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Theorem V.3.4. Argument Principle

Theorem V.3.4

Theorem V.3.4. Argument Principle.
Let f be meromorphic in G with poles p1, p2, . . . , pm and zeros
z1, z2, . . . , zn repeated according to multiplicity. If γ is a closed rectifiable
curve in G where γ ≈ 0 and not passing through
p1, p2, . . . , pm, za, z2, . . . , zn, then

1

2πi

∫
γ

f ′(z)

f (z)
dz =

n∑
k=1

n(γ; zk)−
m∑

j=1

n(γ; pj).

Proof. By repeated application of (3.1) and (3.2) (applying to each zero
and each pole) we have

f ′(z)

f (z)
=

n∑
k=1

1

z − zk
−

m∑
j=1

1

z − pj
+

g ′(z)

g(z)

where g is analytic on G and nonzero on G .
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Theorem V.3.4. Argument Principle

Theorem V.3.4 (continued)

Proof (continued). Therefore g ′/g is analytic and by Cauchy’s Theorem
(First Version; Theorem IV.5.7),

∫
γ g ′(z)/g(z) dz = 0. By the definition

of winding number, we have

1

2πi

∫
γ

f ′(z)

f (z)
dz =

1

2πi

∫
γ

 n∑
k=1

1

z − zk
−

m∑
j=1

1

z − pj

 dz

=
n∑

k=1

n(γ; zk)−
m∑

j=1

n(γ; pj).
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Theorem V.3.4. Argument Principle

Theorem V.3.4 (continued)
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Proposition V.3.7

Proposition V.3.7

Proposition V.3.7. Let f be analytic on an open set containing B(a;R)
and suppose that f is one to one on B(a;R). If Ω = f [B(a;R)] and γ is
the circle |z − a| = R, then f −1(ω) is defined for each ω ∈ Ω by

f −1(ω) =
1

2πi

∫
γ

zf ′(z)

f (z)− ω
dz .

Proof. Let ω ∈ Ω = f (B(a;R)). Since f is one to one on B(a;R), then
the function f (z)− ω is one to one and so has only one zero in B(a;R)
(namely, the element of B(a;R) which is mapped to ω, denoted f −1(ω)).

Take g(z) = z and then Theorem V.3.6 gives

g(f −1(ω))n(γ; f −1(ω) =
1

2πi

∫
γ
g(z)

(f (z)− ω)′

f (z)− ω
dz

or f −1(ω) =
1

2πi

∫
γ

zf ′(z)

f (z)− ω
dz .
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Theorem V.3.8. Rouche’s Theorem

Theorem V.3.8

Theorem V.3.8. Rouche’s Theorem.
Suppose f and g are meromorphic in a neighborhood of B(a;R) with no
zeros or poles on the circle γ(t) = a + Re it , t ∈ [0, 2π]. Suppose Zf and
Zg are the number of zeros inside γ, and Pf and Pg are the number of
poles inside γ (counted according to their multiplicities) and that
|f (z) + g(z)| < |f (z)|+ |g(z)| on γ. Then Zf − Pf = Zg − Pg .

Proof. By hypothesis,

∣∣∣∣ f (z)

g(z)
+ 1

∣∣∣∣ <

∣∣∣∣ f (z)

g(z)

∣∣∣∣ + 1 on γ (g has no zeros on

γ, by hypothesis). If λ = f (z)/g(z) for some given z ∈ {γ} and λ is a
nonnegative real number, then the inequality becomes λ + 1 < λ + 1, a
contradiction.

So meromorphic function f /g : {γ} → Ω = C \ [0,∞). So
there is a branch of the logarithm defined on Ω, say LOG(z). Then
LOG(f /g) is a primitive of (f /g)′/(f /g) valid on a neighborhood of γ.
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Theorem V.3.8. Rouche’s Theorem

Theorem V.3.8 (continued)

Theorem V.3.8. Rouche’s Theorem.
Suppose f and g are meromorphic in a neighborhood of B(a;R) with no
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Proof (continued). So

0 =
1

2πi

∫
γ

(f /g)′

f /g
by Corollary IV.1.22

=
1

2πi

∫
γ

g

f

f ′g − fg ′

g2
=

1

2πi

∫
γ

(
f ′

f
− g ′

g

)
=

1

2πi

∫
γ

f ′

f
− 1

2πi

∫
γ

g ′

g

= (Zf − Pf )− (Zg − Pg ) by the Argument Principle.
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