Complex Analysis

Chapter V. Singularities

V.3. The Argument Principle—Proofs of Theorems

Table of contents

(1) Theorem V.3.4. Argument Principle
(2) Proposition V.3.7
(3) Theorem V.3.8. Rouche's Theorem

Theorem V.3.4

Theorem V.3.4. Argument Principle.

Let f be meromorphic in G with poles $p_{1}, p_{2}, \ldots, p_{m}$ and zeros
$z_{1}, z_{2}, \ldots, z_{n}$ repeated according to multiplicity. If γ is a closed rectifiable curve in G where $\gamma \approx 0$ and not passing through
$p_{1}, p_{2}, \ldots, p_{m}, z_{a}, z_{2}, \ldots, z_{n}$, then

$$
\frac{1}{2 \pi i} \int_{\gamma} \frac{f^{\prime}(z)}{f(z)} d z=\sum_{k=1}^{n} n\left(\gamma ; z_{k}\right)-\sum_{j=1}^{m} n\left(\gamma ; p_{j}\right)
$$

Proof. By repeated application of (3.1) and (3.2) (applying to each zero and each pole) we have

Theorem V.3.4

Theorem V.3.4. Argument Principle.

Let f be meromorphic in G with poles $p_{1}, p_{2}, \ldots, p_{m}$ and zeros
$z_{1}, z_{2}, \ldots, z_{n}$ repeated according to multiplicity. If γ is a closed rectifiable curve in G where $\gamma \approx 0$ and not passing through
$p_{1}, p_{2}, \ldots, p_{m}, z_{a}, z_{2}, \ldots, z_{n}$, then

$$
\frac{1}{2 \pi i} \int_{\gamma} \frac{f^{\prime}(z)}{f(z)} d z=\sum_{k=1}^{n} n\left(\gamma ; z_{k}\right)-\sum_{j=1}^{m} n\left(\gamma ; p_{j}\right)
$$

Proof. By repeated application of (3.1) and (3.2) (applying to each zero and each pole) we have

$$
\frac{f^{\prime}(z)}{f(z)}=\sum_{k=1}^{n} \frac{1}{z-z_{k}}-\sum_{j=1}^{m} \frac{1}{z-p_{j}}+\frac{g^{\prime}(z)}{g(z)}
$$

where g is analytic on G and nonzero on G.

Theorem V.3.4 (continued)

Proof (continued). Therefore g^{\prime} / g is analytic and by Cauchy's Theorem (First Version; Theorem IV.5.7), $\int_{\gamma} g^{\prime}(z) / g(z) d z=0$. By the definition of winding number, we have

$$
\begin{aligned}
\frac{1}{2 \pi i} \int_{\gamma} \frac{f^{\prime}(z)}{f(z)} d z & =\frac{1}{2 \pi i} \int_{\gamma}\left(\sum_{k=1}^{n} \frac{1}{z-z_{k}}-\sum_{j=1}^{m} \frac{1}{z-p_{j}}\right) d z \\
& =\sum_{k=1}^{n} n\left(\gamma ; z_{k}\right)-\sum_{j=1}^{m} n\left(\gamma ; p_{j}\right) .
\end{aligned}
$$

Theorem V.3.4 (continued)

Proof (continued). Therefore g^{\prime} / g is analytic and by Cauchy's Theorem (First Version; Theorem IV.5.7), $\int_{\gamma} g^{\prime}(z) / g(z) d z=0$. By the definition of winding number, we have

$$
\begin{aligned}
\frac{1}{2 \pi i} \int_{\gamma} \frac{f^{\prime}(z)}{f(z)} d z & =\frac{1}{2 \pi i} \int_{\gamma}\left(\sum_{k=1}^{n} \frac{1}{z-z_{k}}-\sum_{j=1}^{m} \frac{1}{z-p_{j}}\right) d z \\
& =\sum_{k=1}^{n} n\left(\gamma ; z_{k}\right)-\sum_{j=1}^{m} n\left(\gamma ; p_{j}\right)
\end{aligned}
$$

Proposition V.3.7

Proposition V.3.7. Let f be analytic on an open set containing $\bar{B}(a ; R)$ and suppose that f is one to one on $B(a ; R)$. If $\Omega=f[B(a ; R)]$ and γ is the circle $|z-a|=R$, then $f^{-1}(\omega)$ is defined for each $\omega \in \Omega$ by

$$
f^{-1}(\omega)=\frac{1}{2 \pi i} \int_{\gamma} \frac{z f^{\prime}(z)}{f(z)-\omega} d z
$$

Proof. Let $\omega \in \Omega=f(B(a ; R))$. Since f is one to one on $B(a ; R)$, then the function $f(z)-\omega$ is one to one and so has only one zero in $B(a ; R)$ (namely, the element of $B(a ; R)$ which is mapped to ω, denoted $f^{-1}(\omega)$).

Proposition V.3.7

Proposition V.3.7. Let f be analytic on an open set containing $\bar{B}(a ; R)$ and suppose that f is one to one on $B(a ; R)$. If $\Omega=f[B(a ; R)]$ and γ is the circle $|z-a|=R$, then $f^{-1}(\omega)$ is defined for each $\omega \in \Omega$ by

$$
f^{-1}(\omega)=\frac{1}{2 \pi i} \int_{\gamma} \frac{z f^{\prime}(z)}{f(z)-\omega} d z
$$

Proof. Let $\omega \in \Omega=f(B(a ; R))$. Since f is one to one on $B(a ; R)$, then the function $f(z)-\omega$ is one to one and so has only one zero in $B(a ; R)$ (namely, the element of $B(a ; R)$ which is mapped to ω, denoted $f^{-1}(\omega)$). Take $g(z)=z$ and then Theorem V.3.6 gives

or $f^{-1}(\omega)=\frac{1}{2 \pi i} \int_{\gamma} \frac{f^{\prime}(z)}{f(z)-\omega} d z$.

Proposition V.3.7

Proposition V.3.7. Let f be analytic on an open set containing $\bar{B}(a ; R)$ and suppose that f is one to one on $B(a ; R)$. If $\Omega=f[B(a ; R)]$ and γ is the circle $|z-a|=R$, then $f^{-1}(\omega)$ is defined for each $\omega \in \Omega$ by

$$
f^{-1}(\omega)=\frac{1}{2 \pi i} \int_{\gamma} \frac{z f^{\prime}(z)}{f(z)-\omega} d z
$$

Proof. Let $\omega \in \Omega=f(B(a ; R))$. Since f is one to one on $B(a ; R)$, then the function $f(z)-\omega$ is one to one and so has only one zero in $B(a ; R)$ (namely, the element of $B(a ; R)$ which is mapped to ω, denoted $f^{-1}(\omega)$). Take $g(z)=z$ and then Theorem V.3.6 gives

$$
g\left(f^{-1}(\omega)\right) n\left(\gamma ; f^{-1}(\omega)=\frac{1}{2 \pi i} \int_{\gamma} g(z) \frac{(f(z)-\omega)^{\prime}}{f(z)-\omega} d z\right.
$$

or $f^{-1}(\omega)=\frac{1}{2 \pi i} \int_{\gamma} \frac{z f^{\prime}(z)}{f(z)-\omega} d z$.

Theorem V.3.8

Theorem V.3.8. Rouche's Theorem.

Suppose f and g are meromorphic in a neighborhood of $\bar{B}(a ; R)$ with no zeros or poles on the circle $\gamma(t)=a+\operatorname{Re}^{i t}, t \in[0,2 \pi]$. Suppose Z_{f} and Z_{g} are the number of zeros inside γ, and P_{f} and P_{g} are the number of poles inside γ (counted according to their multiplicities) and that $|f(z)+g(z)|<|f(z)|+|g(z)|$ on γ. Then $Z_{f}-P_{f}=Z_{g}-P_{g}$.

Proof. By hypothesis, $\left|\frac{f(z)}{g(z)}+1\right|<\left|\frac{f(z)}{g(z)}\right|+1$ on γ (g has no zeros on γ, by hypothesis). If $\lambda=f(z) / g(z)$ for some given $z \in\{\gamma\}$ and λ is a nonnegative real number, then the inequality becomes $\lambda+1<\lambda+1$, a contradiction.

Theorem V.3.8

Theorem V.3.8. Rouche's Theorem.

Suppose f and g are meromorphic in a neighborhood of $\bar{B}(a ; R)$ with no zeros or poles on the circle $\gamma(t)=a+\operatorname{Re}^{i t}, t \in[0,2 \pi]$. Suppose Z_{f} and Z_{g} are the number of zeros inside γ, and P_{f} and P_{g} are the number of poles inside γ (counted according to their multiplicities) and that $|f(z)+g(z)|<|f(z)|+|g(z)|$ on γ. Then $Z_{f}-P_{f}=Z_{g}-P_{g}$.

Proof. By hypothesis, $\left|\frac{f(z)}{g(z)}+1\right|<\left|\frac{f(z)}{g(z)}\right|+1$ on γ (g has no zeros on γ, by hypothesis). If $\lambda=f(z) / g(z)$ for some given $z \in\{\gamma\}$ and λ is a nonnegative real number, then the inequality becomes $\lambda+1<\lambda+1$, a contradiction. So meromorphic function $f / g:\{\gamma\} \rightarrow \Omega=\mathbb{C} \backslash[0, \infty)$. So there is a branch of the logarithm defined on Ω, say $\operatorname{LOG}(z)$. Then $\operatorname{LOG}(f / g)$ is a primitive of $(f / g)^{\prime} /(f / g)$ valid on a neighborhood of γ

Theorem V.3.8

Theorem V.3.8. Rouche's Theorem.

Suppose f and g are meromorphic in a neighborhood of $\bar{B}(a ; R)$ with no zeros or poles on the circle $\gamma(t)=a+\operatorname{Re}^{i t}, t \in[0,2 \pi]$. Suppose Z_{f} and Z_{g} are the number of zeros inside γ, and P_{f} and P_{g} are the number of poles inside γ (counted according to their multiplicities) and that $|f(z)+g(z)|<|f(z)|+|g(z)|$ on γ. Then $Z_{f}-P_{f}=Z_{g}-P_{g}$.

Proof. By hypothesis, $\left|\frac{f(z)}{g(z)}+1\right|<\left|\frac{f(z)}{g(z)}\right|+1$ on γ (g has no zeros on γ, by hypothesis). If $\lambda=f(z) / g(z)$ for some given $z \in\{\gamma\}$ and λ is a nonnegative real number, then the inequality becomes $\lambda+1<\lambda+1$, a contradiction. So meromorphic function $f / g:\{\gamma\} \rightarrow \Omega=\mathbb{C} \backslash[0, \infty)$. So there is a branch of the logarithm defined on Ω, say $\operatorname{LOG}(z)$. Then $\operatorname{LOG}(f / g)$ is a primitive of $(f / g)^{\prime} /(f / g)$ valid on a neighborhood of γ.

Theorem V. 3.8 (continued)

Theorem V.3.8. Rouche's Theorem.

Suppose f and g are meromorphic in a neighborhood of $\bar{B}(a ; R)$ with no zeros or poles on the circle $\gamma(t)=a+\operatorname{Re}^{i t}, t \in[0,2 \pi]$. Suppose Z_{f} and Z_{g} are the number of zeros inside γ, and P_{f} and P_{g} are the number of poles inside γ (counted according to their multiplicities) and that $|f(z)+g(z)|<|f(z)|+|g(z)|$ on γ. Then $Z_{f}-P_{f}=Z_{g}-P_{g}$.

Proof (continued). So

$$
\begin{aligned}
0 & =\frac{1}{2 \pi i} \int_{\gamma} \frac{(f / g)^{\prime}}{f / g} \text { by Corollary IV.1.22 } \\
& =\frac{1}{2 \pi i} \int_{\gamma} \frac{g}{f} \frac{f^{\prime} g-f g^{\prime}}{g^{2}}=\frac{1}{2 \pi i} \int_{\gamma}\left(\frac{f^{\prime}}{f}-\frac{g^{\prime}}{g}\right) \\
& =\frac{1}{2 \pi i} \int_{\gamma} \frac{f^{\prime}}{f}-\frac{1}{2 \pi i} \int_{\gamma} \frac{g^{\prime}}{g} \\
& =\left(Z_{f}-P_{f}\right)-\left(Z_{g}-P_{g}\right) \text { by the Argument Principle. }
\end{aligned}
$$

