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Chapter V. Singularities
V.1. Classification of Singularities—Proofs of Theorems
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Theorem V.1.2

Theorem V.1.2

Theorem V.1.2. If f has an isolated singularity at a then z = a is a
removable singularity if and only if lim

z→a
(z − a)f (z) = 0.

Proof. Suppose f is analytic in {z | 0 < |z − a| < R} and define

g(z) =

{
(z − a)f (z) for z 6= a

0 for z = a.
Suppose limz→a(z − a)f (z) = 0; then

g is continuous on B(z ;R). We now show that g is analytic and hence
that a is a removable singularity of f .

We show that g is analytic by applying Morera’s Theorem. Let T be a
triangle in B(a;R) and let ∆ be the inside of T together with T . (1) If
a 6∈ ∆ then T ∼ 0 in {z | 0 < |z − a| < R} and so by Cauchy’s Theorem
(Theorem IV.6.6),

∫
T g = 0.
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Theorem V.1.2

Theorem V.1.2 (continued 1)

Proof (continued). (2) If a is vertex of T then we have T = [a, b, c , a].
Let x ∈ [a, b] and y ∈ [c , a] and form triangle T1 = [a, x , y , a]. If P is a
polygon [x , b, c , y , x ] then∫

T
g(z) dz =

∫
T1

g(z) dz +

∫
P

g(z) dz =

∫
T1

g(z) dz

since P ∼ 0 in {a | 0 < |z − a| < R}:
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Theorem V.1.2

Theorem V.1.2 (continued 3)

Proof (continued). Since g is continuous and g(a) = 0, then for any
ε > 0, x and y can be chosen such that |g(z)| < ε/`(T ) for any z on T1.

Hence
∣∣∫

T g(z) dz
∣∣ = ∣∣∣∫T1

g(z) dz
∣∣∣ < ε. Therefore,

∫
T g(z) dz = 0.

(3) If a ∈ ∆ and T = [x , y , z , x ] then consider triangles T1 = [x , y , a, x ],
T2 = [y , z , a, y ], and T3 = [z , x , a, z ]:
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Theorem V.1.2

Theorem V.1.2 (continued 4)

Theorem V.1.2. If f has an isolated singularity at a then z = a is a
removable singularity if and only if lim

z→a
(z − a)f (z) = 0.

Proof (continued). As above,
∫
Tj

g(z) dz = 0 for j = 1, 2, 3 and so∫
T g(z) dz =

∫
T1

g(z) dz +
∫
T2

g(z) dz +
∫
T2

g(z) dz = 0. Therefore, by
(1), (2), and (3), g must be analytic by Morera’s Theorem, and f has a
removable singularity at z = a

Next, suppose f has an isolated, removable singularity at z = a. Then
there is analytic g : B(a;R) → C such that g(z) = f (z) for
0 < |z − a| < R (by definition of isolated singularity). Then
limz→a(z − a)f (z) = limz→a(z − a)g(z) = 0.
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Proposition V.1.4

Proposition V.1.4

Proposition V.1.4. If G is a region with a ∈ G , and if f is analytic in
G \ {a} with a pole at z = a, then there is a positive integer m and an

analytic function g : G → C such that f (z) =
g(z)

(z − a)m
.

Proof. Suppose f has a pole at z = a. Then limz→a |f (z)| = ∞ and
limz→a 1/f (z) = 0. So 1/f has a removable discontinuity at z = a by

Theorem V.1.2. So the function h(z) =

{
1/f (z) for z 6= a

0 for z = a
is analytic

in B(a;R) for some R > 0 (since a pole is an isolated singularity).

Since
h(a) = 0, by Corollary IV.3.9, h(z) = (z − a)mh1(z) for some analytic h1

where h1(a) 6= 0 and m ∈ N. Then f (z) = 1/h(z) = g(z)/(z − a)m where
g(z) = 1/h1(z).

() Complex Analysis April 5, 2018 7 / 11



Proposition V.1.4

Proposition V.1.4

Proposition V.1.4. If G is a region with a ∈ G , and if f is analytic in
G \ {a} with a pole at z = a, then there is a positive integer m and an

analytic function g : G → C such that f (z) =
g(z)

(z − a)m
.

Proof. Suppose f has a pole at z = a. Then limz→a |f (z)| = ∞ and
limz→a 1/f (z) = 0. So 1/f has a removable discontinuity at z = a by

Theorem V.1.2. So the function h(z) =

{
1/f (z) for z 6= a

0 for z = a
is analytic

in B(a;R) for some R > 0 (since a pole is an isolated singularity). Since
h(a) = 0, by Corollary IV.3.9, h(z) = (z − a)mh1(z) for some analytic h1

where h1(a) 6= 0 and m ∈ N. Then f (z) = 1/h(z) = g(z)/(z − a)m where
g(z) = 1/h1(z).

() Complex Analysis April 5, 2018 7 / 11



Proposition V.1.4

Proposition V.1.4

Proposition V.1.4. If G is a region with a ∈ G , and if f is analytic in
G \ {a} with a pole at z = a, then there is a positive integer m and an

analytic function g : G → C such that f (z) =
g(z)

(z − a)m
.

Proof. Suppose f has a pole at z = a. Then limz→a |f (z)| = ∞ and
limz→a 1/f (z) = 0. So 1/f has a removable discontinuity at z = a by

Theorem V.1.2. So the function h(z) =

{
1/f (z) for z 6= a

0 for z = a
is analytic

in B(a;R) for some R > 0 (since a pole is an isolated singularity). Since
h(a) = 0, by Corollary IV.3.9, h(z) = (z − a)mh1(z) for some analytic h1

where h1(a) 6= 0 and m ∈ N. Then f (z) = 1/h(z) = g(z)/(z − a)m where
g(z) = 1/h1(z).

() Complex Analysis April 5, 2018 7 / 11



Corollary V.1.18

Corollary V.1.18

Corollary V.1.18. Let z = a be an isolated singularity of f and let

f (z) =
∞∑
−∞

an(a− z)n be its Laurent expansion in ann(a; 0,R). Then

(a) z = a is a removable singularity if and only if an = 0 for
n ≤ −1,

(b) a = z is a pole of order m if and only if a−m 6= 0 and an = 0
for n ≤ −(m + 1), and

(c) z = a is an essential singularity if and only if an 6= 0 for
infinitely many negative integers n.

Proof. (a) If an = 0 for n ≤ −1 then g(z) =
∑∞

n=0 an(z − a)n on B(a;R)
is analytic and equals f on ann(a; 0,R). Conversely, if
f (z) =

∑∞
n=0 an(z − a)n on ann(a; 0,R), then

lim
z→a

(z − a)f (z) = lim
z→a

( ∞∑
n=0

an(z − a)n+1

)
= 0

and f has a removable singularity at z = a by Theorem V.1.2.
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Corollary V.1.18

Corollary V.1.18 (continued)

Proof (continued). (b) Suppose an = 0 for n ≤ −(m + 1). Then
(z − a)mf (z) has a Laurent expansion which has no negative powers of
(z − a). By part (a), (z − a)mf (z) has a removable singularity at z = a.
So, by definition, f has a pole of order m at z = a. Each of these steps is
“if and only if,” so the converse holds.

(c) For an essential singularity at z = a, neither (a) nor (b) holds and
hence (c) must be the case (and conversely since both (a) and (b) are “if
and only if”).
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Theorem V.1.21. Casorati-Weierstrass Theorem

Theorem V.1.21

Theorem V.1.21. Casorati-Weierstrass Theorem.
If f has an essential singularity at z = a then for every δ > 0,
{f (ann(a; 0, δ)}− = C.

Proof. Suppose that f is analytic in ann(a; 0,R). We need to show that
every complex number is a limit point of f (ann(a; 0, δ)) (for every δ). If
this is NOT the case (we go for a contradiction) then there is δ > 0, c ∈ C
and ε > 0 such that |f (z)− c | ≥ ε for all z ∈ G = ann(a; 0, δ).

Then

lim
z→a

∣∣∣∣ f (z)− c

z − a

∣∣∣∣ ≥ lim
z→a

ε

|z − a|
= ∞,

which implies that (f (z)− c)/(z − a) has a pole at z = a. If m is the
order of the pole (known to exist by Proposition V.1.4), then
limz→a |z − a|m+1|f (z)− c | = 0 by Corollary V.1.18(b).
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Theorem V.1.21. Casorati-Weierstrass Theorem

Theorem V.1.21 (continued)

Proof. We know

|z − a|m+1|f (z)− c | ≥ |z − a|m+1|f (z)| − |z − a|m+1|c |,

or
|z − a|m+1|f (z)| ≤ |z − a|m+1|f (z)− c |+ |z − a|m+1|c |.

So

lim
z→a

|z−a|m+1|f (z)| ≤ lim
z→a

|z−a|m+1|f (z)−c |+ lim
z→a

|z−a|m+1|c | = 0+0,

and limz→a |z − a|m+1|f (z)| = 0 (remember m ≥ 1). But then Theorem
V.1.2 implies that f (z)(z − a)m has a removable singularity at z = a. By
Proposition V.1.4, f has a pole of order m, CONTRADICTING the
hypothesis that f has an essential singularity at a.
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