Complex Analysis

Chapter V. Singularities V.3. The Argument Principle—Proofs of Theorems

John B. Conway

Functions of One Complex Variable I

Second Edition

Deringer

1 Theorem V.3.4. Argument Principle

Proposition V.3.7

Theorem V.3.8. Rouche's Theorem

Theorem V.3.4. Argument Principle.

Let f be meromorphic in G with poles p_1, p_2, \ldots, p_m and zeros z_1, z_2, \ldots, z_n repeated according to multiplicity. If γ is a closed rectifiable curve in G where $\gamma \approx 0$ and not passing through

 $p_1, p_2, \ldots, p_m, z_a, z_2, \ldots, z_n$, then

$$\frac{1}{2\pi i}\int_{\gamma}\frac{f'(z)}{f(z)}\,dz=\sum_{k=1}^n n(\gamma;z_k)-\sum_{j=1}^m n(\gamma;p_j).$$

Proof. By repeated application of (3.1) and (3.2) (applying to each zero and each pole) we have

$$\frac{f'(z)}{f(z)} = \sum_{k=1}^{n} \frac{1}{z - z_k} - \sum_{j=1}^{m} \frac{1}{z - p_j} + \frac{g'(z)}{g(z)}$$

where g is analytic on G and nonzero on G.

Theorem V.3.4. Argument Principle.

Let f be meromorphic in G with poles p_1, p_2, \ldots, p_m and zeros z_1, z_2, \ldots, z_n repeated according to multiplicity. If γ is a closed rectifiable curve in G where $\gamma \approx 0$ and not passing through

 $p_1, p_2, \ldots, p_m, z_a, z_2, \ldots, z_n$, then

$$\frac{1}{2\pi i}\int_{\gamma}\frac{f'(z)}{f(z)}\,dz=\sum_{k=1}^n n(\gamma;z_k)-\sum_{j=1}^m n(\gamma;p_j).$$

Proof. By repeated application of (3.1) and (3.2) (applying to each zero and each pole) we have

$$\frac{f'(z)}{f(z)} = \sum_{k=1}^{n} \frac{1}{z - z_k} - \sum_{j=1}^{m} \frac{1}{z - p_j} + \frac{g'(z)}{g(z)}$$

where g is analytic on G and nonzero on G.

Theorem V.3.4 (continued)

Proof (continued). Therefore g'/g is analytic and by Cauchy's Theorem (First Version; Theorem IV.5.7), $\int_{\gamma} g'(z)/g(z) dz = 0$. By the definition of winding number, we have

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz = \frac{1}{2\pi i} \int_{\gamma} \left(\sum_{k=1}^{n} \frac{1}{z - z_k} - \sum_{j=1}^{m} \frac{1}{z - p_j} \right) dz$$

$$=\sum_{k=1}^n n(\gamma; z_k) - \sum_{j=1}^m n(\gamma; p_j).$$

Theorem V.3.4 (continued)

Proof (continued). Therefore g'/g is analytic and by Cauchy's Theorem (First Version; Theorem IV.5.7), $\int_{\gamma} g'(z)/g(z) dz = 0$. By the definition of winding number, we have

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} \, dz = \frac{1}{2\pi i} \int_{\gamma} \left(\sum_{k=1}^{n} \frac{1}{z - z_k} - \sum_{j=1}^{m} \frac{1}{z - p_j} \right) \, dz$$

$$=\sum_{k=1}^n n(\gamma;z_k)-\sum_{j=1}^m n(\gamma;p_j).$$

Proposition V.3.7

Proposition V.3.7. Let f be analytic on an open set containing $\overline{B}(a; R)$ and suppose that f is one to one on B(a; R). If $\Omega = f[B(a; R)]$ and γ is the circle |z - a| = R, then $f^{-1}(\omega)$ is defined for each $\omega \in \Omega$ by

$$f^{-1}(\omega) = \frac{1}{2\pi i} \int_{\gamma} \frac{zf'(z)}{f(z) - \omega} \, dz.$$

Proof. Let $\omega \in \Omega = f(B(a; R))$. Since f is one to one on B(a; R), then the function $f(z) - \omega$ is one to one and so has only one zero in B(a; R) (namely, the element of B(a; R) which is mapped to ω , denoted $f^{-1}(\omega)$).

Proposition V.3.7

Proposition V.3.7. Let f be analytic on an open set containing $\overline{B}(a; R)$ and suppose that f is one to one on B(a; R). If $\Omega = f[B(a; R)]$ and γ is the circle |z - a| = R, then $f^{-1}(\omega)$ is defined for each $\omega \in \Omega$ by

$$f^{-1}(\omega) = \frac{1}{2\pi i} \int_{\gamma} \frac{zf'(z)}{f(z) - \omega} \, dz.$$

Proof. Let $\omega \in \Omega = f(B(a; R))$. Since f is one to one on B(a; R), then the function $f(z) - \omega$ is one to one and so has only one zero in B(a; R) (namely, the element of B(a; R) which is mapped to ω , denoted $f^{-1}(\omega)$). Take g(z) = z and then Theorem V.3.6 gives

$$g(f^{-1}(\omega))n(\gamma; f^{-1}(\omega)) = \frac{1}{2\pi i} \int_{\gamma} g(z) \frac{(f(z) - \omega)'}{f(z) - \omega} dz$$

or
$$f^{-1}(\omega) = \frac{1}{2\pi i} \int_{\gamma} \frac{zf'(z)}{f(z) - \omega} dz$$
.

Proposition V.3.7

Proposition V.3.7. Let f be analytic on an open set containing $\overline{B}(a; R)$ and suppose that f is one to one on B(a; R). If $\Omega = f[B(a; R)]$ and γ is the circle |z - a| = R, then $f^{-1}(\omega)$ is defined for each $\omega \in \Omega$ by

$$f^{-1}(\omega) = \frac{1}{2\pi i} \int_{\gamma} \frac{zf'(z)}{f(z) - \omega} \, dz.$$

Proof. Let $\omega \in \Omega = f(B(a; R))$. Since f is one to one on B(a; R), then the function $f(z) - \omega$ is one to one and so has only one zero in B(a; R) (namely, the element of B(a; R) which is mapped to ω , denoted $f^{-1}(\omega)$). Take g(z) = z and then Theorem V.3.6 gives

$$g(f^{-1}(\omega))n(\gamma;f^{-1}(\omega)) = \frac{1}{2\pi i} \int_{\gamma} g(z) \frac{(f(z)-\omega)'}{f(z)-\omega} dz$$

or
$$f^{-1}(\omega) = \frac{1}{2\pi i} \int_{\gamma} \frac{zf'(z)}{f(z) - \omega} dz.$$

Theorem V.3.8. Rouche's Theorem.

Suppose f and g are meromorphic in a neighborhood of $\overline{B}(a; R)$ with no zeros or poles on the circle $\gamma(t) = a + Re^{it}$, $t \in [0, 2\pi]$. Suppose Z_f and Z_g are the number of zeros inside γ , and P_f and P_g are the number of poles inside γ (counted according to their multiplicities) and that |f(z) + g(z)| < |f(z)| + |g(z)| on γ . Then $Z_f - P_f = Z_g - P_g$.

Proof. By hypothesis, $\left|\frac{f(z)}{g(z)}+1\right| < \left|\frac{f(z)}{g(z)}\right| + 1$ on γ (g has no zeros on γ , by hypothesis). If $\lambda = f(z)/g(z)$ for some given $z \in \{\gamma\}$ and λ is a nonnegative real number, then the inequality becomes $\lambda + 1 < \lambda + 1$, a contradiction.

Theorem V.3.8. Rouche's Theorem.

Suppose f and g are meromorphic in a neighborhood of $\overline{B}(a; R)$ with no zeros or poles on the circle $\gamma(t) = a + Re^{it}$, $t \in [0, 2\pi]$. Suppose Z_f and Z_g are the number of zeros inside γ , and P_f and P_g are the number of poles inside γ (counted according to their multiplicities) and that |f(z) + g(z)| < |f(z)| + |g(z)| on γ . Then $Z_f - P_f = Z_g - P_g$.

Proof. By hypothesis, $\left|\frac{f(z)}{g(z)}+1\right| < \left|\frac{f(z)}{g(z)}\right| + 1$ on γ (g has no zeros on γ , by hypothesis). If $\lambda = f(z)/g(z)$ for some given $z \in \{\gamma\}$ and λ is a nonnegative real number, then the inequality becomes $\lambda + 1 < \lambda + 1$, a contradiction. So meromorphic function $f/g : \{\gamma\} \rightarrow \Omega = \mathbb{C} \setminus [0, \infty)$. So there is a branch of the logarithm defined on Ω , say LOG(z). Then LOG(f/g) is a primitive of (f/g)'/(f/g) valid on a neighborhood of γ .

Theorem V.3.8. Rouche's Theorem.

Suppose f and g are meromorphic in a neighborhood of $\overline{B}(a; R)$ with no zeros or poles on the circle $\gamma(t) = a + Re^{it}$, $t \in [0, 2\pi]$. Suppose Z_f and Z_g are the number of zeros inside γ , and P_f and P_g are the number of poles inside γ (counted according to their multiplicities) and that |f(z) + g(z)| < |f(z)| + |g(z)| on γ . Then $Z_f - P_f = Z_g - P_g$.

Proof. By hypothesis, $\left|\frac{f(z)}{g(z)}+1\right| < \left|\frac{f(z)}{g(z)}\right| + 1$ on γ (g has no zeros on γ , by hypothesis). If $\lambda = f(z)/g(z)$ for some given $z \in \{\gamma\}$ and λ is a nonnegative real number, then the inequality becomes $\lambda + 1 < \lambda + 1$, a contradiction. So meromorphic function $f/g : \{\gamma\} \rightarrow \Omega = \mathbb{C} \setminus [0, \infty)$. So there is a branch of the logarithm defined on Ω , say LOG(z). Then LOG(f/g) is a primitive of (f/g)'/(f/g) valid on a neighborhood of γ .

Theorem V.3.8 (continued)

Theorem V.3.8. Rouche's Theorem.

Suppose f and g are meromorphic in a neighborhood of $\overline{B}(a; R)$ with no zeros or poles on the circle $\gamma(t) = a + Re^{it}$, $t \in [0, 2\pi]$. Suppose Z_f and Z_g are the number of zeros inside γ , and P_f and P_g are the number of poles inside γ (counted according to their multiplicities) and that |f(z) + g(z)| < |f(z)| + |g(z)| on γ . Then $Z_f - P_f = Z_g - P_g$.

Proof (continued). So

$$D = \frac{1}{2\pi i} \int_{\gamma} \frac{(f/g)'}{f/g} \text{ by Corollary IV.1.22}$$

$$= \frac{1}{2\pi i} \int_{\gamma} \frac{g}{f} \frac{f'g - fg'}{g^2} = \frac{1}{2\pi i} \int_{\gamma} \left(\frac{f'}{f} - \frac{g'}{g}\right)$$

$$= \frac{1}{2\pi i} \int_{\gamma} \frac{f'}{f} - \frac{1}{2\pi i} \int_{\gamma} \frac{g'}{g}$$

$$= (Z_f - P_f) - (Z_g - P_g) \text{ by the Argument Principle.} \square$$