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The Centroid Theorem

The Centroid Theorem

The Centroid Theorem.
The centroid of the zeros of a polynomial is the same as the centroid of
the zeros of the derivative of the polynomial.

Proof. Let polynomial p have zeros z1, z2, . . . , zn. Then
p(z) =

∑n
k=0 akzk = an

∏n
k=1(z − zk). Multiplying out, we find that the

coefficient of zn−1 is an−1 = −an(z1 + z2 + · · ·+ zn).

Therefore the
centroid of the zeros of p is

z1 + z2 + · · ·+ zn

n
=

(
1

n

) (
−an−1

an

)
=

−an−1

nan
.

Let the zeros of p′ be w1,w2, . . . ,wn−1. Then

p′(z) =
n∑

k=1

kakzk−1 = nan

n−1∏
k=1

(z − wk).
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The Centroid Theorem

The Centroid Theorem (continued)

The Centroid Theorem.
The centroid of the zeros of a polynomial is the same as the centroid of
the zeros of the derivative of the polynomial.

Proof (continued). Multiplying out, we find that the coefficient of zn−2

is
(n − 1)an−1 = −nan(w1 + w2 + · · ·+ wn−1).

Therefore the centroid of the zeros of p′ is

w1 + w2 + · · ·+ wn−1

n − 1
=

(
1

n − 1

) (
−(n − 1)an−1

nan

)
=

−an−1

nan
.

Therefore the centroid of the zeros of p′ is the same as the centroid of the
zeros of p.
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The Centroid Theorem

The Centroid Theorem (continued)
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The Lucas Theorem

The Lucas Theorem

The Lucas Theorem.
If all the zeros of a polynomial p lie in a half-plane in the complex plane,
then all the zeros of the derivative p′ lie in the same half-plane.

Proof. By the Fundamental Theorem of Algebra, we can factor p as
p(z) = an(z − r1)(z − r2) · · · (z − rn). So

log p(z) = log an + log(z − r1) + log(z − r2) + · · ·+ log(z − rn)

and differentiating both sides gives

p′(z)

p(z)
=

1

z − r1
+

1

z − r2
+ · · ·+ 1

z − rn
=

n∑
k=1

1

z − rk
. (1)
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The Lucas Theorem

The Lucas Theorem (continued 1)

Proof (continued). Suppose the half-plane H that contains all the zeros
of p(z) is described by Im((z − a)/b) ≤ 0. Then

Im((r1 − a)/b) ≤ 0, Im((r2 − a)/b) ≤ 0, . . . , Im((rn − a)/b) ≤ 0.

Now let z∗ be some number not in H. We want to show that p′(z∗) 6= 0
(this will mean that all the zeros of p′(z) are in H). Well,
Im((z∗ − a)/b) > 0. Let rk be some zero of p.

Then

Im

(
z∗ − rk

b

)
= Im

(
z∗ − a − rk + a

b

)
= Im

(
z∗ − a

b

)
−Im

(
rk − a

b

)
> 0.

(Notice that Im((z∗ − a)/b) > 0 since z∗ is not in H and
−Im((rk − a)/b) ≥ 0 since rk is in H.) The imaginary parts of reciprocal
numbers have opposite signs, so Im(b/(z∗ − rk)) < 0.
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The Lucas Theorem

The Lucas Theorem (continued 2)

The Lucas Theorem.
If all the zeros of a polynomial p lie in a half-plane in the complex plane,
then all the zeros of the derivative p′ lie in the same half-plane.

Proof (continued). Recall

p′(z)

p(z)
=

1

z − r1
+

1

z − r2
+ · · ·+ 1

z − rn
=

n∑
k=1

1

z − rk
. (1)

Applying (1),

Im

(
bp′(z∗)

p(z∗)

)
=

n∑
k=1

Im

(
b

z∗ − rk

)
< 0.

So p′(z∗)/p(z∗) 6= 0 and p′(z∗) 6= 0. Therefore if p′(z) = 0 then
z ∈ H.
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The Eneström-Kakeya Theorem

The Eneström-Kakeya Theorem

The Eneström-Kakeya Theorem.
If p(z) =

∑n
j=0 ajz

j is a polynomial of degree n with coefficients satisfying

0 ≤ a0 ≤ a1 ≤ · · · ≤ an,

then all the zeros of p lie in |z | ≤ 1.

Proof. Define f by the equation
p(z)(1−z) = a0 +(a1−a0)z +(a2−a1)z

2 + · · ·+(an−an−1)z
n−anz

n+1 =
f (z)− anz

n+1. Then for |z | = 1, we have

|f (z)| ≤ |a0|+ |a1 − a0|+ |a2 − a1|+ · · ·+ |an − an−1|
= a0 + (a1 − a0) + (a2 − a1) + · · ·+ (an − an−1) = an.

Notice that the function znf (1/z) =
∑n

j=0(aj − aj−1)z
n−j (where we take

a−1 = 0) has the same bound on |z | = 1 as f . Namely, |znf (1/z)| ≤ an

for |z | = 1. Since znf (1/z) is analytic in |z | ≤ 1, we have |znf (1/z)| ≤ an

for |z | ≤ 1 by the Maximum Modulus Theorem. Hence, |f (1/z)| ≤ an/|z |n
for |z | ≤ 1.
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The Eneström-Kakeya Theorem

The Eneström-Kakeya Theorem (continued)

The Eneström-Kakeya Theorem.
If p(z) =

∑n
j=0 ajz

j is a polynomial of degree n with coefficients satisfying

0 ≤ a0 ≤ a1 ≤ · · · ≤ an,

then all the zeros of p lie in |z | ≤ 1.

Proof (continued). Hence, |f (1/z)| ≤ an/|z |n for |z | ≤ 1. Replacing z
with 1/z , we see that |f (z)| ≤ anz

n for |z | ≥ 1, and making use of this we
get, |(1− z)p(z)| = |f (z)− anz

n+1| ≥ an|z |n+1 − |f (z)| ≥
an|z |n+1 − an|z |n = an|z |n(|z | − 1). So if |z | > 1 then (1− z)p(z) 6= 0.
Therefore, all the zeros of p lie in |z | ≤ 1.
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Rate of Growth Theorem

Rate of Growth Theorem

Rate of Growth Theorem (Bernstein).
If p is a polynomial of degree n such that |p(z)| ≤ M on |z | = 1, then for
R ≥ 1 we have

max
|z|=R

|p(z)| ≤ MRn.

Proof. For p(z) =
∑n

k=0 akzk we have r(z) = znp(1/z) =
∑n

k=0 akzn−k .
Notice that for |z | = 1 (and 1/z = z) we have ‖r‖ = ‖p‖ where
‖p‖ = max|z|=1 |p(z)|. By the Maximum Modulus Theorem, for |z | ≤ 1
we have |r(z)| ≤ ‖r‖ = ‖p‖ ≤ M. That is, |znp(1/z)| ≤ M for |z | ≤ 1.
Replacing z with 1/z , we have |(1/zn)p(z)| ≤ M for |z | ≥ 1, or
|p(z)| ≤ M|z |n for |z | ≥ 1.
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Bernstein Lemma

Bernstein Lemma

Bernstein Lemma. Let p and q be polynomials such that
(i) lim|z|→∞ |p(z)/q(z)| ≤ 1, (ii) |p(z)| ≤ |q(z)| for |z | = 1, and (iii) all
zeros of q lie in |z | ≤ 1. Then |p′(z)| ≤ |q′(z)| for |z | = 1.

Proof. Define f (z) = p(z)/q(z). Then f is analytic on |z | > 1, |f (z)| ≤ 1
for |z | = 1, and lim|z|→∞ |f (z)| ≤ 1. So by the Maximum Modulus
Principle for Unbounded Domains,

|f (z)| ≤ 1 for |z | ≥ 1. (∗)

Let |λ| > 1 and define polynomial g(z) = p(z)− λq(z). If
g(z0) = p(z0)− λq(z0) = 0 and if q(z0) 6= 0 then
|p(z0)| = |λ||q(z0)| > |q(z0)|. Therefore |f (z0)| = |p(z0)/q(z0)| > 1 and
so |z0| < 1 by (∗). Now if q(z0) = 0, then |z0| ≤ 1 and it could be that
|z0| = 1 in which case p(z0) = 0 and g(z0) = 0. So all zeros of g lie in
|z | ≤ 1.
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Bernstein Lemma

Bernstein Lemma (continued)

Bernstein Lemma. Let p and q be polynomials such that
(i) lim|z|→∞ |p(z)/q(z)| ≤ 1, (ii) |p(z)| ≤ |q(z)| for |z | = 1, and (iii) all
zeros of q lie in |z | ≤ 1. Then |p′(z)| ≤ |q′(z)| for |z | = 1.

Proof (continued). By Lucas’ Theorem, g ′ has all its zeros in |z | ≤ 1. So
for no |λ| > 1 is g ′(z) = p′(z)− λq′(z) = 0 where |z | > 1; or in other
words, p′(z)/q′(z) = λ where |λ| > 1 has no solution in |z | > 1. Hence
|p′(z)| ≤ |q′(z)| for |z | > 1. By taking limits, we have |p′(z)| ≤ |q′(z)| for
|z | ≥ 1, and the result follows.
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Bernstein Lemma

Bernstein Lemma (continued)
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Bernstein’s Inequality

Bernstein’s Inequality

Bernstein’s Inequality.
Let p be a polynomial of degree n. Then

max
|z|=1

|p′(z)| ≤ n max
|z|=1

|p(z)|.

Proof. Let M = max|z|=1 |p(z)| and define q(z) = Mzn. Then
(i) |p(z)| ≤ RnM for |z | = R by Bernstein’s Rate of Growth Theorem, and
so lim|z|=R→∞ |p(z)/q(z)| ≤ limR→∞(RnM)/(RnM) = 1,
(ii) |p(z)| ≤ |q(z)| = M on |z | = 1, and (iii) all zeros of q lie in |z | ≤ 1.
So, by the Bernstein’s Lemma, |p′(z)| ≤ |q′(z)| for |z | = 1. This implies
that

max
|z|=1

|p′(z)| ≤ max
|z|=1

|q′(z)| = max
|z|=1

|nMzn−1| = nM = n max
|z|=1

|p(z)|.
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