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The Centroid Theorem

The Centroid Theorem.
The centroid of the zeros of a polynomial is the same as the centroid of
the zeros of the derivative of the polynomial.
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The Centroid Theorem

The Centroid Theorem.
The centroid of the zeros of a polynomial is the same as the centroid of
the zeros of the derivative of the polynomial.

Proof. Let polynomial p have zeros z1, 2>, ...,2,. Then

p(z) =Y 7_oakz" = an [[1_1(z — zk). Multiplying out, we find that the
coefficient of z" Y is a1 = —an(z1 + 22 + - -+ + zn).
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The Centroid Theorem

The Centroid Theorem.
The centroid of the zeros of a polynomial is the same as the centroid of
the zeros of the derivative of the polynomial.

Proof. Let polynomial p have zeros z1, 2>, ...,2,. Then

p(z) =Y 7_oakz" = an [[1_1(z — zk). Multiplying out, we find that the
coefficient of z" 1 is a,_1 = —an(z1 + 20 + - - - + z,). Therefore the
centroid of the zeros of p is

nn+z2+-+2zp 1 —ap-1\ _ —an-1
n ~\n an " na,

Let the zeros of p’ be wy, wa,...,w,_1. Then
n n—1
p'(z) = Z kaxz""1 = na, H(z — Wk).
k=1 k=1
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The Centroid Theorem

The Centroid Theorem (continued)

The Centroid Theorem.
The centroid of the zeros of a polynomial is the same as the centroid of
the zeros of the derivative of the polynomial.

Proof (continued). Multiplying out, we find that the coefficient of z"~2
is

(n—1)ap-1=—nas(wi + w2 +---+ wy_1).
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The Centroid Theorem (continued)

The Centroid Theorem.
The centroid of the zeros of a polynomial is the same as the centroid of
the zeros of the derivative of the polynomial.

Proof (continued). Multiplying out, we find that the coefficient of z"~2
is
(n—1)ap-1=—nas(wi + w2 +---+ wy_1).

Therefore the centroid of the zeros of p’ is

Wi+ wo+ e+ Who < 1 ) (—(n—1)3n1> _ —ap-1

n—1 n—1 nap nap

Therefore the centroid of the zeros of p’ is the same as the centroid of the
zeros of p. O
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The Lucas Theorem

The Lucas Theorem.
If all the zeros of a polynomial p lie in a half-plane in the complex plane,
then all the zeros of the derivative p’ lie in the same half-plane.
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The Lucas Theorem

The Lucas Theorem

The Lucas Theorem.

If all the zeros of a polynomial p lie in a half-plane in the complex plane,
then all the zeros of the derivative p’ lie in the same half-plane.

Proof. By the Fundamental Theorem of Algebra, we can factor p as
p(z) =an(z—n)(z—r)---(z—rm). So
log p(z) = log an + log(z — r1) + log(z — r2) + - - - + log(z — ra)

and differentiating both sides gives

'(z 1 1 1 1
p(z) N

p(z) z—-n z—n zZ—r,
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The Lucas Theorem (continued 1)

Proof (continued). Suppose the half-plane H that contains all the zeros
of p(z) is described by Im((z — a)/b) < 0. Then

Im((rn — a)/b) <0, Im((r. —a)/b) <0, ..., Im((r, — a)/b) <O0.
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The Lucas Theorem (continued 1)

Proof (continued). Suppose the half-plane H that contains all the zeros
of p(z) is described by Im((z — a)/b) < 0. Then
Im((rn — a)/b) <0, Im((r. —a)/b) <0, ..., Im((r, — a)/b) <O0.

Now let z* be some number not in H. We want to show that p/(z*) # 0
(this will mean that all the zeros of p/(z) are in H). Well,
Im((z* — a)/b) > 0. Let ry be some zero of p.
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The Lucas Theorem (continued 1)

Proof (continued). Suppose the half-plane H that contains all the zeros
of p(z) is described by Im((z — a)/b) < 0. Then

Im((rn — a)/b) <0, Im((r. —a)/b) <0, ..., Im((r, — a)/b) <O0.

Now let z* be some number not in H. We want to show that p/(z*) # 0
(this will mean that all the zeros of p/(z) are in H). Well,
Im((z* — a)/b) > 0. Let ry be some zero of p. Then

¥ =\ zZ¢—a—r+a\ z¥—a re —a
Im( b >—Im<b>—|m< b ) Im< b )>0.

(Notice that Im((z* — a)/b) > 0 since z* is not in H and
—Im((rx — a)/b) > 0 since ry is in H.) The imaginary parts of reciprocal
numbers have opposite signs, so Im(b/(z* — r¢)) < 0.
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The Lucas Theorem

The Lucas Theorem (continued 2)

The Lucas Theorem.

If all the zeros of a polynomial p lie in a half-plane in the complex plane,
then all the zeros of the derivative p’ lie in the same half-plane.

Proof (continued). Recall
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The Lucas Theorem

The Lucas Theorem (continued 2)

The Lucas Theorem.

If all the zeros of a polynomial p lie in a half-plane in the complex plane,
then all the zeros of the derivative p’ lie in the same half-plane.

Proof (continued). Recall

Applying (1),

(50)-$m(2)
| <p(z*) kz::ll ) <0°
So p'(z*)/p(z*) # 0 and p’(z*) # 0. Therefore if p/(z) = 0 then

z € H.
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The Enestrom-Kakeya Theorem

The Enestrom-Kakeya Theorem.
If p(z) = er":o ajz! is a polynomial of degree n with coefficients satisfying

0<a<a; <---<ap,

then all the zeros of p lie in |z| < 1.
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The Enestrom-Kakeya Theorem

The Enestrom-Kakeya Theorem.
If p(z) = er":o ajz! is a polynomial of degree n with coefficients satisfying
0<ap<a<---<ap,
then all the zeros of p lie in |z| < 1.
Proof. Define f by the equation
p(2)(1—2) = ap+ (a1 —ao0)z+(az—a1) 22 +- - -+ (an—an_1)z" —apz"*! =
f(z) — apz™L. Then for |z| = 1, we have
1f(2)] < laol + |a1 — ao| + a2 — a1 + -~ + |an — an-1]
= ao+ (a1 —ao)+(a2—a1)+--+(an—an-1) = an.
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The Enestrom-Kakeya Theorem

The Enestrom-Kakeya Theorem.
If p(z) = Z}’:o ajz! is a polynomial of degree n with coefficients satisfying

0<a<ar<---<ap
then all the zeros of p lie in |z| < 1.

Proof. Define f by the equation
p(2)(1—2) = ap+ (a1 —ao0)z+(az—a1) 22 +- - -+ (an—an_1)z" —apz"*! =
f(z) — apz™L. Then for |z| = 1, we have

If(z)] < |ao|+|a1 — ao| + a2 — a1| +--- + |an — an_1]
= ao+(31—ao)—|—(82—31)+"'+(3n—3n71):3n-

Notice that the function z"f(1/z) = > 7 (aj — aj—1)z"7 (where we take
a_1 = 0) has the same bound on |z| =1 as f. Namely, |z"f(1/z)| < ap,
for |z| = 1. Since z"f(1/z) is analytic in |z| < 1, we have |z"f(1/z)| < a,
for |z| <1 by the Maximum Modulus Theorem. Hence, |f(1/z)| < an/|z|"
for |z| < 1.
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The Enestrom-Kakeya Theorem

The Enestrom-Kakeya Theorem (continued)

The Enestrom-Kakeya Theorem.
If p(z) = Zj:o ajz/ is a polynomial of degree n with coefficients satisfying

0<a<a; <---<ap,

then all the zeros of p lie in |z| < 1.

Proof (continued). Hence,

F(1/2)| < an/|2|" for |2] < 1.
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The Enestrom-Kakeya Theorem (continued)

The Enestrom-Kakeya Theorem.
If p(z) = Zj:o ajz/ is a polynomial of degree n with coefficients satisfying

0<a<a; <---<ap,

then all the zeros of p lie in |z| < 1.

Proof (continued). Hence, |f(1/z)| < an/|z|" for |z| < 1. Replacing z
with 1/z, we see that |f(z)| < a,z" for |z| > 1, and making use of this we
get, [(1— 2)p(2)| = [F(2) — anz"*1] > gz — |F(2)| >

an|z|"tt — ap|z|™ = an|z|"(|z| — 1). So if |z| > 1 then (1 — z)p(z) # 0.
Therefore, all the zeros of p lie in |z] < 1. O
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Rate of Growth Theorem

Rate of Growth Theorem

Rate of Growth Theorem (Bernstein).

If pis a polynomial of degree n such that |p(z)| < M on |z| = 1, then for
R > 1 we have

‘m‘a>,<? lp(z)| < MR".

Proof. For p(z) = Y__,akz we have r(z) = z"p(1/z) = Y] _, akz" k.
Notice that for |z| =1 (and 1/z = Z) we have ||r|| = ||p|| where
lpll = max;—1 [p(2)].
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Rate of Growth Theorem

Rate of Growth Theorem (Bernstein).
If pis a polynomial of degree n such that |p(z)| < M on |z| = 1, then for
R > 1 we have

‘m‘a>,<? lp(z)| < MR".

Proof. For p(z) = Y__,akz we have r(z) = z"p(1/z) = Y] _, akz" k.
Notice that for |z| =1 (and 1/z = Z) we have ||r|| = ||p|| where

lpll = max;—1 [p(z)|. By the Maximum Modulus Theorem, for |z| <1
we have |r(z2)| < [|r]| = |lp|| £ M. That'is, |z2"p(1/z)| < M for |z| < 1.
Replacing z with 1/z, we have |(1/z")p(z)| < M for |z| > 1, or

p(2)] < MIz]" for |2 > 1.

OJ
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Bernstein Lemma

Bernstein Lemma

Bernstein Lemma. Let p and g be polynomials such that
(1) imizy oo 19(2)/9(2)] < L. (i) 1p(2)] < |q(2)] for |2] = 1, and (i) all
zeros of g lie in |z] < 1. Then |p/'(2)| < |¢'(2)| for |z| = 1.
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Bernstein Lemma

Bernstein Lemma

Bernstein Lemma. Let p and g be polynomials such that
(1) imizy oo 19(2)/9(2)] < L. (i) 1p(2)] < |q(2)] for |2] = 1, and (i) all
zeros of g lie in |z] < 1. Then |p/'(2)| < |¢'(2)| for |z| = 1.

Proof. Define f(z) = p(z)/q(z). Then f is analytic on |z| > 1, |f(z)| <1
for |z| =1, and lim|;|_,o |f(2)| < 1. So by the Maximum Modulus
Principle for Unbounded Domains,

|f(z)] <1 for|z| > 1. (%)
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Bernstein Lemma

Bernstein Lemma

Bernstein Lemma. Let p and g be polynomials such that
(1) imizy oo 19(2)/9(2)] < L. (i) 1p(2)] < |q(2)] for |2] = 1, and (i) all
zeros of g lie in |z] < 1. Then |p/'(2)| < |¢'(2)| for |z| = 1.

Proof. Define f(z) = p(z)/q(z). Then f is analytic on |z| > 1, |f(z)| <1
for |z| =1, and lim|;|_,o |f(2)| < 1. So by the Maximum Modulus
Principle for Unbounded Domains,

|f(z)| <1 for |z| > 1. (%)

Let |A] > 1 and define polynomial g(z) = p(z) — A\q(z). If

g(20) = p(20) — Aq(20) = 0 and if g(z0) # O then

|p(20)| = [Alla(20)| > |g(20)[. Therefore |f(z0)| = [p(20)/q(20)| > 1 and
so |zp| < 1 by (*). Now if g(z) = 0, then |z9| <1 and it could be that

|zo| = 1 in which case p(zp) = 0 and g(zp) = 0. So all zeros of g lie in
|z| < 1.
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Bernstein Lemma

Bernstein Lemma (continued)

Bernstein Lemma. Let p and g be polynomials such that
(i) lim|zj—oo [P(2)/q(2)] < 1, (i) |p(2)[ < |q(2)] for |z = 1, and (iii) all
zeros of g lie in |z| < 1. Then |p'(2)| < |q¢'(2)] for |z| = 1.

Proof (continued). By Lucas’ Theorem, g’ has all its zeros in |z| < 1. So

for no |\| > 1is g'(z) = p'(z) — Ag'(z) = 0 where |z| > 1; or in other
words, p'(z)/q'(z) = X where |[A\| > 1 has no solution in |z| > 1.
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Bernstein Lemma

Bernstein Lemma (continued)

Bernstein Lemma. Let p and g be polynomials such that
(i) lim|zj—oo [P(2)/q(2)] < 1, (i) |p(2)[ < |q(2)] for |z = 1, and (iii) all
zeros of g lie in |z| < 1. Then |p'(2)| < |q¢'(2)] for |z| = 1.

Proof (continued). By Lucas’ Theorem, g’ has all its zeros in |z| < 1. So
for no |\| > 1is g'(z) = p'(z) — Ag'(z) = 0 where |z| > 1; or in other
words, p'(z)/q'(z) = A where [A\| > 1 has no solution in |z| > 1. Hence
|p'(z)| < |q'(z)] for |z| > 1. By taking limits, we have |p'(z)| < |q¢'(z)] for
|z| > 1, and the result follows. O
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Bernstein's Inequality

Bernstein’s Inequality.
Let p be a polynomial of degree n. Then

max |p/(2)] < nmax p(2).
|z|=1 |z|=1

Proof. Let M = max|,_; |p(z)| and define g(z) = Mz". Then

(i) |p(z)| < R™M for |z| = R by Bernstein's Rate of Growth Theorem, and
so Iim\z\:R—»oo |p(2)/q(2)| < llmRHoo(RnM)/(RnM) =1,

(ii) |p(2)] < lg(z)] = M on |z| = 1, and (iii) all zeros of g lie in |z| < 1.
So, by the Bernstein's Lemma, |p/(z)| < |¢/(2)] for |z| = 1.
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Bernstein's Inequality

Bernstein’s Inequality.
Let p be a polynomial of degree n. Then

max |p/(2)] < nmax p(2).
|z|=1 |z|=1

Proof. Let M = max|,_; |p(z)| and define g(z) = Mz". Then

(i) |p(z)| < R™M for |z| = R by Bernstein's Rate of Growth Theorem, and
so Iim\z\:R—»oo |p(2)/q(2)| < llmRHoo(RnM)/(RnM) =1,

(ii) |p(2)] < lg(z)] = M on |z| = 1, and (iii) all zeros of g lie in |z| < 1.
So, by the Bernstein's Lemma, |p'(z)| < |¢/(2)| for |z| = 1. This implies
that

max |p/(2)| < max|¢'(z)| = max |nMz"7}| = nM = nmax |p(z)|.
1 |z|]=1 |z|=1 |z|]=1

|z|=
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