The Centroid Theorem
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Chapter VI. The Maximum Modulus Theorem The centroid of the zeros of a polynomial is the same as the centroid of
Supplement. Applications of the Maximum Modulus Theorem to the zeros of the derivative of the polynomial.
Polynomials—Proofs of Theorems
Proof. Let polynomial p have zeros zy, z5,...,z,. Then
p(z) =Y h_gakz" = an [[41_1(z — z). Multiplying out, we find that the
coefficient of z" 1 is a,_1 = —ap(z1 + 2o + -+ - + z,). Therefore the

centroid of the zeros of p is
John B. Conway

: zn+z++ 2z, 1\ [(—an-1 —an—1
Functions of = | — = X
One Complex n n an nap
Variable |
Second Edition Let the zeros of p’ be wy, wa, ..., w,_1. Then
n n—1
p'(z) = Z kaz""! = na, H(z — Wg).
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The Centroid Theorem (continued) The Lucas Theorem
The Centroid Theorem. The Lucas Theorem.
The centroid of the zeros of a polynomial is the same as the centroid of If all the zeros of a polynomial p lie in a half-plane in the complex plane,
the zeros of the derivative of the polynomial. then all the zeros of the derivative p’ lie in the same half-plane.
Proof (continued). Multiplying out, we find that the coefficient of z"2 Proof. By the Fundamental Theorem of Algebra, we can factor p as
Is p(z) =an(z—n)(z—r)---(z—rm). So
(n—1)ap—1 = —nap(ws + wa + -+ + wy_1).

Therefore the centroid of the zeros of p’ is log p(2) = log 2 + log(z — ) + log(z = r2) + - + log(z = n)

Wy Wt Wy 1 (n—1)an_1 a1 and differentiating both sides gives
1 ~(n—1)ap1) _ —an1
n—1 _<n—1>< nan ) nap piz) 1 . 1 1 n 1 O
Therefore the centroid of the zeros of p’ is the same as the centroid of the p(z) z-n z-n 2= %
zeros of p. O
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The Lucas Theorem (continued 1)

Proof (continued). Suppose the half-plane H that contains all the zeros
of p(z) is described by Im((z — a)/b) < 0. Then
Im((r1 —a)/b) <0, Im((r. —a)/b) <O, ..., Im((r, —a)/b) <O0.

Now let z* be some number not in H. We want to show that p/(z*) # 0
(this will mean that all the zeros of p/(z) are in H). Well,
Im((z* — a)/b) > 0. Let rx be some zero of p. Then

z5 =\ zZf—a—rc+a\ z¥—a B re —a
Im( b >—Im< b )-Im( b ) Im< b >>O.

(Notice that Im((z* — a)/b) > 0 since z* is not in H and
—Im((rx — a)/b) > 0 since ry is in H.) The imaginary parts of reciprocal
numbers have opposite signs, so Im(b/(z* — r)) < 0.
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The Enestrom-Kakeya Theorem

The Enestrom-Kakeya Theorem.
If p(z) = ZJ’-’:O ajz’ is a polynomial of degree n with coefficients satisfying

0<ap<a << ap,
then all the zeros of p lie in |z| < 1.

Proof. Define f by the equation
p(z)(1—z2) = ap+(a1—aog)z+(ax—a1) 2>+ -+ (an—an_1)z" —apz"! =
f(z) — apz™1. Then for |z| = 1, we have

1f(2)] < lao| +la1 — a0l + [a2 — a1| + -+ |an — an-1]
= ao—|—(31—ao)+(32—31)—|—"'+(3n—an—l):an'
Notice that the function z"f(1/z) = >7_(a; — aj_1)z"J (where we take

a_1 = 0) has the same bound on |z| =1 as f. Namely, |z"f(1/z)| < an
for |z] = 1. Since z"f(1/z) is analytic in |z| < 1, we have |z"f(1/z)| < ap,
for |z] <1 by the Maximum Modulus Theorem. Hence, |f(1/2)| < a,/|z|"
for |z] < 1.
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The Lucas Theorem

The Lucas Theorem (continued 2)

The Lucas Theorem.
If all the zeros of a polynomial p lie in a half-plane in the complex plane,
then all the zeros of the derivative p’ lie in the same half-plane.

Proof (continued). Recall

3

Applying (1),

Im <blljéi’;)> :kzijllm (z* f rk) <0.

So p'(z*)/p(z*) # 0 and p/(z*) # 0. Therefore if p’(z) = 0 then
z e H. O

Complex Analysis December 24, 2017 7/13

The Enestrom-Kakeya Theorem

The Enestrom-Kakeya Theorem (continued)

The Enestrom-Kakeya Theorem.

If p(z) = ZJ'-’ZO ajz/ is a polynomial of degree n with coefficients satisfying

0<a<ar<---<ap,

then all the zeros of p lie in |z| < 1.

Proof (continued). Hence, |f(1/2)| < a,/|z|" for |z| < 1. Replacing z
with 1/z, we see that |f(z)| < a,z" for |z| > 1, and making use of this we
get, [(1— 2)p(2)| = |F(2) = apz"1] > agle|"1 — |£(2)] >

an|z|"t — ap|z|™ = an|z|"(Jz| = 1). So if |z| > 1 then (1 — z)p(z) # 0.
Therefore, all the zeros of p lie in |z| < 1. O
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Rate of Growth Theorem

Rate of Growth Theorem

Rate of Growth Theorem (Bernstein).
If pis a polynomial of degree n such that |p(z)] < M on |z| = 1, then for
R > 1 we have

|rr|13>l<? lp(2)] < MR".

Proof. For p(z) = >_7_, akz¥ we have r(z) = z"p(1/z) = > 7 _, akz" k.
Notice that for |z| =1 (and 1/z = Z) we have ||r| = ||p|| where

|pll = max|;—1 |p(z)|. By the Maximum Modulus Theorem, for |z| <1
we have |r(z)| < ||r]| = |lpll £ M. Thatis, |z"p(1/z)| < M for |z| < 1.
Replacing z with 1/z, we have |(1/z")p(z)| < M for |z| > 1, or

lp(z)| < M|z|" for |z| > 1. O
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Bernstein Lemma

Bernstein Lemma (continued)

Bernstein Lemma. Let p and g be polynomials such that
(i) lim|zj—oo [P(2)/q(2)] < 1, (ii) |p(2)] < |g(2)] for |z] = 1, and (iii) all
zeros of g lie in |z| < 1. Then |p'(2)| < |¢'(2)] for |z| = 1.

Proof (continued). By Lucas’ Theorem, g’ has all its zeros in |z] < 1. So
for no |A| > 1is g'(z) = p'(z) — A¢'(z) = 0 where |z| > 1; or in other
words, p'(z)/q'(z) = X where |[A| > 1 has no solution in |z| > 1. Hence
Ip'(2)] <14'(2)] for |z| > 1. By taking limits, we have |p'(z)| < |q¢/(z)] for
|z| > 1, and the result follows. O
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Bernstein Lemma

Bernstein Lemma

Bernstein Lemma. Let p and g be polynomials such that

(i) limzj—oo [P(2)/a(2)] < 1, (ii) [p(2)] < [q(2)| for |z = 1, and (iii) all
zeros of g lie in |z| < 1. Then |p'(2)| < |¢'(2)] for |z| = 1.

Proof. Define f(z) = p(z)/q(z). Then f is analytic on |z| > 1, |f(z)| <1
for |z| =1, and lim|;|_, |f(z)| < 1. So by the Maximum Modulus
Principle for Unbounded Domains,

f(z)] <1lfor|z| >1. (%)

Let |A| > 1 and define polynomial g(z) = p(z) — A\q(z). If

g(20) = p(20) — Aq(z0) = 0 and if g(z0) # O then

p(20)| = |Alla(20)] > [q(20)]. Therefore |f(z0)| = |p(20)/q(z0)| > 1 and
so |zp| < 1 by (*). Now if g(z) = 0, then |z| < 1 and it could be that
|zo| =1 in which case p(z) = 0 and g(zp) = 0. So all zeros of g lie in

|z] < 1.
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Bernstein's Inequality

Bernstein's Inequality

Bernstein’s Inequality.
Let p be a polynomial of degree n. Then

max |0/(2)] < n max|p(2)].
|z|=1 |z|=1

Proof. Let M = max|,_; [p(z)| and define q(z) = Mz". Then

(i) |p(2)| < R"M for |z| = R by Bernstein's Rate of Growth Theorem, and
S0 1im1—t_c [P(2)/(2)| < limp—o( R7M)/(R7M) = 1.

(ii) |p(2)| < |g(z)] = M on |z| =1, and (iii) all zeros of g lie in |z| < 1.
So, by the Bernstein's Lemma, |p/(z)| < |¢'(2)| for |z| = 1. This implies
that

max |p'(z)| < max |¢'(2)| = max|nMz""1| = nM = nmax |p(z)|.
|z|=1 |z|=1 |z|=1 |z|=1

O
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