Complex Analysis

Chapter V. Singularities

V.1. Classification of Singularities—Proofs of Theorems

John B. Conway

Functions of One Complex Variable I

Second Edition

Deringer

- 2 Proposition V.1.4
- 3 Corollary V.1.18
- 4 Theorem V.1.21. Casorati-Weierstrass Theorem

Theorem V.1.2. If f has an isolated singularity at a then z = a is a removable singularity if and only if $\lim_{z \to a} (z - a)f(z) = 0$.

Proof. Suppose f is analytic in $\{z \mid 0 < |z - a| < R\}$ and define $g(z) = \begin{cases} (z - a)f(z) & \text{for } z \neq a \\ 0 & \text{for } z = a. \end{cases}$ Suppose $\lim_{z \to a} (z - a)f(z) = 0$; then g is continuous on B(z; R). We now show that g is analytic and hence that a is a removable singularity of f.

Theorem V.1.2. If f has an isolated singularity at a then z = a is a removable singularity if and only if $\lim_{z \to a} (z - a)f(z) = 0$.

Proof. Suppose f is analytic in $\{z \mid 0 < |z - a| < R\}$ and define $g(z) = \begin{cases} (z - a)f(z) & \text{for } z \neq a \\ 0 & \text{for } z = a. \end{cases}$ Suppose $\lim_{z \to a} (z - a)f(z) = 0$; then g is continuous on B(z; R). We now show that g is analytic and hence that a is a removable singularity of f.

We show that g is analytic by applying Morera's Theorem. Let T be a triangle in B(a; R) and let Δ be the inside of T together with T. (1) If $a \notin \Delta$ then $T \sim 0$ in $\{z \mid 0 < |z - a| < R\}$ and so by Cauchy's Theorem (Theorem IV.6.6), $\int_T g = 0$.

Theorem V.1.2. If f has an isolated singularity at a then z = a is a removable singularity if and only if $\lim_{z \to a} (z - a)f(z) = 0$.

Proof. Suppose f is analytic in $\{z \mid 0 < |z - a| < R\}$ and define $g(z) = \begin{cases} (z - a)f(z) & \text{for } z \neq a \\ 0 & \text{for } z = a. \end{cases}$ Suppose $\lim_{z \to a} (z - a)f(z) = 0$; then g is continuous on B(z; R). We now show that g is analytic and hence that a is a removable singularity of f.

We show that g is analytic by applying Morera's Theorem. Let T be a triangle in B(a; R) and let Δ be the inside of T together with T. (1) If $a \notin \Delta$ then $T \sim 0$ in $\{z \mid 0 < |z - a| < R\}$ and so by Cauchy's Theorem (Theorem IV.6.6), $\int_T g = 0$.

Theorem V.1.2 (continued 1)

Proof (continued). (2) If *a* is vertex of *T* then we have T = [a, b, c, a]. Let $x \in [a, b]$ and $y \in [c, a]$ and form triangle $T_1 = [a, x, y, a]$. If *P* is a polygon [x, b, c, y, x] then

$$\int_{T} g(z) \, dz = \int_{T_1} g(z) \, dz + \int_{P} g(z) \, dz = \int_{T_1} g(z) \, dz$$

since $P \sim 0$ in $\{a \mid 0 < |z - a| < R\}$:

Theorem V.1.2 (continued 3)

Proof (continued). Since g is continuous and g(a) = 0, then for any $\varepsilon > 0$, x and y can be chosen such that $|g(z)| < \varepsilon/\ell(T)$ for any z on T_1 . Hence $\left|\int_T g(z) dz\right| = \left|\int_{T_1} g(z) dz\right| < \varepsilon$. Therefore, $\int_T g(z) dz = 0$.

(3) If $a \in \Delta$ and T = [x, y, z, x] then consider triangles $T_1 = [x, y, a, x]$, $T_2 = [y, z, a, y]$, and $T_3 = [z, x, a, z]$:

Theorem V.1.2 (continued 3)

Proof (continued). Since g is continuous and g(a) = 0, then for any $\varepsilon > 0$, x and y can be chosen such that $|g(z)| < \varepsilon/\ell(T)$ for any z on T_1 . Hence $\left|\int_T g(z) dz\right| = \left|\int_{T_1} g(z) dz\right| < \varepsilon$. Therefore, $\int_T g(z) dz = 0$.

(3) If $a \in \Delta$ and T = [x, y, z, x] then consider triangles $T_1 = [x, y, a, x]$, $T_2 = [y, z, a, y]$, and $T_3 = [z, x, a, z]$:

Theorem V.1.2 (continued 3)

Proof (continued). Since g is continuous and g(a) = 0, then for any $\varepsilon > 0$, x and y can be chosen such that $|g(z)| < \varepsilon/\ell(T)$ for any z on T_1 . Hence $\left|\int_T g(z) dz\right| = \left|\int_{T_1} g(z) dz\right| < \varepsilon$. Therefore, $\int_T g(z) dz = 0$.

(3) If $a \in \Delta$ and T = [x, y, z, x] then consider triangles $T_1 = [x, y, a, x]$, $T_2 = [y, z, a, y]$, and $T_3 = [z, x, a, z]$:

Theorem V.1.2 (continued 4)

Theorem V.1.2. If f has an isolated singularity at a then z = a is a removable singularity if and only if $\lim_{z\to a} (z-a)f(z) = 0$.

Proof (continued). As above, $\int_{T_j} g(z) dz = 0$ for j = 1, 2, 3 and so $\int_T g(z) dz = \int_{T_1} g(z) dz + \int_{T_2} g(z) dz + \int_{T_2} g(z) dz = 0$. Therefore, by (1), (2), and (3), g must be analytic by Morera's Theorem, and f has a removable singularity at z = a

Next, suppose f has an isolated, removable singularity at z = a. Then there is analytic $g : B(a; R) \to \mathbb{C}$ such that g(z) = f(z) for 0 < |z - a| < R (by definition of isolated singularity). Then $\lim_{z\to a} (z - a)f(z) = \lim_{z\to a} (z - a)g(z) = 0.$

Theorem V.1.2 (continued 4)

Theorem V.1.2. If f has an isolated singularity at a then z = a is a removable singularity if and only if $\lim_{z\to a} (z-a)f(z) = 0$.

Proof (continued). As above, $\int_{T_j} g(z) dz = 0$ for j = 1, 2, 3 and so $\int_T g(z) dz = \int_{T_1} g(z) dz + \int_{T_2} g(z) dz + \int_{T_2} g(z) dz = 0$. Therefore, by (1), (2), and (3), g must be analytic by Morera's Theorem, and f has a removable singularity at z = a

Next, suppose f has an isolated, removable singularity at z = a. Then there is analytic $g : B(a; R) \to \mathbb{C}$ such that g(z) = f(z) for 0 < |z - a| < R (by definition of isolated singularity). Then $\lim_{z\to a} (z - a)f(z) = \lim_{z\to a} (z - a)g(z) = 0.$

Proposition V.1.4

Proposition V.1.4. If G is a region with $a \in G$, and if f is analytic in $G \setminus \{a\}$ with a pole at z = a, then there is a positive integer m and an analytic function $g : G \to \mathbb{C}$ such that $f(z) = \frac{g(z)}{(z-a)^m}$.

Proof. Suppose f has a pole at z = a. Then $\lim_{z\to a} |f(z)| = \infty$ and $\lim_{z\to a} 1/f(z) = 0$. So 1/f has a removable discontinuity at z = a by Theorem V.1.2. So the function $h(z) = \begin{cases} 1/f(z) & \text{for } z \neq a \\ 0 & \text{for } z = a \end{cases}$ is analytic in B(a; R) for some R > 0 (since a pole is an isolated singularity).

Complex Analysis

Proposition V.1.4

Proposition V.1.4. If G is a region with $a \in G$, and if f is analytic in $G \setminus \{a\}$ with a pole at z = a, then there is a positive integer m and an analytic function $g : G \to \mathbb{C}$ such that $f(z) = \frac{g(z)}{(z-a)^m}$.

Proof. Suppose *f* has a pole at z = a. Then $\lim_{z\to a} |f(z)| = \infty$ and $\lim_{z\to a} 1/f(z) = 0$. So 1/f has a removable discontinuity at z = a by Theorem V.1.2. So the function $h(z) = \begin{cases} 1/f(z) & \text{for } z \neq a \\ 0 & \text{for } z = a \end{cases}$ is analytic in B(a; R) for some R > 0 (since a pole is an isolated singularity). Since h(a) = 0, by Corollary IV.3.9, $h(z) = (z - a)^m h_1(z)$ for some analytic h_1 where $h_1(a) \neq 0$ and $m \in \mathbb{N}$. Then $f(z) = 1/h(z) = g(z)/(z - a)^m$ where $g(z) = 1/h_1(z)$.

Proposition V.1.4

Proposition V.1.4. If G is a region with $a \in G$, and if f is analytic in $G \setminus \{a\}$ with a pole at z = a, then there is a positive integer m and an analytic function $g : G \to \mathbb{C}$ such that $f(z) = \frac{g(z)}{(z-a)^m}$.

Proof. Suppose *f* has a pole at z = a. Then $\lim_{z\to a} |f(z)| = \infty$ and $\lim_{z\to a} 1/f(z) = 0$. So 1/f has a removable discontinuity at z = a by Theorem V.1.2. So the function $h(z) = \begin{cases} 1/f(z) & \text{for } z \neq a \\ 0 & \text{for } z = a \end{cases}$ is analytic in B(a; R) for some R > 0 (since a pole is an isolated singularity). Since h(a) = 0, by Corollary IV.3.9, $h(z) = (z - a)^m h_1(z)$ for some analytic h_1 where $h_1(a) \neq 0$ and $m \in \mathbb{N}$. Then $f(z) = 1/h(z) = g(z)/(z - a)^m$ where $g(z) = 1/h_1(z)$.

Corollary V.1.18

Corollary V.1.18

Corollary V.1.18. Let z = a be an isolated singularity of f and let $f(z) = \sum_{-\infty}^{\infty} a_n (a - z)^n$ be its Laurent expansion in ann(a; 0, R). Then

(a) z = a is a removable singularity if and only if $a_n = 0$ for $n \le -1$,

(b) a = z is a pole of order m if and only if $a_{-m} \neq 0$ and $a_n = 0$ for $n \leq -(m+1)$, and

(c) z = a is an essential singularity if and only if $a_n \neq 0$ for infinitely many negative integers n.

Proof. (a) If $a_n = 0$ for $n \le -1$ then $g(z) = \sum_{n=0}^{\infty} a_n(z-a)^n$ on B(a; R) is analytic and equals f on ann(a; 0, R). Conversely, if $f(z) = \sum_{n=0}^{\infty} a_n(z-a)^n$ on ann(a; 0, R), then

$$\lim_{z \to a} (z-a)f(z) = \lim_{z \to a} \left(\sum_{n=0}^{\infty} a_n(z-a)^{n+1}\right) = 0$$

and f has a removable singularity at z = a by Theorem V.1.2.

Corollary V.1.18

Corollary V.1.18

Corollary V.1.18. Let z = a be an isolated singularity of f and let

 $f(z) = \sum_{-\infty} a_n (a - z)^n$ be its Laurent expansion in ann(a; 0, R). Then

(a) z = a is a removable singularity if and only if $a_n = 0$ for $n \le -1$,

(b) a = z is a pole of order m if and only if $a_{-m} \neq 0$ and $a_n = 0$ for $n \leq -(m+1)$, and

(c) z = a is an essential singularity if and only if $a_n \neq 0$ for infinitely many negative integers n.

Proof. (a) If $a_n = 0$ for $n \le -1$ then $g(z) = \sum_{n=0}^{\infty} a_n (z-a)^n$ on B(a; R) is analytic and equals f on ann(a; 0, R). Conversely, if $f(z) = \sum_{n=0}^{\infty} a_n (z-a)^n$ on ann(a; 0, R), then

$$\lim_{z\to a}(z-a)f(z) = \lim_{z\to a}\left(\sum_{n=0}^{\infty}a_n(z-a)^{n+1}\right) = 0$$

and f has a removable singularity at z = a by Theorem V.1.2.

Corollary V.1.18 (continued)

Proof (continued). (b) Suppose $a_n = 0$ for $n \le -(m+1)$. Then $(z-a)^m f(z)$ has a Laurent expansion which has no negative powers of (z-a). By part (a), $(z-a)^m f(z)$ has a removable singularity at z = a. So, by definition, f has a pole of order m at z = a. Each of these steps is "if and only if," so the converse holds.

(c) For an essential singularity at z = a, neither (a) nor (b) holds and hence (c) must be the case (and conversely since both (a) and (b) are "if and only if").

Corollary V.1.18 (continued)

Proof (continued). (b) Suppose $a_n = 0$ for $n \le -(m+1)$. Then $(z-a)^m f(z)$ has a Laurent expansion which has no negative powers of (z-a). By part (a), $(z-a)^m f(z)$ has a removable singularity at z = a. So, by definition, f has a pole of order m at z = a. Each of these steps is "if and only if," so the converse holds.

(c) For an essential singularity at z = a, neither (a) nor (b) holds and hence (c) must be the case (and conversely since both (a) and (b) are "if and only if").

Theorem V.1.21. Casorati-Weierstrass Theorem. If *f* has an essential singularity at z = a then for every $\delta > 0$, $\{f(ann(a; 0, \delta)\}^- = \mathbb{C}$.

Proof. Suppose that f is analytic in $\operatorname{ann}(a; 0, R)$. We need to show that every complex number is a limit point of $f(\operatorname{ann}(a; 0, \delta))$ (for every δ). If this is NOT the case (we go for a contradiction) then there is $\delta > 0$, $c \in \mathbb{C}$ and $\varepsilon > 0$ such that $|f(z) - c| \ge \varepsilon$ for all $z \in G = \operatorname{ann}(a; 0, \delta)$.

Complex Analysis

Theorem V.1.21. Casorati-Weierstrass Theorem.

If f has an essential singularity at z = a then for every $\delta > 0$, $\{f(ann(a; 0, \delta)\}^- = \mathbb{C}$.

Proof. Suppose that f is analytic in $\operatorname{ann}(a; 0, R)$. We need to show that every complex number is a limit point of $f(\operatorname{ann}(a; 0, \delta))$ (for every δ). If this is NOT the case (we go for a contradiction) then there is $\delta > 0$, $c \in \mathbb{C}$ and $\varepsilon > 0$ such that $|f(z) - c| \ge \varepsilon$ for all $z \in G = \operatorname{ann}(a; 0, \delta)$. Then

$$\lim_{z \to a} \left| \frac{f(z) - c}{z - a} \right| \ge \lim_{z \to a} \frac{\varepsilon}{|z - a|} = \infty,$$

which implies that (f(z) - c)/(z - a) has a pole at z = a. If m is the order of the pole (known to exist by Proposition V.1.4), then $\lim_{z\to a} |z - a|^{m+1} |f(z) - c| = 0$ by Corollary V.1.18(b).

Theorem V.1.21. Casorati-Weierstrass Theorem.

If f has an essential singularity at z = a then for every $\delta > 0$, $\{f(ann(a; 0, \delta)\}^- = \mathbb{C}$.

Proof. Suppose that f is analytic in $\operatorname{ann}(a; 0, R)$. We need to show that every complex number is a limit point of $f(\operatorname{ann}(a; 0, \delta))$ (for every δ). If this is NOT the case (we go for a contradiction) then there is $\delta > 0$, $c \in \mathbb{C}$ and $\varepsilon > 0$ such that $|f(z) - c| \ge \varepsilon$ for all $z \in G = \operatorname{ann}(a; 0, \delta)$. Then

$$\lim_{z \to a} \left| \frac{f(z) - c}{z - a} \right| \ge \lim_{z \to a} \frac{\varepsilon}{|z - a|} = \infty,$$

which implies that (f(z) - c)/(z - a) has a pole at z = a. If m is the order of the pole (known to exist by Proposition V.1.4), then $\lim_{z\to a} |z - a|^{m+1} |f(z) - c| = 0$ by Corollary V.1.18(b).

Theorem V.1.21 (continued)

Proof. We know

$$|z-a|^{m+1}|f(z)-c| \ge |z-a|^{m+1}|f(z)| - |z-a|^{m+1}|c|$$

or

$$|z-a|^{m+1}|f(z)| \leq |z-a|^{m+1}|f(z)-c|+|z-a|^{m+1}|c|.$$

So

$$\lim_{z \to a} |z - a|^{m+1} |f(z)| \le \lim_{z \to a} |z - a|^{m+1} |f(z) - c| + \lim_{z \to a} |z - a|^{m+1} |c| = 0 + 0,$$

and $\lim_{z\to a} |z-a|^{m+1}|f(z)| = 0$ (remember $m \ge 1$). But then Theorem V.1.2 implies that $f(z)(z-a)^m$ has a removable singularity at z = a. By Proposition V.1.4, f has a pole of order m, CONTRADICTING the hypothesis that f has an essential singularity at a.

Theorem V.1.21 (continued)

Proof. We know

$$|z-a|^{m+1}|f(z)-c| \ge |z-a|^{m+1}|f(z)| - |z-a|^{m+1}|c|$$

or

$$|z-a|^{m+1}|f(z)| \le |z-a|^{m+1}|f(z)-c|+|z-a|^{m+1}|c|.$$

So

$$\lim_{z \to a} |z - a|^{m+1} |f(z)| \le \lim_{z \to a} |z - a|^{m+1} |f(z) - c| + \lim_{z \to a} |z - a|^{m+1} |c| = 0 + 0,$$

and $\lim_{z\to a} |z-a|^{m+1}|f(z)| = 0$ (remember $m \ge 1$). But then Theorem V.1.2 implies that $f(z)(z-a)^m$ has a removable singularity at z = a. By Proposition V.1.4, f has a pole of order m, CONTRADICTING the hypothesis that f has an essential singularity at a.