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Theorem V.1.2

Theorem V.1.2. If f has an isolated singularity at a then z = a is a
removable singularity if and only if lim(z — a)f(z) = 0.
Z—a
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Theorem V.1.2

Theorem V.1.2. If f has an isolated singularity at a then z = a is a
removable singularity if and only if lim(z — a)f(z) = 0.
Z—a

Proof. Suppose f is analytic in {z | 0 < |z — a| < R} and define

_J (z—a)f(z) forz#a
8(z) = { 0 for z = a.
g is continuous on B(z; R). We now show that g is analytic and hence
that a is a removable singularity of f.

Suppose lim,_,,(z — a)f(z) = 0; then
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Theorem V.1.2

Theorem V.1.2. If f has an isolated singularity at a then z = a is a
removable singularity if and only if lim(z — a)f(z) = 0.
Z—a

Proof. Suppose f is analytic in {z | 0 < |z — a| < R} and define

_J (z—a)f(z) forz#a
8(z) = { 0 for z = a.
g is continuous on B(z; R). We now show that g is analytic and hence
that a is a removable singularity of f.

Suppose lim,_,,(z — a)f(z) = 0; then

We show that g is analytic by applying Morera’s Theorem. Let T be a
triangle in B(a; R) and let A be the inside of T together with T. (1) If
ag Athen T~0in{z|0< |z—a|] <R} and so by Cauchy’s Theorem
(Theorem 1V.6.6), [ g = 0.
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Theorem V.1.2 (continued 1)

Proof (continued). (2) If a is vertex of T then we have T = [a, b, c, a].
Let x € [a, b] and y € [c, a] and form triangle T1 = [a,x,y,a]. If Pis a
polygon [x, b, ¢, y, x] then

/rg(z)dz:/7_1g(z)dz+/Pg(z)dz:/rlg(z)dz

since P~0in{a|0<|z—a| <R}:
c

7 N\

/\

a _— 'b
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Theorem V.1.2 (continued 3)

Proof (continued). Since g is continuous and g(a) = 0, then for any
e >0, x and y can be chosen such that |g(z)| < ¢/¢(T) for any z on T;.

Hence | [ g(z) dz| = ‘le g(2) dz‘ < e. Therefore, [;g(z)dz =0.
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Theorem V.1.2 (continued 3)

Proof (continued). Since g is continuous and g(a) = 0, then for any
e >0, x and y can be chosen such that |g(z)| < ¢/¢(T) for any z on T;.

Hence | [ g(z) dz| = ‘le g(2) dz‘ < e. Therefore, [;g(z)dz =0.

(3) If ae A and T = [x,y, z, x] then consider triangles T1 = [x, y, a, x],
To =|y,z,a,y], and T3 = [z, x, a, z]:

z
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Theorem V.1.2 (continued 3)

Proof (continued). Since g is continuous and g(a) = 0, then for any
e >0, x and y can be chosen such that |g(z)| < ¢/¢(T) for any z on T;.

Hence | [ g(z) dz| = ‘le g(2) dz‘ < e. Therefore, [;g(z)dz =0.

(3) If ae A and T = [x,y, z, x] then consider triangles T1 = [x, y, a, x],
To =|y,z,a,y], and T3 = [z, x, a, z]:

z
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Theorem V.1.2 (continued 4)

Theorem V.1.2. If f has an isolated singularity at a then z = a is a
removable singularity if and only if lim(z — a)f(z) = 0.
zZ—a

Proof (continued). As above, ij g(z)dz =0 for j=1,2,3 and so

Jr&(2)dz = [} g(z)dz + [, g(2) dz + [, g(z) dz = 0. Therefore, by
(1), (2), and (3), g must be analytic by Morera’s Theorem, and f has a
removable singularity at z = a
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Theorem V.1.2 (continued 4)

Theorem V.1.2. If f has an isolated singularity at a then z = a is a
removable singularity if and only if lim(z — a)f(z) = 0.
zZ—a

Proof (continued). As above, ij g(z)dz =0 for j=1,2,3 and so
Jr&(2)dz = [} g(z)dz + [, g(2) dz + [, g(z) dz = 0. Therefore, by
(1), (2), and (3), g must be analytic by Morera’s Theorem, and f has a
removable singularity at z = a

Next, suppose f has an isolated, removable singularity at z = a. Then
there is analytic g : B(a; R) — C such that g(z) = f(z) for

0 < |z — a] < R (by definition of isolated singularity). Then
lim,_,(z — a)f(z) = lim,_,(z — a)g(z) = 0. O
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Proposition V.1.4

Proposition V.1.4

Proposition V.1.4. If G is a region with a € G, and if f is analytic in
G \ {a} with a pole at z = a, then there is a positive integer m and an

analytic function g : G — C such that f(z) = (g(z))
z—a)m
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Proposition V.1.4

Proposition V.1.4. If G is a region with a € G, and if f is analytic in
G \ {a} with a pole at z = a, then there is a positive integer m and an
g(2)

analytic function g : G — C such that f(z) = G—a)m
z —_—

Proof. Suppose f has a pole at z = a. Then lim,_,|f(z)| = oo and
lim,_,1/f(z) =0. So 1/f has a removable discontinuity at z = a by

Theorem V.1.2. So the function h(z) = { 1/);(2) 2: i 7_é z

in B(a; R) for some R > 0 (since a pole is an isolated singularity).

is analytic
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Proposition V.1.4

Proposition V.1.4. If G is a region with a € G, and if f is analytic in
G \ {a} with a pole at z = a, then there is a positive integer m and an
g(2)

analytic function g : G — C such that f(z) = G—a)m
z —_—

Proof. Suppose f has a pole at z = a. Then lim,_,|f(z)| = oo and
lim,_,1/f(z) =0. So 1/f has a removable discontinuity at z = a by

Theorem V.1.2. So the function h(z) = { 1/);(2) 2: i 7_é z

in B(a; R) for some R > 0 (since a pole is an isolated singularity). Since
h(a) =0, by Corollary 1V.3.9, h(z) = (z — a)™h1(z) for some analytic hy
where hi(a) # 0 and m € N. Then f(z) =1/h(z) = g(z)/(z — a)™ where
g(z) = 1/m(2). O

is analytic
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Corollary V.1.18

Corollary V.1.18. Let z = a be an isolated singularity of f and let
o
f(z) = Zan(a — z)" be its Laurent expansion in ann(a; 0, R). Then

—0o0
(a) z = ais a removable singularity if and only if a, = 0 for
n< -1,
(b) a=zis a pole of order m if and only if a_,, # 0 and a, =0
for n < —(m+1), and
(c) z = ais an essential singularity if and only if a, # 0 for
infinitely many negative integers n.
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Corollary V.1.18

Corollary V.1.18

Corollary V.1.18. Let z = a be an isolated singularity of f and let

f(z) = Zan(a — z)" be its Laurent expansion in ann(a; 0, R). Then
—0o0
(a) z = ais a removable singularity if and only if a, = 0 for
n< -1,
(b) a=zis a pole of order m if and only if a_,, # 0 and a, =0
for n < —(m+1), and
(c) z = ais an essential singularity if and only if a, # 0 for
infinitely many negative integers n.
Proof. (a) If a, =0 for n < —1 then g(z) = >, an(z — a)" on B(a; R)
is analytic and equals f on ann(a; 0, R). Conversely, if
f(z) => 7 pan(z —a)" on ann(a; 0, R), then

oo
lim(z — a)f(z) = lim <Z an(z — a)”“) =0
zZ—a zZ—a —0
and f has a removable singularity at z = a by Theorem V.1.2.
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Corollary V.1.18 (continued)

Proof (continued). (b) Suppose a, =0 for n < —(m +1). Then

(z — a)™f(z) has a Laurent expansion which has no negative powers of
(z — a). By part (a), (z— a)"f(z) has a removable singularity at z = a.
So, by definition, f has a pole of order m at z = a. Each of these steps is
“if and only if," so the converse holds.
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Corollary V.1.18 (continued)

Proof (continued). (b) Suppose a, =0 for n < —(m +1). Then

(z — a)™f(z) has a Laurent expansion which has no negative powers of
(z — a). By part (a), (z— a)"f(z) has a removable singularity at z = a.
So, by definition, f has a pole of order m at z = a. Each of these steps is
“if and only if," so the converse holds.

(c) For an essential singularity at z = a, neither (a) nor (b) holds and
hence (c) must be the case (and conversely since both (a) and (b) are “if
and only if"). O
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Theorem V.1.21

Theorem V.1.21. Casorati-Weierstrass Theorem.
If f has an essential singularity at z = a then for every ¢ > 0,
{f(ann(a;0,0)}~ =C.
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Theorem V.1.21

Theorem V.1.21. Casorati-Weierstrass Theorem.
If f has an essential singularity at z = a then for every ¢ > 0,
{f(ann(a;0,0)}~ =C.

Proof. Suppose that f is analytic in ann(a; 0, R). We need to show that
every complex number is a limit point of f(ann(a;0,6)) (for every 9). If
this is NOT the case (we go for a contradiction) then there is 6 > 0, c € C
and € > 0 such that |f(z) — ¢| > ¢ for all z € G = ann(a;0,9).
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Theorem V.1.21

Theorem V.1.21. Casorati-Weierstrass Theorem.
If f has an essential singularity at z = a then for every ¢ > 0,
{f(ann(a;0,0)}~ =C.

Proof. Suppose that f is analytic in ann(a; 0, R). We need to show that
every complex number is a limit point of f(ann(a;0,6)) (for every 9). If
this is NOT the case (we go for a contradiction) then there is 6 > 0, c € C
and ¢ > 0 such that |f(z) — ¢| > € for all z € G = ann(a;0,d). Then

f(z)—c

Z—a

lim
Z—a

= 00,

which implies that (f(z) — ¢)/(z — a) has a pole at z = a. If m is the
order of the pole (known to exist by Proposition V.1.4), then
lim,—a|z — a|™"f(z) — c| = 0 by Corollary V.1.18(b).
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Theorem V.1.21 (continued)

Proof. We know
|z — a|™f(2) — c| > |z — & f(2)| — |z — a]" <],

or
|z —a™Hf(2)] < |z — & HF(2) = c| + |z — 2| " c].

So

lim |z—a|™|f(2)| < lim |z—a|™ | f(2) — c| + lim |z—a|™|c| = 040,
Z—a zZz—a zZ—a

and lim,_ 4|z — a|™*|f(2)| = 0 (remember m > 1).
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Theorem V.1.21 (continued)

Proof. We know
|z — a|™f(2) — c| > |z — & f(2)| — |z — a]" <],

or
|z —a™Hf(2)] < |z — & HF(2) = c| + |z — 2| " c].

So

lim |z—a|™|f(2)| < lim |z—a|™ | f(2) — c| + lim |z—a|™|c| = 040,
z—a z—a z—a

and lim,_, |z — a|™1|f(z)| = 0 (remember m > 1). But then Theorem

V.1.2 implies that f(z)(z — a)™ has a removable singularity at z = a. By
Proposition V.1.4, f has a pole of order m, CONTRADICTING the
hypothesis that f has an essential singularity at a. O
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