]_b)$. We need to show that σ is continuous.

Fix $t \in [0,1]$ and let $N(g, V) = \{(z, [g]_z) \mid z \in V\}$ be a neighborhood of $\sigma(t) = (\gamma(t), [f]_{\gamma(t)})$. Then $\gamma(t) \in V$ and $[f]_{\gamma(t)} = [g]_{\gamma(t)}$. So f and g agree on a neighborhood of $\gamma(t)$; that is, there is r > 0 such that $B(\gamma(t); r) \subset U \cap V$ and f(z) = g(z) for all $z \in B(\gamma(t); r)$. Since γ is continuous at t, there is $\delta > 0$ such that $|\gamma(s) - \gamma(t)| < r$ whenever $|s - r| < \delta$.

Proposition IX.5.8

Proposition IX.5.8. Let G be an open subset of the complex plane and let U be an open connected subset of G such that there is an analytic function f defined on U. Then $N(f, U) = \{(z, [f]_z) \mid z \in U\}$ is arcwise connected in $\mathscr{S}(G)$.

Proof. Let $(a, [f]_a)$ and $(b, [f]_b)$ be any two points in N(f, U). Then $a, b \in U$. Since U is a region, by Theorem II.2.3, there is a (polygonal) path $\gamma : [0,1] \rightarrow U$ from a to b. Define $\sigma : [0,1] \rightarrow N(f, U)$ as $\sigma(t) = (\gamma(t), [f]_{\gamma(t)})$. Then $\sigma(0) = (\gamma(0), [f]_{\gamma(0)}) = (a, [f]_a)$ and $\sigma(1) = (\gamma(1), [f]_{\gamma(1)}) = (b, [f]_b)$. We need to show that σ is continuous.

Fix $t \in [0,1]$ and let $N(g, V) = \{(z, [g]_z) \mid z \in V\}$ be a neighborhood of $\sigma(t) = (\gamma(t), [f]_{\gamma(t)})$. Then $\gamma(t) \in V$ and $[f]_{\gamma(t)} = [g]_{\gamma(t)}$. So f and g agree on a neighborhood of $\gamma(t)$; that is, there is r > 0 such that $B(\gamma(t); r) \subset U \cap V$ and f(z) = g(z) for all $z \in B(\gamma(t); r)$. Since γ is continuous at t, there is $\delta > 0$ such that $|\gamma(s) - \gamma(t)| < r$ whenever $|s - r| < \delta$.

Proposition IX.5.8 (continued)

Proposition IX.5.8. Let G be an open subset of the complex plane and let U be an open connected subset of G such that there is an analytic function f defined on U. Then $N(f, U) = \{(z, [f]_z) \mid z \in U\}$ is arcwise connected in $\mathscr{S}(G)$.

Proof (continued). So $s \in (t - \delta, t + \delta)$ implies that $\gamma(s) \in B(\gamma(t); r)$ and so $f(\gamma(s)) = g(\gamma(s))$ for all $s \in (t - \delta, t + \delta)$. So for $s \in (t - \delta, t + \delta), \sigma(s) = (\gamma(s), [f]_{\gamma(s)}) = (\gamma(s), [g]_{\gamma(s)}) \in N(g, V)$. Since $\sigma((t - \delta, t + \delta)) \subset g, V)$, by Exercise IX.4.3, σ is continuous and the claim follows.

Corollary IX.5.9. The sheaf of germs of analytic functions on G, $\mathscr{S}(G)$, is locally arcwise connected and the components of $\mathscr{S}(G)$ are open arcwise connected sets.

Proof. To show locally arcwise connected, we need to show that for each point $(z, [f]_z) \in \mathscr{S}(G)$ and each open set U_1 containing $(z, [f]_z)$ there is an open arcwise connected set U_2 containing $(z, [f]_z)$ with $U_z \subset U_1$. For point $(z, [f]_z)$ and open set U_1 containing $(z, [f]_a)$, by Theorem IX.5.3(b) there is a neighborhood system element $U_2 = N(f, U) \subset U_1$ (also recall that a neighborhood system is a "basis" for the induced topology).

Corollary IX.5.9. The sheaf of germs of analytic functions on G, $\mathscr{S}(G)$, is locally arcwise connected and the components of $\mathscr{S}(G)$ are open arcwise connected sets.

Proof. To show locally arcwise connected, we need to show that for each point $(z, [f]_z) \in \mathscr{S}(G)$ and each open set U_1 containing $(z, [f]_z)$ there is an open arcwise connected set U_2 containing $(z, [f]_z)$ with $U_z \subset U_1$. For point $(z, [f]_z)$ and open set U_1 containing $(z, [f]_a)$, by Theorem IX.5.3(b) there is a neighborhood system element $U_2 = N(f, U) \subset U_1$ (also recall that a neighborhood system is a "basis" for the induced topology). By Theorem IX.5.8, $U_2 = N(f, U)$ is arcwise connected in $\mathscr{S}(G)$. Hence $\mathscr{S}(G)$ is locally arcwise connected.

Corollary IX.5.9. The sheaf of germs of analytic functions on G, $\mathscr{S}(G)$, is locally arcwise connected and the components of $\mathscr{S}(G)$ are open arcwise connected sets.

Proof. To show locally arcwise connected, we need to show that for each point $(z, [f]_z) \in \mathscr{S}(G)$ and each open set U_1 containing $(z, [f]_z)$ there is an open arcwise connected set U_2 containing $(z, [f]_z)$ with $U_z \subset U_1$. For point $(z, [f]_z)$ and open set U_1 containing $(z, [f]_a)$, by Theorem IX.5.3(b) there is a neighborhood system element $U_2 = N(f, U) \subset U_1$ (also recall that a neighborhood system is a "basis" for the induced topology). By Theorem IX.5.8, $U_2 = N(f, U)$ is arcwise connected in $\mathscr{S}(G)$. Hence $\mathscr{S}(G)$ is locally arcwise connected.

Since we know that $\mathscr{S}(G)$ is locally arcwise connected, by Proposition IX.5.6(b), each component of $\mathscr{S}(G)$ is open. Since "components" are by definition connected, by Proposition IX.5.7 the components of $\mathscr{S}(G)$ are arcwise connected sets.

Corollary IX.5.9. The sheaf of germs of analytic functions on G, $\mathscr{S}(G)$, is locally arcwise connected and the components of $\mathscr{S}(G)$ are open arcwise connected sets.

Proof. To show locally arcwise connected, we need to show that for each point $(z, [f]_z) \in \mathscr{S}(G)$ and each open set U_1 containing $(z, [f]_z)$ there is an open arcwise connected set U_2 containing $(z, [f]_z)$ with $U_z \subset U_1$. For point $(z, [f]_z)$ and open set U_1 containing $(z, [f]_a)$, by Theorem IX.5.3(b) there is a neighborhood system element $U_2 = N(f, U) \subset U_1$ (also recall that a neighborhood system is a "basis" for the induced topology). By Theorem IX.5.8, $U_2 = N(f, U)$ is arcwise connected in $\mathscr{S}(G)$. Hence $\mathscr{S}(G)$ is locally arcwise connected.

Since we know that $\mathscr{S}(G)$ is locally arcwise connected, by Proposition IX.5.6(b), each component of $\mathscr{S}(G)$ is open. Since "components" are by definition connected, by Proposition IX.5.7 the components of $\mathscr{S}(G)$ are arcwise connected sets.

Theorem IX.5.10. There is a path in $\mathscr{S}(G)$ from $(a, [f]_a)$ to $(b, [g]_b)$ if and only if there is a path γ in G from a to b such that $[g]_b$ is an analytic continuation of $[f]_a$ along γ .

Proof. Suppose that $\sigma : [0,1] \to \mathscr{S}(G)$ is a path with $\sigma(0) = (a, [f]_a)$ and $\sigma(1) = (b, [g]_b)$. With $\rho : \mathscr{S}(G) \to \mathbb{C}$ defined as $\rho((z, [f]_z)) = z$ as the projection map we have that $\gamma = \rho \circ \sigma$ is a path in G from $\gamma(0) = \rho(\sigma(0)) = \rho((a, [f]_a)) = a$ to $\sigma(1) = \rho(\sigma(1)) = \rho((b, [g]_b)) = b$ (notice that *rho* is continuous by Theorem IX.5.3, the "furthermore" part).

Theorem IX.5.10. There is a path in $\mathscr{S}(G)$ from $(a, [f]_a)$ to $(b, [g]_b)$ if and only if there is a path γ in G from a to b such that $[g]_b$ is an analytic continuation of $[f]_a$ along γ .

Proof. Suppose that $\sigma : [0,1] \to \mathscr{S}(G)$ is a path with $\sigma(0) = (a, [f]_a)$ and $\sigma(1) = (b, [g]_b)$. With $\rho : \mathscr{S}(G) \to \mathbb{C}$ defined as $\rho((z, [f]_z)) = z$ as the projection map we have that $\gamma = \rho \circ \sigma$ is a path in *G* from $\gamma(0) = \rho(\sigma(0)) = \rho((a, [f]_a)) = a$ to $\sigma(1) = \rho(\sigma(1)) = \rho((b, [g]_b)) = b$ (notice that *rho* is continuous by Theorem IX.5.3, the "furthermore" part). Since $\sigma(t) \in \mathscr{S}(G) = \{(z, [f]_z) \mid z \in G \text{ and } f \text{ is analytic at } z\}$ for each $t \in [0, 1]$, then there is a germ $[f_t]_{\gamma(t)} \in \mathscr{S}(G)$ such that $\sigma(t) = (\gamma(t), [f_t]_{\gamma(t)})$ for each $t \in [0, 1]$. We claim that $\{[f_t]_{\gamma(t)} \mid 0 \leq t \leq 1\}$ is the required continuation of $[f]_a$ along γ .

Theorem IX.5.10. There is a path in $\mathscr{S}(G)$ from $(a, [f]_a)$ to $(b, [g]_b)$ if and only if there is a path γ in G from a to b such that $[g]_b$ is an analytic continuation of $[f]_a$ along γ .

Proof. Suppose that $\sigma: [0,1] \to \mathscr{S}(G)$ is a path with $\sigma(0) = (a, [f]_a)$ and $\sigma(1) = (b, [g]_b)$. With $\rho : \mathscr{S}(G) \to \mathbb{C}$ defined as $\rho((z, [f]_z)) = z$ as the projection map we have that $\gamma = \rho \circ \sigma$ is a path in G from $\gamma(0) = \rho(\sigma(0)) = \rho((a, [f]_a)) = a \text{ to } \sigma(1) = \rho(\sigma(1)) = \rho((b, [g]_b)) = b$ (notice that *rho* is continuous by Theorem IX.5.3, the "furthermore" part). Since $\sigma(t) \in \mathscr{S}(G) = \{(z, [f]_z) \mid z \in G \text{ and } f \text{ is analytic at } z\}$ for each $t \in [0,1]$, then there is a germ $[f_t]_{\gamma(t)} \in \mathscr{S}(G)$ such that $\sigma(t) = (\gamma(t), [f_t]_{\gamma(t)})$ for each $t \in [0, 1]$. We claim that $\{[f_t]_{\gamma(t)} \mid 0 \le t \le 1\}$ is the required continuation of $[f]_a$ along γ . First, $\sigma(0) = [f_0]_{\gamma(0)} = [f]_a$ and $\sigma(1) = [f_1]_{\gamma(1)} = [g]_b$. For each $t \in [0, 1]$, let D_t be a disk about $z = \gamma(t)$ such that $D_t \subset G$ and f_t is analytic on D_t (this can be done by either the definition of sheaf of the germs $\mathscr{S}(G)$ or the definition of germ itself, $[f_t]_{\gamma(t)}$).

Theorem IX.5.10. There is a path in $\mathscr{S}(G)$ from $(a, [f]_a)$ to $(b, [g]_b)$ if and only if there is a path γ in G from a to b such that $[g]_b$ is an analytic continuation of $[f]_a$ along γ .

Proof. Suppose that $\sigma: [0,1] \to \mathscr{S}(G)$ is a path with $\sigma(0) = (a, [f]_a)$ and $\sigma(1) = (b, [g]_b)$. With $\rho : \mathscr{S}(G) \to \mathbb{C}$ defined as $\rho((z, [f]_z)) = z$ as the projection map we have that $\gamma = \rho \circ \sigma$ is a path in G from $\gamma(0) = \rho(\sigma(0)) = \rho((a, [f]_a)) = a \text{ to } \sigma(1) = \rho(\sigma(1)) = \rho((b, [g]_b)) = b$ (notice that *rho* is continuous by Theorem IX.5.3, the "furthermore" part). Since $\sigma(t) \in \mathscr{S}(G) = \{(z, [f]_z) \mid z \in G \text{ and } f \text{ is analytic at } z\}$ for each $t \in [0,1]$, then there is a germ $[f_t]_{\gamma(t)} \in \mathscr{S}(G)$ such that $\sigma(t) = (\gamma(t), [f_t]_{\gamma(t)})$ for each $t \in [0, 1]$. We claim that $\{[f_t]_{\gamma(t)} \mid 0 \le t \le 1\}$ is the required continuation of $[f]_a$ along γ . First, $\sigma(0) = [f_0]_{\gamma(0)} = [f]_a$ and $\sigma(1) = [f_1]_{\gamma(1)} = [g]_b$. For each $t \in [0, 1]$, let D_t be a disk about $z = \gamma(t)$ such that $D_t \subset G$ and f_t is analytic on D_t (this can be done by either the definition of sheaf of the germs $\mathscr{S}(G)$ or the definition of germ itself, $[f_t]_{\gamma(t)}$).

Proof (continued). Fix $t \in [0, 1]$. Now $N(f_t, D_t) = \{(z, [f]_z) \mid z \in D_t\}$ is a neighborhood of $\sigma(t) = (\gamma(t), [f_t]_{\gamma(t)})$ (it is an element of the neighborhood system which induces the topology) and σ is continuous so there is $\delta > 0$ such that $\sigma((t - \delta, t + \delta)) \subset N(f_t, D_t)$. That is, if $|s - t| < \delta$ then $\sigma(s) = (\gamma(s), [f_s]_{\gamma(s)}) \in N(f_t, D_t) = \{(s, [f_t]_z) \mid z \in D_t\}$ and so $z = \gamma(s) \in D_t$ and $[f_s]_{\gamma(s)} = [f_t]_{\gamma(s)}$. So by the Definition IX.2.2, $\{[f_t]_{\gamma(t)} \mid 0 \le t \le 1\}$ is an analytic continuation of (f, D_0) to (g, D_1) along γ .

Proof (continued). Fix $t \in [0, 1]$. Now $N(f_t, D_t) = \{(z, [f]_z) \mid z \in D_t\}$ is a neighborhood of $\sigma(t) = (\gamma(t), [f_t]_{\gamma(t)})$ (it is an element of the neighborhood system which induces the topology) and σ is continuous so there is $\delta > 0$ such that $\sigma((t - \delta, t + \delta)) \subset N(f_t, D_t)$. That is, if $|s - t| < \delta$ then $\sigma(s) = (\gamma(s), [f_s]_{\gamma(s)}) \in N(f_t, D_t) = \{(s, [f_t]_z) \mid z \in D_t\}$ and so $z = \gamma(s) \in D_t$ and $[f_s]_{\gamma(s)} = [f_t]_{\gamma(s)}$. So by the Definition IX.2.2, $\{[f_t]_{\gamma(t)} \mid 0 \le t \le 1\}$ is an analytic continuation of (f, D_0) to (g, D_1) along γ .

Now suppose that γ is a curve in G from a to b and $\{[f_t]_{\gamma(t)} \mid 0 \leq t \leq 1\}$ is an analytic continuation of $(f_0, D_0) = (f, D_0)$ to $(f_1, D_1) = (g, D_1)$ along γ . Define $\sigma : [0, 1] \to \mathscr{S}(G)$ as $\sigma(t) = (\gamma(t), [f_t]_{\gamma(t)})$. We need to show that σ is a path from $(a, [f]_a)$ to $(b, [g]_b)$.

Proof (continued). Fix $t \in [0, 1]$. Now $N(f_t, D_t) = \{(z, [f]_z) \mid z \in D_t\}$ is a neighborhood of $\sigma(t) = (\gamma(t), [f_t]_{\gamma(t)})$ (it is an element of the neighborhood system which induces the topology) and σ is continuous so there is $\delta > 0$ such that $\sigma((t - \delta, t + \delta)) \subset N(f_t, D_t)$. That is, if $|s - t| < \delta$ then $\sigma(s) = (\gamma(s), [f_s]_{\gamma(s)}) \in N(f_t, D_t) = \{(s, [f_t]_z) \mid z \in D_t\}$ and so $z = \gamma(s) \in D_t$ and $[f_s]_{\gamma(s)} = [f_t]_{\gamma(s)}$. So by the Definition IX.2.2, $\{[f_t]_{\gamma(t)} \mid 0 \le t \le 1\}$ is an analytic continuation of (f, D_0) to (g, D_1) along γ .

Now suppose that γ is a curve in G from a to b and $\{[f_t]_{\gamma(t)} \mid 0 \le t \le 1\}$ is an analytic continuation of $(f_0, D_0) = (f, D_0)$ to $(f_1, D_1) = (g, D_1)$ along γ . Define $\sigma : [0, 1] \to \mathscr{S}(G)$ as $\sigma(t) = (\gamma(t), [f_t]_{\gamma(t)})$. We need to show that σ is a path from $(a, [f]_a)$ to $(b, [g]_b)$. First,

$$\begin{split} \sigma(0) &= (\gamma(0), [f_0]_{\gamma(0)}) = (a, [f]_a) \text{ and } \sigma(1) = (\gamma(1), [f_1]_{\gamma(1)}) = (b, [g]_b). \\ \text{Then } \rho \circ \sigma(t) &= \rho(\sigma(t)) = \rho((\gamma(t), [f_t]_{\gamma(t)})) = \gamma(t). \text{ The argument of the} \\ \text{first paragraph of this proof can be used to show that } \sigma \text{ is continuous (see} \\ \text{Exercise IX.5.B) and the result follows.} \end{split}$$

Proof (continued). Fix $t \in [0, 1]$. Now $N(f_t, D_t) = \{(z, [f]_z) \mid z \in D_t\}$ is a neighborhood of $\sigma(t) = (\gamma(t), [f_t]_{\gamma(t)})$ (it is an element of the neighborhood system which induces the topology) and σ is continuous so there is $\delta > 0$ such that $\sigma((t - \delta, t + \delta)) \subset N(f_t, D_t)$. That is, if $|s - t| < \delta$ then $\sigma(s) = (\gamma(s), [f_s]_{\gamma(s)}) \in N(f_t, D_t) = \{(s, [f_t]_z) \mid z \in D_t\}$ and so $z = \gamma(s) \in D_t$ and $[f_s]_{\gamma(s)} = [f_t]_{\gamma(s)}$. So by the Definition IX.2.2, $\{[f_t]_{\gamma(t)} \mid 0 \le t \le 1\}$ is an analytic continuation of (f, D_0) to (g, D_1) along γ .

Now suppose that γ is a curve in G from a to b and $\{[f_t]_{\gamma(t)} \mid 0 \le t \le 1\}$ is an analytic continuation of $(f_0, D_0) = (f, D_0)$ to $(f_1, D_1) = (g, D_1)$ along γ . Define $\sigma : [0, 1] \to \mathscr{S}(G)$ as $\sigma(t) = (\gamma(t), [f_t]_{\gamma(t)})$. We need to show that σ is a path from $(a, [f]_a)$ to $(b, [g]_b)$. First, $\sigma(0) = (\gamma(0), [f_0]_{\gamma(0)}) = (a, [f]_a)$ and $\sigma(1) = (\gamma(1), [f_1]_{\gamma(1)}) = (b, [g]_b)$. Then $\rho \circ \sigma(t) = \rho(\sigma(t)) = \rho((\gamma(t), [f_t]_{\gamma(t)})) = \gamma(t)$. The argument of the first paragraph of this proof can be used to show that σ is continuous (see Exercise IX.5.B) and the result follows.

September 19, 2017 11 / 14

Theorem IX.5.11. Let $\mathscr{C} \subset \mathscr{S}(G)$ and let $(a, [f]_a) \in \mathscr{C}$. Then \mathscr{C} is a component of $\mathscr{S}(G)$ if and only if

 $\mathscr{C} = \{(b, [g]_b) \mid [g]_b \text{ is the continuation of } [f]_a \text{ along some curve in } G\}.$

Proof. Suppose is a component of $\mathscr{S}(G)$. By Corollary IX.5.9, \mathscr{C} is an open arcwise connected subset of $\mathscr{S}(G)$. That is, for each $(b, [g]_b) \in \mathscr{C}$ there is a path from $(a, [f]_a)$ to $(b, [g]_b)$. So by Theorem IX.5.10 there is a path γ from *a* to *b* such that $[g]_b$ is an analytic continuation of $[f]_a$ along γ .

Theorem IX.5.11. Let $\mathscr{C} \subset \mathscr{S}(G)$ and let $(a, [f]_a) \in \mathscr{C}$. Then \mathscr{C} is a component of $\mathscr{S}(G)$ if and only if

 $\mathscr{C} = \{ (b, [g]_b) \mid [g]_b \text{ is the continuation of } [f]_a \text{ along some curve in } G \}.$

Proof. Suppose is a component of $\mathscr{S}(G)$. By Corollary IX.5.9, \mathscr{C} is an open arcwise connected subset of $\mathscr{S}(G)$. That is, for each $(b, [g]_b) \in \mathscr{C}$ there is a path from $(a, [f]_a)$ to $(b, [g]_b)$. So by Theorem IX.5.10 there is a path γ from *a* to *b* such that $[g]_b$ is an analytic continuation of $[f]_a$ along γ . That is,

 $\mathscr{C} \subset \{(b, [g]_b) \mid [g]_b \text{ is the continuation of } [f]_a \text{ along some curve in } G\}.$

Conversely, if $[g]_b$ is the analytic continuation of $[f]_a$ along some curve γ in *G* (technically, by Definition IX.2.2, (g, D_1) is the analytic continuation of (f, D_0)), then $\sigma(t) = (\gamma(t), [f_t]_{\gamma(t)})$ is a path in $\mathscr{S}(G)$ from $(a, [f]_a)$ to $(b, [g]_b)$ and so the set \mathscr{C} of all such $[g]_b$ is arcwise connected in $\mathscr{S}(G)$ and by Proposition IX.5.6 is connected.

Theorem IX.5.11. Let $\mathscr{C} \subset \mathscr{S}(G)$ and let $(a, [f]_a) \in \mathscr{C}$. Then \mathscr{C} is a component of $\mathscr{S}(G)$ if and only if

 $\mathscr{C} = \{ (b, [g]_b) \mid [g]_b \text{ is the continuation of } [f]_a \text{ along some curve in } G \}.$

Proof. Suppose is a component of $\mathscr{S}(G)$. By Corollary IX.5.9, \mathscr{C} is an open arcwise connected subset of $\mathscr{S}(G)$. That is, for each $(b, [g]_b) \in \mathscr{C}$ there is a path from $(a, [f]_a)$ to $(b, [g]_b)$. So by Theorem IX.5.10 there is a path γ from *a* to *b* such that $[g]_b$ is an analytic continuation of $[f]_a$ along γ . That is,

 $\mathscr{C} \subset \{(b, [g]_b) \mid [g]_b \text{ is the continuation of } [f]_a \text{ along some curve in } G\}.$

Conversely, if $[g]_b$ is the analytic continuation of $[f]_a$ along some curve γ in G (technically, by Definition IX.2.2, (g, D_1) is the analytic continuation of (f, D_0)), then $\sigma(t) = (\gamma(t), [f_t]_{\gamma(t)})$ is a path in $\mathscr{S}(G)$ from $(a, [f]_a)$ to $(b, [g]_b)$ and so the set \mathscr{C} of all such $[g]_b$ is arcwise connected in $\mathscr{S}(G)$ and by Proposition IX.5.6 is connected.

Proof (continued). So $[g]_b$ is in the component of $\mathscr{S}(G)$ which contains $(a, [f]_a)$. That is, $\{(b, [g]_b) \mid [g]_b$ is the continuation of $[f]_a$ along some curve in $G\} \supset \mathbb{C}$. So the sets are equal, as claimed.

Now suppose that \mathscr{C} consists of all points $(b, [g]_b)$ such that $[g]_b$ is an analytic continuation of $[f]_a$. Then there is a path γ from *a* to *b* along which the analytic continuation occurs. Then $\sigma(t) = (\gamma(t), [f_t]_{\gamma(t)})$ is a path (arc) from $(a, [f]_1)$ to $(b, [g]_b)$ and so \mathscr{C} is arcwise connected and so by Proposition IX.5.6 is connected. So \mathscr{C} is a subset of the components of $\mathscr{S}(G)$ containing $[f]_a$.

Proof (continued). So $[g]_b$ is in the component of $\mathscr{S}(G)$ which contains $(a, [f]_a)$. That is, $\{(b, [g]_b) \mid [g]_b$ is the continuation of $[f]_a$ along some curve in $G\} \supset \mathbb{C}$. So the sets are equal, as claimed.

Now suppose that \mathscr{C} consists of all points $(b, [g]_b)$ such that $[g]_b$ is an analytic continuation of $[f]_a$. Then there is a path γ from a to b along which the analytic continuation occurs. Then $\sigma(t) = (\gamma(t), [f_t]_{\gamma(t)})$ is a path (arc) from $(a, [f]_1)$ to $(b, [g]_b)$ and so \mathscr{C} is arcwise connected and so by Proposition IX.5.6 is connected. So \mathscr{C} is a subset of the components of $\mathscr{S}(G)$ containing $[f]_a$. If \mathscr{C}_1 is the component of $\mathscr{S}(G)$ containing $(f)_a$. If \mathscr{C}_1 is the component of $\mathscr{S}(G)$ containing $(f)_a$ is the continuation of $[f]_a$ along some curve in G in the first paragraph plays the role in \mathscr{C}_1 and the claim holds.

Proof (continued). So $[g]_b$ is in the component of $\mathscr{S}(G)$ which contains $(a, [f]_a)$. That is, $\{(b, [g]_b) \mid [g]_b$ is the continuation of $[f]_a$ along some curve in $G\} \supset \mathbb{C}$. So the sets are equal, as claimed.

Now suppose that \mathscr{C} consists of all points $(b, [g]_b)$ such that $[g]_b$ is an analytic continuation of $[f]_a$. Then there is a path γ from a to b along which the analytic continuation occurs. Then $\sigma(t) = (\gamma(t), [f_t]_{\gamma(t)})$ is a path (arc) from $(a, [f]_1)$ to $(b, [g]_b)$ and so \mathscr{C} is arcwise connected and so by Proposition IX.5.6 is connected. So \mathscr{C} is a subset of the components of $\mathscr{S}(G)$ containing $[f]_a$. If \mathscr{C}_1 is the component of $\mathscr{S}(G)$ containing $(f)_a$. If \mathscr{C}_1 is the component of $\mathscr{S}(G)$ containing $(f)_a$ is the continuation of $[f]_a$ along some curve in G in the first paragraph plays the role in \mathscr{C}_1 and the claim holds.

Theorem IX.5.15. Let \mathscr{F} be a complete analytic function with base space G and let (\mathscr{R}, ρ) be its Riemann surface. Then $\rho : \mathscr{R} \to G$ is an open continuous map. Also, if $(a, [f]_a)$ is a point in \mathscr{R} then there is a neighborhood N(f, D) of $(a, [f]_a)$ such that ρ maps N(f, D)homeomorphically onto an open disk in \mathbb{C} .

Proof. As commented above, \mathscr{R} is a component of $\mathscr{S}(\mathbb{C})$. Since $\rho : \mathscr{S}(\mathbb{C}) \to \mathbb{C}$ is continuous by Theorem IX.5.3, then the restriction of ρ to $\mathscr{R} \subset \mathscr{S}(\mathbb{C})$ is continuous and the restriction maps $\mathscr{R} \to G$.

Theorem IX.5.15. Let \mathscr{F} be a complete analytic function with base space G and let (\mathscr{R}, ρ) be its Riemann surface. Then $\rho : \mathscr{R} \to G$ is an open continuous map. Also, if $(a, [f]_a)$ is a point in \mathscr{R} then there is a neighborhood N(f, D) of $(a, [f]_a)$ such that ρ maps N(f, D)homeomorphically onto an open disk in \mathbb{C} .

Proof. As commented above, \mathscr{R} is a component of $\mathscr{S}(\mathbb{C})$. Since $\rho : \mathscr{S}(\mathbb{C}) \to \mathbb{C}$ is continuous by Theorem IX.5.3, then the restriction of ρ to $\mathscr{R} \subset \mathscr{S}(\mathbb{C})$ is continuous and the restriction maps $\mathscr{R} \to G$. To show that $\rho : \mathscr{R} \to G$ is an open map, it suffices to show that $\rho(N(f, U))$ is open for neighborhood element (or "basis element" of the topology) of arbitrary function element (f, U) is open, by Exercise IX.4.4. But $\rho(N(f, U)) = U$ and U is open by the definition of function element (U is a region). Therefore $\rho : \mathscr{R} \to G$ is a continuous open map.

Theorem IX.5.15. Let \mathscr{F} be a complete analytic function with base space G and let (\mathscr{R}, ρ) be its Riemann surface. Then $\rho : \mathscr{R} \to G$ is an open continuous map. Also, if $(a, [f]_a)$ is a point in \mathscr{R} then there is a neighborhood N(f, D) of $(a, [f]_a)$ such that ρ maps N(f, D)homeomorphically onto an open disk in \mathbb{C} .

Proof. As commented above, \mathscr{R} is a component of $\mathscr{S}(\mathbb{C})$. Since $\rho : \mathscr{S}(\mathbb{C}) \to \mathbb{C}$ is continuous by Theorem IX.5.3, then the restriction of ρ to $\mathscr{R} \subset \mathscr{S}(\mathbb{C})$ is continuous and the restriction maps $\mathscr{R} \to G$. To show that $\rho : \mathscr{R} \to G$ is an open map, it suffices to show that $\rho(N(f, U))$ is open for neighborhood element (or "basis element" of the topology) of arbitrary function element (f, U) is open, by Exercise IX.4.4. But $\rho(N(f, U)) = U$ and U is open by the definition of function element (U is a region). Therefore $\rho : \mathscr{R} \to G$ is a continuous open map.

Theorem IX.5.15. Let \mathscr{F} be a complete analytic function with base space G and let (\mathscr{R}, ρ) be its Riemann surface. Then $\rho : \mathscr{R} \to G$ is an open continuous map. Also, if $(a, [f]_a)$ is a point in \mathscr{R} then there is a neighborhood N(f, D) of $(a, [f]_a)$ such that ρ maps N(f, D) homeomorphically onto an open disk in \mathbb{C} .

Proof. For $(a, [f]_a) \in \mathscr{R}$, let D be an open disk such that $(f, D) \in [f]_a$. Then $\rho : N(f, D) \to D$ is an open, continuous map by the previous paragraph and is onto. To show that ρ is a homeomorphism we only need now to show that it is one to one on N(f, D). But if $(b, [f]_b)$ and $(c, [f]_c)$ are distinct points of N(f, D) then $b \neq c$ and $\rho((b, [f]_b)) = b \neq c = \rho((c, [f]_c))$. So ρ is also one to one and hence $\rho : N(f, D) \to D$ is a homeomorphism, as claimed.

Theorem IX.5.15. Let \mathscr{F} be a complete analytic function with base space G and let (\mathscr{R}, ρ) be its Riemann surface. Then $\rho : \mathscr{R} \to G$ is an open continuous map. Also, if $(a, [f]_a)$ is a point in \mathscr{R} then there is a neighborhood N(f, D) of $(a, [f]_a)$ such that ρ maps N(f, D)homeomorphically onto an open disk in \mathbb{C} .

Proof. For $(a, [f]_a) \in \mathscr{R}$, let D be an open disk such that $(f, D) \in [f]_a$. Then $\rho : N(f, D) \to D$ is an open, continuous map by the previous paragraph and is onto. To show that ρ is a homeomorphism we only need now to show that it is one to one on N(f, D). But if $(b, [f]_b)$ and $(c, [f]_c)$ are distinct points of N(f, D) then $b \neq c$ and $\rho((b, [f]_b)) = b \neq c = \rho((c, [f]_c))$. So ρ is also one to one and hence $\rho : N(f, D) \to D$ is a homeomorphism, as claimed.