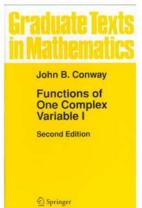
Complex Analysis

Chapter V. Singularities

V.1. Classification of Singularities—Proofs of Theorems



Complex Analysis

April 5, 2018 1 / 11

Complex Analysis

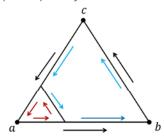
April 5, 2018 3 / 11

Theorem V.1.2 (continued 1)

Proof (continued). (2) If a is vertex of T then we have T = [a, b, c, a]. Let $x \in [a, b]$ and $y \in [c, a]$ and form triangle $T_1 = [a, x, y, a]$. If P is a polygon [x, b, c, y, x] then

$$\int_T g(z) dz = \int_{T_1} g(z) dz + \int_P g(z) dz = \int_{T_1} g(z) dz$$

since $P \sim 0$ in $\{a \mid 0 < |z - a| < R\}$:



Theorem V.1.2

Theorem V.1.2. If f has an isolated singularity at a then z = a is a removable singularity if and only if $\lim_{z \to a} (z - a) f(z) = 0$.

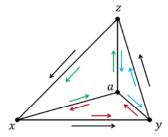
Proof. Suppose f is analytic in $\{z \mid 0 < |z - a| < R\}$ and define $g(z) = \begin{cases} (z-a)f(z) & \text{for } z \neq a \\ 0 & \text{for } z = a. \end{cases}$ Suppose $\lim_{z \to a} (z-a)f(z) = 0$; then g is continuous on B(z;R). We now show that g is analytic and hence that a is a removable singularity of f.

We show that g is analytic by applying Morera's Theorem. Let T be a triangle in B(a; R) and let Δ be the inside of T together with T. (1) If $a \notin \Delta$ then $T \sim 0$ in $\{z \mid 0 < |z - a| < R\}$ and so by Cauchy's Theorem (Theorem IV.6.6), $\int_{\mathcal{T}} g = 0$.

Theorem V.1.2 (continued 3)

Proof (continued). Since g is continuous and g(a) = 0, then for any $\varepsilon > 0$, x and y can be chosen such that $|g(z)| < \varepsilon/\ell(T)$ for any z on T_1 . Hence $\left|\int_T g(z) dz\right| = \left|\int_{T_1} g(z) dz\right| < \varepsilon$. Therefore, $\int_T g(z) dz = 0$.

(3) If $a \in \Delta$ and T = [x, y, z, x] then consider triangles $T_1 = [x, y, a, x]$, $T_2 = [y, z, a, y]$, and $T_3 = [z, x, a, z]$:



Proposition V.1.4

Theorem V.1.2 (continued 4)

Theorem V.1.2. If f has an isolated singularity at a then z=a is a removable singularity if and only if $\lim_{z\to a}(z-a)f(z)=0$.

Proof (continued). As above, $\int_{T_j} g(z) dz = 0$ for j = 1, 2, 3 and so $\int_T g(z) dz = \int_{T_1} g(z) dz + \int_{T_2} g(z) dz + \int_{T_2} g(z) dz = 0$. Therefore, by (1), (2), and (3), g must be analytic by Morera's Theorem, and f has a removable singularity at z = a

Next, suppose f has an isolated, removable singularity at z=a. Then there is analytic $g: B(a;R) \to \mathbb{C}$ such that g(z)=f(z) for 0<|z-a|< R (by definition of isolated singularity). Then $\lim_{z\to a}(z-a)f(z)=\lim_{z\to a}(z-a)g(z)=0$.

Complex

pril 5, 2018 6 /

0

Complex Analysis

April 5, 2018

7 / 1

Corollary V.1.18

Corollary V.1.18

Corollary V.1.18. Let z = a be an isolated singularity of f and let

 $f(z) = \sum_{-\infty}^{\infty} a_n (a-z)^n$ be its Laurent expansion in ann(a; 0, R). Then

- (a) z = a is a removable singularity if and only if $a_n = 0$ for n < -1.
- (b) a = z is a pole of order m if and only if $a_{-m} \neq 0$ and $a_n = 0$ for n < -(m+1), and
- (c) z = a is an essential singularity if and only if $a_n \neq 0$ for infinitely many negative integers n.

Proof. (a) If $a_n = 0$ for $n \le -1$ then $g(z) = \sum_{n=0}^{\infty} a_n (z-a)^n$ on B(a; R) is analytic and equals f on ann(a; 0, R). Conversely, if $f(z) = \sum_{n=0}^{\infty} a_n (z-a)^n$ on ann(a; 0, R), then

$$\lim_{z\to a}(z-a)f(z)=\lim_{z\to a}\left(\sum_{n=0}^{\infty}a_n(z-a)^{n+1}\right)=0$$

and f has a removable singularity at z = a by Theorem V.1.2.

Proposition V.1.4

Proposition V.1.4. If G is a region with $a \in G$, and if f is analytic in $G \setminus \{a\}$ with a pole at z = a, then there is a positive integer m and an analytic function $g: G \to \mathbb{C}$ such that $f(z) = \frac{g(z)}{(z-a)^m}$.

Proof. Suppose f has a pole at z=a. Then $\lim_{z\to a}|f(z)|=\infty$ and $\lim_{z\to a}1/f(z)=0$. So 1/f has a removable discontinuity at z=a by Theorem V.1.2. So the function $h(z)=\begin{cases} 1/f(z) & \text{for } z\neq a\\ 0 & \text{for } z=a \end{cases}$ is analytic in B(a;R) for some R>0 (since a pole is an isolated singularity). Since h(a)=0, by Corollary IV.3.9, $h(z)=(z-a)^mh_1(z)$ for some analytic h_1 where $h_1(a)\neq 0$ and $m\in\mathbb{N}$. Then $f(z)=1/h(z)=g(z)/(z-a)^m$ where $g(z)=1/h_1(z)$.

Corollary V.1.

Corollary V.1.18 (continued)

Proof (continued). (b) Suppose $a_n = 0$ for $n \le -(m+1)$. Then $(z-a)^m f(z)$ has a Laurent expansion which has no negative powers of (z-a). By part (a), $(z-a)^m f(z)$ has a removable singularity at z=a. So, by definition, f has a pole of order m at z=a. Each of these steps is "if and only if," so the converse holds.

(c) For an essential singularity at z = a, neither (a) nor (b) holds and hence (c) must be the case (and conversely since both (a) and (b) are "if and only if").

Theorem V.1.21

Theorem V.1.21. Casorati-Weierstrass Theorem.

If f has an essential singularity at z=a then for every $\delta>0$, $\{f(\mathsf{ann}(a;0,\delta)\}^-=\mathbb{C}.$

Proof. Suppose that f is analytic in $\operatorname{ann}(a;0,R)$. We need to show that every complex number is a limit point of $f(\operatorname{ann}(a;0,\delta))$ (for every δ). If this is NOT the case (we go for a contradiction) then there is $\delta>0$, $c\in\mathbb{C}$ and $\varepsilon>0$ such that $|f(z)-c|\geq \varepsilon$ for all $z\in G=\operatorname{ann}(a;0,\delta)$. Then

$$\lim_{z\to a}\left|\frac{f(z)-c}{z-a}\right|\geq \lim_{z\to a}\frac{\varepsilon}{|z-a|}=\infty,$$

which implies that (f(z)-c)/(z-a) has a pole at z=a. If m is the order of the pole (known to exist by Proposition V.1.4), then $\lim_{z\to a}|z-a|^{m+1}|f(z)-c|=0$ by Corollary V.1.18(b).

Theorem V.1.21 (continued)

Proof. We know

$$|z-a|^{m+1}|f(z)-c| \ge |z-a|^{m+1}|f(z)|-|z-a|^{m+1}|c|,$$

or

$$|z-a|^{m+1}|f(z)| \le |z-a|^{m+1}|f(z)-c|+|z-a|^{m+1}|c|.$$

So

$$\lim_{z \to a} |z - a|^{m+1} |f(z)| \leq \lim_{z \to a} |z - a|^{m+1} |f(z) - c| + \lim_{z \to a} |z - a|^{m+1} |c| = 0 + 0,$$

and $\lim_{z\to a}|z-a|^{m+1}|f(z)|=0$ (remember $m\geq 1$). But then Theorem V.1.2 implies that $f(z)(z-a)^m$ has a removable singularity at z=a. By Proposition V.1.4, f has a pole of order m, CONTRADICTING the hypothesis that f has an essential singularity at a.