Complex Analysis

Chapter IX. Analytic Continuation and Riemann Surfaces
IX.6. Analytic Manifolds—Proofs of Theorems

Table of contents

(1) Proposition IX.6.3
(2) Proposition IX.6.6

Proposition IX.6.3

Proposition IX.6.3. Let (X, Φ) be an analytic surface.
(a) Let V be an open connected subset of X. If

$$
\Phi_{V}=\{(U \cap V, \varphi) \mid(U, \varphi) \in \Phi\}
$$

then $\left(V, \Phi_{V}\right)$ is an analytic surface.
(b) If Ω is a topological space such that there is a homeomorphism h of X onto Ω then with

$$
\Phi=\left\{\left(h(U), \varphi \circ h^{-1}\right) \mid(U, \varphi) \in \Phi\right\}
$$

we have that (Ω, Ψ) is an analytic surface.
Proof. (a) First, since every element of X is in at least one member of Φ then every element of V is in at least one element of Φ_{V} and part (i) of the definition is satisfied.

Proposition IX.6.3

Proposition IX.6.3. Let (X, Φ) be an analytic surface.
(a) Let V be an open connected subset of X. If

$$
\Phi_{V}=\{(U \cap V, \varphi) \mid(U, \varphi) \in \Phi\}
$$

then $\left(V, \Phi_{V}\right)$ is an analytic surface.
(b) If Ω is a topological space such that there is a homeomorphism h of X onto Ω then with

$$
\Phi=\left\{\left(h(U), \varphi \circ h^{-1}\right) \mid(U, \varphi) \in \Phi\right\}
$$

we have that (Ω, Ψ) is an analytic surface.
Proof. (a) First, since every element of X is in at least one member of Φ then every element of V is in at least one element of Φ_{V} and part (i) of the definition is satisfied. Second, if $\left(V_{a}, \varphi_{a}\right),\left(V_{b}, \varphi_{b}\right) \in \Phi_{V}$ with $V_{a} \cap V_{b} \neq \varnothing$ then $\varphi_{a} \circ \varphi_{b}^{-1}$ is an analytic function of $\varphi_{b}\left(U_{a} \cap U_{b}\right)$ onto $\varphi_{a}\left(U_{a} \cap U_{b}\right)$

Proposition IX.6.3

Proposition IX.6.3. Let (X, Φ) be an analytic surface.
(a) Let V be an open connected subset of X. If

$$
\Phi_{V}=\{(U \cap V, \varphi) \mid(U, \varphi) \in \Phi\}
$$

then $\left(V, \Phi_{V}\right)$ is an analytic surface.
(b) If Ω is a topological space such that there is a homeomorphism h of X onto Ω then with

$$
\Phi=\left\{\left(h(U), \varphi \circ h^{-1}\right) \mid(U, \varphi) \in \Phi\right\}
$$

we have that (Ω, Ψ) is an analytic surface.
Proof. (a) First, since every element of X is in at least one member of Φ then every element of V is in at least one element of Φ_{V} and part (i) of the definition is satisfied. Second, if $\left(V_{a}, \varphi_{a}\right),\left(V_{b}, \varphi_{b}\right) \in \Phi_{V}$ with $V_{a} \cap V_{b} \neq \varnothing$ then $\varphi_{a} \circ \varphi_{b}^{-1}$ is an analytic function of $\varphi_{b}\left(U_{a} \cap U_{b}\right)$ onto $\varphi_{a}\left(U_{a} \cap U_{b}\right)$.

Theorem IX. 6.3 (continued 1)

Proof (continued). Since $\varphi_{b}\left(V_{a} \cap V_{b}\right) \subset \varphi_{b}\left(U_{a} \cap U_{b}\right)$ then $\varphi_{a} \circ \varphi_{b}^{-1}$ is also analytic on $\varphi_{b}\left(V_{a} \cap V_{b}\right)$ and

$$
\varphi_{a} \circ \varphi_{b}^{-1}\left(\varphi_{a}\left(V_{a} \cap V_{b}\right)=\varphi_{a} \circ\left(\varphi_{b}^{-1} \varphi_{b}\right)\left(V_{a} \cap V_{b}\right)\right.
$$

since function composition is associative

$$
=\varphi_{a}\left(V_{a} \cap V_{b}\right)
$$

and so $\varphi_{a} \circ \varphi_{b}^{-1}$ maps $\varphi_{b}\left(V_{a} \cap V_{b}\right)$ onto $\varphi_{a}\left(V_{a} \cap V_{b}\right)$. So part (ii) of the definition is satisfied.
(b) Since X is connected and X is homeomorphic to Ω then Ω is connected.

Theorem IX.6.3 (continued 1)

Proof (continued). Since $\varphi_{b}\left(V_{a} \cap V_{b}\right) \subset \varphi_{b}\left(U_{a} \cap U_{b}\right)$ then $\varphi_{a} \circ \varphi_{b}^{-1}$ is also analytic on $\varphi_{b}\left(V_{a} \cap V_{b}\right)$ and

$$
\varphi_{a} \circ \varphi_{b}^{-1}\left(\varphi_{a}\left(V_{a} \cap V_{b}\right)=\varphi_{a} \circ\left(\varphi_{b}^{-1} \varphi_{b}\right)\left(V_{a} \cap V_{b}\right)\right.
$$

since function composition is associative

$$
=\varphi_{a}\left(V_{a} \cap V_{b}\right)
$$

and so $\varphi_{a} \circ \varphi_{b}^{-1}$ maps $\varphi_{b}\left(V_{a} \cap V_{b}\right)$ onto $\varphi_{a}\left(V_{a} \cap V_{b}\right)$. So part (ii) of the definition is satisfied.
(b) Since X is connected and X is homeomorphic to Ω then Ω is connected. Since $h: X \rightarrow \Omega$ is a homeomorphism then for any $(U, \varphi) \in \Phi$ we have that $\varphi \circ h^{-1}$ is a homeomorphism from Ω from Ω to \mathbb{C} which maps an open set $h(U)$ to an open set $\varphi \circ h^{-1}(h(U))=\varphi(U)$ of the plane \mathbb{C}. So each $\left(h(U), \varphi \circ h^{-1}\right) \in \Psi$ is a coordinate patch.

Theorem IX.6.3 (continued 1)

Proof (continued). Since $\varphi_{b}\left(V_{a} \cap V_{b}\right) \subset \varphi_{b}\left(U_{a} \cap U_{b}\right)$ then $\varphi_{a} \circ \varphi_{b}^{-1}$ is also analytic on $\varphi_{b}\left(V_{a} \cap V_{b}\right)$ and

$$
\varphi_{a} \circ \varphi_{b}^{-1}\left(\varphi_{a}\left(V_{a} \cap V_{b}\right)=\varphi_{a} \circ\left(\varphi_{b}^{-1} \varphi_{b}\right)\left(V_{a} \cap V_{b}\right)\right.
$$

since function composition is associative

$$
=\varphi_{a}\left(V_{a} \cap V_{b}\right)
$$

and so $\varphi_{a} \circ \varphi_{b}^{-1}$ maps $\varphi_{b}\left(V_{a} \cap V_{b}\right)$ onto $\varphi_{a}\left(V_{a} \cap V_{b}\right)$. So part (ii) of the definition is satisfied.
(b) Since X is connected and X is homeomorphic to Ω then Ω is connected. Since $h: X \rightarrow \Omega$ is a homeomorphism then for any $(U, \varphi) \in \Phi$ we have that $\varphi \circ h^{-1}$ is a homeomorphism from Ω from Ω to \mathbb{C} which maps an open set $h(U)$ to an open set $\varphi \circ h^{-1}(h(U))=\varphi(U)$ of the plane \mathbb{C}. So each $\left(h(U), \varphi \circ h^{-1}\right) \in \Psi$ is a coordinate patch. Next, since $h: X \rightarrow \Omega$ is onto, each point in Ω is contained in at least one member of ψ.

Theorem IX.6.3 (continued 1)

Proof (continued). Since $\varphi_{b}\left(V_{a} \cap V_{b}\right) \subset \varphi_{b}\left(U_{a} \cap U_{b}\right)$ then $\varphi_{a} \circ \varphi_{b}^{-1}$ is also analytic on $\varphi_{b}\left(V_{a} \cap V_{b}\right)$ and

$$
\varphi_{a} \circ \varphi_{b}^{-1}\left(\varphi_{a}\left(V_{a} \cap V_{b}\right)=\varphi_{a} \circ\left(\varphi_{b}^{-1} \varphi_{b}\right)\left(V_{a} \cap V_{b}\right)\right.
$$

since function composition is associative

$$
=\varphi_{a}\left(V_{a} \cap V_{b}\right)
$$

and so $\varphi_{a} \circ \varphi_{b}^{-1}$ maps $\varphi_{b}\left(V_{a} \cap V_{b}\right)$ onto $\varphi_{a}\left(V_{a} \cap V_{b}\right)$. So part (ii) of the definition is satisfied.
(b) Since X is connected and X is homeomorphic to Ω then Ω is connected. Since $h: X \rightarrow \Omega$ is a homeomorphism then for any $(U, \varphi) \in \Phi$ we have that $\varphi \circ h^{-1}$ is a homeomorphism from Ω from Ω to \mathbb{C} which maps an open set $h(U)$ to an open set $\varphi \circ h^{-1}(h(U))=\varphi(U)$ of the plane \mathbb{C}. So each $\left(h(U), \varphi \circ h^{-1}\right) \in \Psi$ is a coordinate patch. Next, since $h: X \rightarrow \Omega$ is onto, each point in Ω is contained in at least one member of Ψ.

Theorem IX. 6.3 (continued 2)

Proof (continued). Now we check part (ii) of the definition of analytic surface. Let $(U, \varphi),(V, \mu) \in \Phi$ (so that $\left.\left(h(U), \varphi \circ h^{-1}\right),\left(h(V), \mu \circ h^{-1}\right) \in \Psi\right)$ such that $h(U) \cap h(V) \neq \varnothing$. But then

$$
h^{-1}(h(U) \cap h(V))-h^{-1}(h(U)) \cap h^{-1}(h(V))=U \cap V \neq \varnothing .
$$

So

$\left(\varphi \circ h^{-1}\right) \circ\left(\mu \circ h^{-1}\right)^{-1}=\left(\varphi \circ h^{-1}\right) \circ\left(h \circ \mu^{-1}\right)=\varphi \circ\left(h \circ h^{-1}\right) \circ \mu^{-1}=\varphi \circ \mu^{-1}$
where $\varphi \circ \mu^{-1}$ is analytic since Φ satisfies part (ii) of the definition. Therefore ψ satisfies part (ii) of the definition and (Ω, Ψ) is an analytic surface, as claimed.

Theorem IX.6.3 (continued 2)

Proof (continued). Now we check part (ii) of the definition of analytic surface. Let $(U, \varphi),(V, \mu) \in \Phi$ (so that $\left.\left(h(U), \varphi \circ h^{-1}\right),\left(h(V), \mu \circ h^{-1}\right) \in \Psi\right)$ such that $h(U) \cap h(V) \neq \varnothing$. But then

$$
h^{-1}(h(U) \cap h(V))-h^{-1}(h(U)) \cap h^{-1}(h(V))=U \cap V \neq \varnothing .
$$

So
$\left(\varphi \circ h^{-1}\right) \circ\left(\mu \circ h^{-1}\right)^{-1}=\left(\varphi \circ h^{-1}\right) \circ\left(h \circ \mu^{-1}\right)=\varphi \circ\left(h \circ h^{-1}\right) \circ \mu^{-1}=\varphi \circ \mu^{-1}$
where $\varphi \circ \mu^{-1}$ is analytic since Φ satisfies part (ii) of the definition.
Therefore Ψ satisfies part (ii) of the definition and (Ω, Ψ) is an analytic surface, as claimed.

Proposition IX.6.6

Proposition IX.6.6. Let G be a region in the plane and let f be an analytic function on g with non-vanishing derivative. For $\alpha=(a, f(a)) \in \Gamma=\{(z, f(z)) \mid z \in G\}$. Let D_{z} be a disk about a such that $D_{a} \subset G$ and f is one to one on D_{a} (which is possible since $f^{\prime}(a) \neq 0$).
Let $U_{\alpha}=\left\{(z, f(z)) \mid z \in D_{a}\right\}$ and define $\varphi_{\alpha}: U_{\alpha} \rightarrow \mathbb{C}$ by $\varphi_{\alpha}(z, f(z))=f(z)$ for each $(z, f(z)) \in U_{\alpha}$. If Γ is the graph of f and $\Phi=\left\{\left(U_{\alpha}, \varphi_{\alpha}\right) \mid \alpha \in \Gamma\right\}$ then (Γ, Φ) is an analytic surface.

Proof. Since 「 is homeomorphic to G (though the projection homeomorphism p, as described above) and G is connected, then Γ is connected. Fix $\alpha=(a, f(a)) \in \Gamma$. Just as the projection p of $\Gamma \rightarrow G$ is a homeomorphism, the projection φ_{α} is a homeomorphism of U_{α} onto $f\left(D_{\alpha}\right)$ (except that φ_{α} projects into the range of f instead of the domain of f).

Proposition IX.6.6

Proposition IX.6.6. Let G be a region in the plane and let f be an analytic function on g with non-vanishing derivative. For $\alpha=(a, f(a)) \in \Gamma=\{(z, f(z)) \mid z \in G\}$. Let D_{z} be a disk about a such that $D_{a} \subset G$ and f is one to one on D_{a} (which is possible since $f^{\prime}(a) \neq 0$). Let $U_{\alpha}=\left\{(z, f(z)) \mid z \in D_{a}\right\}$ and define $\varphi_{\alpha}: U_{\alpha} \rightarrow \mathbb{C}$ by $\varphi_{\alpha}(z, f(z))=f(z)$ for each $(z, f(z)) \in U_{\alpha}$. If Γ is the graph of f and $\Phi=\left\{\left(U_{\alpha}, \varphi_{\alpha}\right) \mid \alpha \in \Gamma\right\}$ then (Γ, Φ) is an analytic surface.

Proof. Since Γ is homeomorphic to G (though the projection homeomorphism p, as described above) and G is connected, then Γ is connected. Fix $\alpha=(a, f(a)) \in \Gamma$. Just as the projection p of $\Gamma \rightarrow G$ is a homeomorphism, the projection φ_{α} is a homeomorphism of U_{α} onto $f\left(D_{\alpha}\right)$ (except that φ_{α} projects into the range of f instead of the domain of f). Suppose that $\beta=(b, f(b)) \in \Gamma$ with $U_{\alpha} \cap U_{\beta} \neq \varnothing$. We can now show that $\varphi_{\alpha} \circ \varphi_{\beta}^{-1}: \varphi_{\beta}\left(U_{\alpha} \cap U_{\beta}\right) \rightarrow \varphi_{\alpha}\left(U_{\alpha} \cap U_{\beta}\right)$ is analytic.

Proposition IX.6.6

Proposition IX.6.6. Let G be a region in the plane and let f be an analytic function on g with non-vanishing derivative. For $\alpha=(a, f(a)) \in \Gamma=\{(z, f(z)) \mid z \in G\}$. Let D_{z} be a disk about a such that $D_{a} \subset G$ and f is one to one on D_{a} (which is possible since $f^{\prime}(a) \neq 0$). Let $U_{\alpha}=\left\{(z, f(z)) \mid z \in D_{a}\right\}$ and define $\varphi_{\alpha}: U_{\alpha} \rightarrow \mathbb{C}$ by $\varphi_{\alpha}(z, f(z))=f(z)$ for each $(z, f(z)) \in U_{\alpha}$. If Γ is the graph of f and $\Phi=\left\{\left(U_{\alpha}, \varphi_{\alpha}\right) \mid \alpha \in \Gamma\right\}$ then (Γ, Φ) is an analytic surface.

Proof. Since Γ is homeomorphic to G (though the projection homeomorphism p, as described above) and G is connected, then Γ is connected. Fix $\alpha=(a, f(a)) \in \Gamma$. Just as the projection p of $\Gamma \rightarrow G$ is a homeomorphism, the projection φ_{α} is a homeomorphism of U_{α} onto $f\left(D_{\alpha}\right)$ (except that φ_{α} projects into the range of f instead of the domain of f). Suppose that $\beta=(b, f(b)) \in \Gamma$ with $U_{\alpha} \cap U_{\beta} \neq \varnothing$. We can now show that $\varphi_{\alpha} \circ \varphi_{\beta}^{-1}: \varphi_{\beta}\left(U_{\alpha} \cap U_{\beta}\right) \rightarrow \varphi_{\alpha}\left(U_{\alpha} \cap U_{\beta}\right)$ is analytic.

Proposition IX. 6.6 (continued)

Proposition IX.6.6. Let G be a region in the plane and let f be an analytic function on g with non-vanishing derivative. For $\alpha=(a, f(a)) \in \Gamma=\{(z, f(z)) \mid z \in G\}$. Let D_{z} be a disk about a such that $D_{a} \subset G$ and f is one to one on D_{a} (which is possible since $f^{\prime}(a) \neq 0$). Let $U_{\alpha}=\left\{(z, f(z)) \mid z \in D_{a}\right\}$ and define $\varphi_{\alpha}: U_{\alpha} \rightarrow \mathbb{C}$ by $\varphi_{\alpha}(z, f(z))=f(z)$ for each $(z, f(z)) \in U_{\alpha}$. If Γ is the graph of f and $\Phi=\left\{\left(U_{\alpha}, \varphi_{\alpha}\right) \mid \alpha \in \Gamma\right\}$ then (Γ, Φ) is an analytic surface.

Proof (continued). Since $f: D_{b} \rightarrow \mathbb{C}$ is one to one and analytic, then it has a local inverse $g: \Omega=d\left(D_{b}\right) \rightarrow D_{b}$ such that $f(g(\omega))=\omega$ for all $\omega \in \Omega$ (by Corollary IV.7.6).

Proposition IX. 6.6 (continued)

Proposition IX.6.6. Let G be a region in the plane and let f be an analytic function on g with non-vanishing derivative. For $\alpha=(a, f(a)) \in \Gamma=\{(z, f(z)) \mid z \in G\}$. Let D_{z} be a disk about a such that $D_{a} \subset G$ and f is one to one on D_{a} (which is possible since $f^{\prime}(a) \neq 0$). Let $U_{\alpha}=\left\{(z, f(z)) \mid z \in D_{a}\right\}$ and define $\varphi_{\alpha}: U_{\alpha} \rightarrow \mathbb{C}$ by $\varphi_{\alpha}(z, f(z))=f(z)$ for each $(z, f(z)) \in U_{\alpha}$. If Γ is the graph of f and $\Phi=\left\{\left(U_{\alpha}, \varphi_{\alpha}\right) \mid \alpha \in \Gamma\right\}$ then (Γ, Φ) is an analytic surface.

Proof (continued). Since $f: D_{b} \rightarrow \mathbb{C}$ is one to one and analytic, then it has a local inverse $g: \Omega=d\left(D_{b}\right) \rightarrow D_{b}$ such that $f(g(\omega))=\omega$ for all $\omega \in \Omega$ (by Corollary IV.7.6).
o $\varphi_{\alpha} \circ \varphi_{\beta}^{-1}$ is constant and hence analytic on $\varphi_{\beta}\left(U_{\alpha} \cap U_{\beta}\right)$. That is, (Γ, Φ) is an analytic surface.

Proposition IX. 6.6 (continued)

Proposition IX.6.6. Let G be a region in the plane and let f be an analytic function on g with non-vanishing derivative. For $\alpha=(a, f(a)) \in \Gamma=\{(z, f(z)) \mid z \in G\}$. Let D_{z} be a disk about a such that $D_{a} \subset G$ and f is one to one on D_{a} (which is possible since $f^{\prime}(a) \neq 0$). Let $U_{\alpha}=\left\{(z, f(z)) \mid z \in D_{a}\right\}$ and define $\varphi_{\alpha}: U_{\alpha} \rightarrow \mathbb{C}$ by $\varphi_{\alpha}(z, f(z))=f(z)$ for each $(z, f(z)) \in U_{\alpha}$. If Γ is the graph of f and $\Phi=\left\{\left(U_{\alpha}, \varphi_{\alpha}\right) \mid \alpha \in \Gamma\right\}$ then (Γ, Φ) is an analytic surface.

Proof (continued). Since $f: D_{b} \rightarrow \mathbb{C}$ is one to one and analytic, then it has a local inverse $g: \Omega=d\left(D_{b}\right) \rightarrow D_{b}$ such that $f(g(\omega))=\omega$ for all $\omega \in \Omega$ (by Corollary IV.7.6). Since $\varphi_{\beta}\left(U_{\beta}\right)=\Omega=f\left(D_{b}\right)$ then $\varphi_{\beta}^{-1}(\omega)=\left(g(\omega, \omega)\right.$. Thus $\varphi_{\alpha} \circ \varphi_{\beta}^{-1}(\omega)=\varphi_{\alpha}((g(\omega), \omega))=\omega$ for each $\omega \in \varphi_{\beta}\left(U_{\alpha} \cap U_{\beta}\right)$. So $\varphi_{\alpha} \circ \varphi_{\beta}^{-1}$ is constant and hence analytic on $\varphi_{\beta}\left(U_{\alpha} \cap U_{\beta}\right)$. That is, (Γ, Φ) is an analytic surface.

