Complex Analysis

Chapter VI. The Maximum Modulus Theorem

 VI.2. Schwarz's Lemma—Proofs of Theorems

Table of contents

(1) Lemma VI.2.1. Schwarz's Lemma
(2) Proposition VI.2.2
(3) Lemma VI.2.A
(4) Theorem VI.2.5
(5) Generalized Schwarz's Lemma 1

Lemma VI.2.1

Lemma VI.2.1. Schwarz's Lemma.
Let $D=\{z| | z \mid<1\}$ and suppose f is analytic on D with
(a) $|f(z)| \leq 1$ for $z \in D$, and
(b) $f(0)=0$.

Then $\left|f^{\prime}(0)\right| \leq 1$ and $|f(z)| \leq|z|$ for all z in the disk D. Moreover if $\left|f^{\prime}(z)\right|=1$ of if $|f(z)|=|z|$ for some $z \neq 0$ then there is a constant $c \in \mathbb{C},|c|=1$, such that $f(w)=c w$ for all $w \in D$.

Proof. Define $g: D \rightarrow \mathbb{C}$ as $g(z)=\left\{\begin{array}{cc}f(z) / z & \text { for } z \neq 0 \\ f^{\prime}(0) & \text { for } z=0 .\end{array}\right.$ Since $f(0)=0$, then $f(z)=z h(z)$ for some $h(z)$ analytic on D by Corollary IV.3.9.

Lemma VI.2.1

Lemma VI.2.1. Schwarz's Lemma.

Let $D=\{z| | z \mid<1\}$ and suppose f is analytic on D with
(a) $|f(z)| \leq 1$ for $z \in D$, and
(b) $f(0)=0$.

Then $\left|f^{\prime}(0)\right| \leq 1$ and $|f(z)| \leq|z|$ for all z in the disk D. Moreover if $\left|f^{\prime}(z)\right|=1$ of if $|f(z)|=|z|$ for some $z \neq 0$ then there is a constant $c \in \mathbb{C},|c|=1$, such that $f(w)=c w$ for all $w \in D$.

Proof. Define $g: D \rightarrow \mathbb{C}$ as $g(z)=\left\{\begin{array}{cl}f(z) / z & \text { for } z \neq 0 \\ f^{\prime}(0) & \text { for } z=0 .\end{array}\right.$ Since $f(0)=0$, then $f(z)=z h(z)$ for some $h(z)$ analytic on D by Corollary IV.3.9. Notice that $g(z)=f(z) / z=h(z)$ for $z \neq 0$. Also,

$$
\lim _{z \rightarrow 0} g(z)=\lim _{z \rightarrow 0} \frac{f(z)}{z}=\lim _{z \rightarrow 0} \frac{f(z)-f(0)}{z-0}=f^{\prime}(0)=g(0)
$$

so g is continuous at $z=0$ and, since $h(z)$ is analytic on D it is also continuous on D, so $g(z)=h(z)$ for all $z \in D$.

Lemma VI.2.1

Lemma VI.2.1. Schwarz's Lemma.

Let $D=\{z| | z \mid<1\}$ and suppose f is analytic on D with
(a) $|f(z)| \leq 1$ for $z \in D$, and
(b) $f(0)=0$.

Then $\left|f^{\prime}(0)\right| \leq 1$ and $|f(z)| \leq|z|$ for all z in the disk D. Moreover if $\left|f^{\prime}(z)\right|=1$ of if $|f(z)|=|z|$ for some $z \neq 0$ then there is a constant $c \in \mathbb{C},|c|=1$, such that $f(w)=c w$ for all $w \in D$.

Proof. Define $g: D \rightarrow \mathbb{C}$ as $g(z)=\left\{\begin{array}{cl}f(z) / z & \text { for } z \neq 0 \\ f^{\prime}(0) & \text { for } z=0 .\end{array}\right.$ Since $f(0)=0$, then $f(z)=z h(z)$ for some $h(z)$ analytic on D by Corollary IV.3.9. Notice that $g(z)=f(z) / z=h(z)$ for $z \neq 0$. Also,

$$
\lim _{z \rightarrow 0} g(z)=\lim _{z \rightarrow 0} \frac{f(z)}{z}=\lim _{z \rightarrow 0} \frac{f(z)-f(0)}{z-0}=f^{\prime}(0)=g(0),
$$

so g is continuous at $z=0$ and, since $h(z)$ is analytic on D it is also continuous on D, so $g(z)=h(z)$ for all $z \in D$.

Lemma VI.2.1 (continued)

Proof (continued). Therefore, g is analytic on D. For any $0<r<1$, we have by hypothesis that for $|z| \leq r,|g(z)|=|f(z) / z| \leq 1 / r$, and so by the Maximum Modulus Theorem (Second Version-Theorem VI.1.1), $|g(z)| \leq 1 / r$ for $|z| \leq r$ and $0<r<1$. Letting r approach 1 gives $|g(z)| \leq 1$ for all $z \in D$. Therefore, $|f(z)| \leq|z|$ for $z \in D$ and $\left|f^{\prime}(0)\right|=|g(0)| \leq 1$.

Lemma VI.2.1 (continued)

Proof (continued). Therefore, g is analytic on D. For any $0<r<1$, we have by hypothesis that for $|z| \leq r,|g(z)|=|f(z) / z| \leq 1 / r$, and so by the Maximum Modulus Theorem (Second Version-Theorem VI.1.1), $|g(z)| \leq 1 / r$ for $|z| \leq r$ and $0<r<1$. Letting r approach 1 gives $|g(z)| \leq 1$ for all $z \in D$. Therefore, $|f(z)| \leq|z|$ for $z \in D$ and $\left|f^{\prime}(0)\right|=|g(0)| \leq 1$. If $|f(z)|=|z|$ for some $z \in D, z \neq 0$, or $\left|f^{\prime}(0)\right|=|g(0)|=1$ then $|g|$ assumes its maximum value inside D. Then, by the Maximum Modulus Theorem (Theorem VI.1.1), $g(z)=c$ for some constant $c \in \mathbb{C}$ with $|c|=1$. Then, since $g(z)=f(z) / z$, we have $f(z)=c z$ for some $|c|=1$ and for all $z \in D$.

Lemma VI.2.1 (continued)

Proof (continued). Therefore, g is analytic on D. For any $0<r<1$, we have by hypothesis that for $|z| \leq r,|g(z)|=|f(z) / z| \leq 1 / r$, and so by the Maximum Modulus Theorem (Second Version-Theorem VI.1.1), $|g(z)| \leq 1 / r$ for $|z| \leq r$ and $0<r<1$. Letting r approach 1 gives $|g(z)| \leq 1$ for all $z \in D$. Therefore, $|f(z)| \leq|z|$ for $z \in D$ and $\left|f^{\prime}(0)\right|=|g(0)| \leq 1$. If $|f(z)|=|z|$ for some $z \in D, z \neq 0$, or $\left|f^{\prime}(0)\right|=|g(0)|=1$ then $|g|$ assumes its maximum value inside D. Then, by the Maximum Modulus Theorem (Theorem VI.1.1), $g(z)=c$ for some constant $c \in \mathbb{C}$ with $|c|=1$. Then, since $g(z)=f(z) / z$, we have $f(z)=c z$ for some $|c|=1$ and for all $z \in D$.

Proposition VI.2.2

Proposition VI.2.2. If $|a|<1$ then φ_{a} is a one to one map of the open unit disk D onto itself. The inverse of φ_{a} is φ_{-a}. Furthermore, φ_{a} maps ∂D onto $\partial D, \varphi_{a}(a)=0, \varphi_{a}^{\prime}(0)=1-|a|^{2}$, and $\varphi_{a}^{\prime}(a)=\left(1-|a|^{2}\right)^{-1}$.

Proof. The one to one and onto claim is established above by the existence of an inverse of φ_{a}. The fact that $\varphi_{a}^{-1}=\varphi_{-a}$ is also established above.

Proposition VI.2.2

Proposition VI.2.2. If $|a|<1$ then φ_{a} is a one to one map of the open unit disk D onto itself. The inverse of φ_{a} is φ_{-a}. Furthermore, φ_{a} maps ∂D onto $\partial D, \varphi_{a}(a)=0, \varphi_{a}^{\prime}(0)=1-|a|^{2}$, and $\varphi_{a}^{\prime}(a)=\left(1-|a|^{2}\right)^{-1}$.

Proof. The one to one and onto claim is established above by the existence of an inverse of φ_{a}. The fact that $\varphi_{a}^{-1}=\varphi_{-a}$ is also established above.

For $z \in \partial D$ we have $z=e^{i \theta}$, and

$$
\begin{aligned}
\left|\varphi_{a}(z)\right|= & \left\lvert\, \varphi_{a}\left(e ^ { i \theta } \left|=\left|\frac{e^{i \theta}-a}{1-\bar{a} e^{i \theta}}\right|=\frac{\left|e^{i \theta}-a\right|}{\left|1-\bar{a} e^{i \theta}\right|} \frac{1}{\left|e^{-i \theta \mid}\right|}\right.\right.\right. \\
& =\frac{\left|e^{i \theta}-a\right|}{\left|e^{-i \theta}-\bar{a}\right|}=\frac{\left|e^{i \theta}-a\right|}{\left|e^{i \theta}-a\right|}=1 .
\end{aligned}
$$

Proposition VI.2.2

Proposition VI.2.2. If $|a|<1$ then φ_{a} is a one to one map of the open unit disk D onto itself. The inverse of φ_{a} is φ_{-a}. Furthermore, φ_{a} maps ∂D onto $\partial D, \varphi_{a}(a)=0, \varphi_{a}^{\prime}(0)=1-|a|^{2}$, and $\varphi_{a}^{\prime}(a)=\left(1-|a|^{2}\right)^{-1}$.

Proof. The one to one and onto claim is established above by the existence of an inverse of φ_{a}. The fact that $\varphi_{a}^{-1}=\varphi_{-a}$ is also established above.

For $z \in \partial D$ we have $z=e^{i \theta}$, and

$$
\begin{aligned}
&\left|\varphi_{a}(z)\right|= \left\lvert\, \varphi_{a}\left(e ^ { i \theta } \left|=\left|\frac{e^{i \theta}-a}{1-\bar{a} e^{i \theta}}\right|=\frac{\left|e^{i \theta}-a\right|}{\left|1-\bar{a} e^{i \theta}\right|} \frac{1}{\left|e^{-i \theta \mid}\right|}\right.\right.\right. \\
&=\frac{\left|e^{i \theta}-a\right|}{\left|e^{-i \theta}-\bar{a}\right|}=\frac{\left|e^{i \theta}-a\right|}{\left|e^{i \theta}-a\right|}=1
\end{aligned}
$$

So $\varphi_{a}(\partial D) \in \partial D$. Since φ_{a} is a Möbius transformation, it is one to one

Proposition VI.2.2

Proposition VI.2.2. If $|a|<1$ then φ_{a} is a one to one map of the open unit disk D onto itself. The inverse of φ_{a} is φ_{-a}. Furthermore, φ_{a} maps ∂D onto $\partial D, \varphi_{a}(a)=0, \varphi_{a}^{\prime}(0)=1-|a|^{2}$, and $\varphi_{a}^{\prime}(a)=\left(1-|a|^{2}\right)^{-1}$.

Proof. The one to one and onto claim is established above by the existence of an inverse of φ_{a}. The fact that $\varphi_{a}^{-1}=\varphi_{-a}$ is also established above.

For $z \in \partial D$ we have $z=e^{i \theta}$, and

$$
\begin{aligned}
&\left|\varphi_{a}(z)\right|= \left\lvert\, \varphi_{a}\left(e ^ { i \theta } \left|=\left|\frac{e^{i \theta}-a}{1-\bar{a} e^{i \theta}}\right|=\frac{\left|e^{i \theta}-a\right|}{\left|1-\bar{a} e^{i \theta}\right|} \frac{1}{\left|e^{-i \theta \mid}\right|}\right.\right.\right. \\
&=\frac{\left|e^{i \theta}-a\right|}{\left|e^{-i \theta}-\bar{a}\right|}=\frac{\left|e^{i \theta}-a\right|}{\left|e^{i \theta}-a\right|}=1 .
\end{aligned}
$$

So $\varphi_{a}(\partial D) \in \partial D$. Since φ_{a} is a Möbius transformation, it is one to one and onto ∂D.

Proposition VI.2.2 (continued)

Proposition VI.2.2. If $|a|<1$ then φ_{a} is a one to one map of the open unit disk D onto itself. The inverse of φ_{a} is φ_{-a}. Furthermore, φ_{a} maps ∂D onto $\partial D, \varphi_{a}(a)=0, \varphi_{a}^{\prime}(0)=1-|a|^{2}$, and $\varphi_{a}^{\prime}(a)=\left(1-|a|^{2}\right)^{-1}$.
Proof (continued). Finally, $\varphi_{a}(a) \frac{(a)-(a)}{1-\bar{a}(a)}=0$ and

$$
\varphi_{2}^{\prime}(0)=\frac{[1](1-\bar{a}(0))-((0)-a)[-\bar{a}]}{(1-\bar{a}(0))^{2}}=1-|a|^{2} .
$$

Also,

$$
\varphi_{a}^{\prime}(a)=\frac{[1](1-\bar{a}(a))-((a)-a)[-\bar{a}]}{(a-\bar{a}(a))^{2}}=\frac{1-|a|^{2}}{(1-|a|)^{2}}=\left(1-|a|^{2}\right)^{-1} .
$$

Proposition VI.2.2 (continued)

Proposition VI.2.2. If $|a|<1$ then φ_{a} is a one to one map of the open unit disk D onto itself. The inverse of φ_{a} is φ_{-a}. Furthermore, φ_{a} maps ∂D onto $\partial D, \varphi_{a}(a)=0, \varphi_{a}^{\prime}(0)=1-|a|^{2}$, and $\varphi_{a}^{\prime}(a)=\left(1-|a|^{2}\right)^{-1}$.
Proof (continued). Finally, $\varphi_{a}(a) \frac{(a)-(a)}{1-\bar{a}(a)}=0$ and

$$
\varphi_{2}^{\prime}(0)=\frac{[1](1-\bar{a}(0))-((0)-a)[-\bar{a}]}{(1-\bar{a}(0))^{2}}=1-|a|^{2} .
$$

Also,

$$
\varphi_{a}^{\prime}(a)=\frac{[1](1-\bar{a}(a))-((a)-a)[-\bar{a}]}{(a-\bar{a}(a))^{2}}=\frac{1-|a|^{2}}{(1-|a|)^{2}}=\left(1-|a|^{2}\right)^{-1} .
$$

Lemma VI.2.A

Lemma VI.2.A. Suppose f is analytic on $D=\{z| | z \mid<1\}$ and $|f(z)| \leq 1$ for $z \in D$. Let $z \in D$. Then

$$
\left|f^{\prime}(a)\right| \leq \frac{1-|f(a)|^{2}}{1-|a|^{2}}
$$

Moreover, equality holds exactly when $f(z)=\varphi_{\alpha}\left(c \varphi_{a}(z)\right)$, where $\alpha=f(a)$ for some $c \in \mathbb{C}$ where $|c|=1$.

Proof. Let $g(z)=\varphi_{\alpha} \circ f \circ \varphi_{-a}(z)$ where $\alpha=f(a)$. Then g maps D into D and $g(0)=\varphi_{\alpha}\left(f\left(\varphi_{-a}(0)\right)\right)=\varphi_{\alpha}(f(a))=\varphi_{\alpha}(\alpha)=0$. So by the Schwarz's Lemma applied to $g,\left|g^{\prime}(0)\right| \leq 1$.

Lemma VI.2.A

Lemma VI.2.A. Suppose f is analytic on $D=\{z| | z \mid<1\}$ and $|f(z)| \leq 1$ for $z \in D$. Let $z \in D$. Then

$$
\left|f^{\prime}(a)\right| \leq \frac{1-|f(a)|^{2}}{1-|a|^{2}}
$$

Moreover, equality holds exactly when $f(z)=\varphi_{\alpha}\left(c \varphi_{a}(z)\right)$, where $\alpha=f(a)$ for some $c \in \mathbb{C}$ where $|c|=1$.

Proof. Let $g(z)=\varphi_{\alpha} \circ f \circ \varphi_{-a}(z)$ where $\alpha=f(a)$. Then g maps D into D and $g(0)=\varphi_{\alpha}\left(f\left(\varphi_{-a}(0)\right)\right)=\varphi_{\alpha}(f(a))=\varphi_{\alpha}(\alpha)=0$. So by the Schwarz's Lemma applied to $g,\left|g^{\prime}(0)\right| \leq 1$. From the Chain Rule,

Lemma VI.2.A

Lemma VI.2.A. Suppose f is analytic on $D=\{z| | z \mid<1\}$ and $|f(z)| \leq 1$ for $z \in D$. Let $z \in D$. Then

$$
\left|f^{\prime}(a)\right| \leq \frac{1-|f(a)|^{2}}{1-|a|^{2}}
$$

Moreover, equality holds exactly when $f(z)=\varphi_{\alpha}\left(c \varphi_{a}(z)\right)$, where $\alpha=f(a)$ for some $c \in \mathbb{C}$ where $|c|=1$.

Proof. Let $g(z)=\varphi_{\alpha} \circ f \circ \varphi_{-a}(z)$ where $\alpha=f(a)$. Then g maps D into D and $g(0)=\varphi_{\alpha}\left(f\left(\varphi_{-a}(0)\right)\right)=\varphi_{\alpha}(f(a))=\varphi_{\alpha}(\alpha)=0$. So by the Schwarz's Lemma applied to $g,\left|g^{\prime}(0)\right| \leq 1$. From the Chain Rule,

$$
\begin{aligned}
g^{\prime}(0)= & \left(\varphi_{\alpha} \circ f\right)^{\prime}\left(\varphi_{-a}(0)\right)\left[\varphi_{-a}^{\prime}(0)\right] \\
= & \left(\varphi_{\alpha} \circ f\right)^{\prime}(a)\left(1-|a|^{2}\right) \text { since } \varphi_{-a}(z)=\frac{z+a}{1-\bar{a} z}, \\
& \varphi_{-a}^{\prime}(z)=\frac{[1](1+\bar{a} z)-(z-a)[\bar{a}]}{(1+\bar{a} z)^{2}}=\frac{1-|z|^{2}}{(1+\bar{a} z)^{2}}
\end{aligned}
$$

Lemma VI.2.A (continued 1)

Proof (continued).

$$
\begin{aligned}
& \text { and } \varphi_{-a}^{\prime}(0)=1-|a|^{2} \\
= & \varphi_{\alpha}^{\prime}(f(a))\left[f^{\prime}(a)\right]\left(1-|a|^{2}\right)=\varphi_{\alpha}^{\prime}(\alpha) f^{\prime}(a)\left(1-|a|^{2}\right) \\
= & \frac{1-|a|^{2}}{1-|\alpha|^{2}} f^{\prime}(a) \text { since } \varphi_{\alpha}^{\prime}(z)=\frac{1-|\alpha|^{2}}{(1-\bar{\alpha} z)^{2}} \\
& \text { and } \varphi_{\alpha}^{\prime}(\alpha)=\frac{1-|\alpha|^{2}}{\left(1-|\alpha|^{2}\right)^{2}}=\frac{1}{1-|\alpha|^{2}} \\
= & \frac{1-|a|^{2}}{1-|f(a)|^{2}} f^{\prime}(a) .
\end{aligned}
$$

Since $\left|g^{\prime}(0)\right| \leq 1$, we have
$\left|g^{\prime}(0)\right|=\left|\frac{1-|a|^{2}}{1-|f(a)|^{2}} f^{\prime}(a)\right| \leq 1$, or $\left|f^{\prime}(a)\right| \leq\left|\frac{1-|f(a)|^{2}}{1-|a|^{2}}\right|=\frac{1-|f(a)|^{2}}{1-|a|^{2}}$.

Lemma VI.2.A (continued 1)

Proof (continued).

$$
\begin{aligned}
& \text { and } \varphi_{-a}^{\prime}(0)=1-|a|^{2} \\
= & \varphi_{\alpha}^{\prime}(f(a))\left[f^{\prime}(a)\right]\left(1-|a|^{2}\right)=\varphi_{\alpha}^{\prime}(\alpha) f^{\prime}(a)\left(1-|a|^{2}\right) \\
= & \frac{1-|a|^{2}}{1-|\alpha|^{2}} f^{\prime}(a) \text { since } \varphi_{\alpha}^{\prime}(z)=\frac{1-|\alpha|^{2}}{(1-\bar{\alpha} z)^{2}} \\
& \text { and } \varphi_{\alpha}^{\prime}(\alpha)=\frac{1-|\alpha|^{2}}{\left(1-|\alpha|^{2}\right)^{2}}=\frac{1}{1-|\alpha|^{2}} \\
= & \frac{1-|a|^{2}}{1-|f(a)|^{2}} f^{\prime}(a) .
\end{aligned}
$$

Since $\left|g^{\prime}(0)\right| \leq 1$, we have
$\left|g^{\prime}(0)\right|=\left|\frac{1-|a|^{2}}{1-|f(a)|^{2}} f^{\prime}(a)\right| \leq 1$, or $\left|f^{\prime}(a)\right| \leq\left|\frac{1-|f(a)|^{2}}{1-|a|^{2}}\right|=\frac{1-|f(a)|^{2}}{1-|a|^{2}}$.

Lemma VI.2.A (continued 2)

Lemma VI.2.A. Suppose f is analytic on $D=\{z| | z \mid<1\}$ and $|f(z)| \leq 1$ for $z \in D$. Let $z \in D$. Then

$$
\left|f^{\prime}(a)\right| \leq \frac{1-|f(a)|^{2}}{1-|a|^{2}}
$$

Moreover, equality holds exactly when $f(z)=\varphi_{\alpha}\left(c \varphi_{a}(z)\right)$, where $\alpha=f(a)$ for some $c \in \mathbb{C}$ where $|c|=1$.

Proof (continued). "Moreover," we have equality by Schwarz's Lemma exactly when $g(z)=c z$ for some $c \in \mathbb{R},|c|=1$. That is,

$$
\begin{aligned}
g(z)= & c z=\varphi_{\alpha} \circ f \circ \varphi_{-a}(z), \text { or } \varphi_{\alpha}^{-1}(c z)=f \circ \varphi_{-a}(z), \\
& \text { or } \varphi_{-\alpha}(c z)=f \circ \varphi_{-a}(z) \text { since } \varphi_{\alpha}^{-1}=\varphi_{-\alpha},
\end{aligned}
$$

or, replacing z with $\varphi_{a}(z), \varphi_{-\alpha}\left(c \varphi_{z}(z)\right)=f \circ \varphi_{-z}\left(\varphi_{a}(z)\right)=f(z)$.

Theorem VI.2.5

Theorem VI.2.5. Let $f: D \rightarrow D$ be a one to one analytic map of D onto itself and suppose $f(a)=0$. Then there is a complex c where $|c|=1$ such that $f=c \varphi_{a}$.

Proof. Since f is one to one and onto, then there is $g: D \rightarrow D$ such that $g(f(z))=z$ for $|z|<1$ and g is analytic by Proposition III.2.20. Applying Lemma VI.2.A to both f and g gives

$$
\begin{equation*}
\left|f^{\prime}(a)\right| \leq \frac{1-|f(a)|^{2}}{1-|a|^{2}}=\left(1-|a|^{2}\right)^{-1} \text { since } f(a)=0 \tag{*}
\end{equation*}
$$

and $\left|g^{\prime}(0)\right| \leq \frac{1-|g(0)|^{2}}{1-|0|^{2}}=1-|a|^{2}$ since $f(a)=0$, and so $g(0)=a$.

Theorem VI.2.5

Theorem VI.2.5. Let $f: D \rightarrow D$ be a one to one analytic map of D onto itself and suppose $f(a)=0$. Then there is a complex c where $|c|=1$ such that $f=c \varphi_{a}$.

Proof. Since f is one to one and onto, then there is $g: D \rightarrow D$ such that $g(f(z))=z$ for $|z|<1$ and g is analytic by Proposition III.2.20. Applying Lemma VI.2.A to both f and g gives

$$
\begin{equation*}
\left|f^{\prime}(a)\right| \leq \frac{1-|f(a)|^{2}}{1-|a|^{2}}=\left(1-|a|^{2}\right)^{-1} \text { since } f(a)=0 \tag{*}
\end{equation*}
$$

and $\left|g^{\prime}(0)\right| \leq \frac{1-|g(0)|^{2}}{1-|0|^{2}}=1-|a|^{2}$ since $f(a)=0$, and so $g(0)=a$. But $z=g(f(z))$ and $1=g^{\prime}(f(z)) f^{\prime}(z)$ and, in particular for $z=a$, $1=g^{\prime}(f(a)) f^{\prime}(a)=g^{\prime}(0) f^{\prime}(a)$. So $\left|f^{\prime}(a)\right|=1 /\left|g^{\prime}(0)\right| \geq\left(1-|a|^{2}\right)^{-1}$, which combines with $(*)$ to give $\left|f^{\prime}(a)\right|=\left(1-|a|^{2}\right)^{-1}$.

Theorem VI.2.5

Theorem VI.2.5. Let $f: D \rightarrow D$ be a one to one analytic map of D onto itself and suppose $f(a)=0$. Then there is a complex c where $|c|=1$ such that $f=c \varphi_{a}$.

Proof. Since f is one to one and onto, then there is $g: D \rightarrow D$ such that $g(f(z))=z$ for $|z|<1$ and g is analytic by Proposition III.2.20. Applying Lemma VI.2.A to both f and g gives

$$
\begin{equation*}
\left|f^{\prime}(a)\right| \leq \frac{1-|f(a)|^{2}}{1-|a|^{2}}=\left(1-|a|^{2}\right)^{-1} \text { since } f(a)=0 \tag{*}
\end{equation*}
$$

and $\left|g^{\prime}(0)\right| \leq \frac{1-|g(0)|^{2}}{1-|0|^{2}}=1-|a|^{2}$ since $f(a)=0$, and so $g(0)=a$. But $z=g(f(z))$ and $1=g^{\prime}(f(z)) f^{\prime}(z)$ and, in particular for $z=a$, $1=g^{\prime}(f(a)) f^{\prime}(a)=g^{\prime}(0) f^{\prime}(a)$. So $\left|f^{\prime}(a)\right|=1 /\left|g^{\prime}(0)\right| \geq\left(1-|a|^{2}\right)^{-1}$, which combines with $(*)$ to give $\left|f^{\prime}(a)\right|=\left(1-|a|^{2}\right)^{-1}$.

Theorem VI. 2.5 (continued)

Theorem VI.2.5. Let $f: D \rightarrow D$ be a one to one analytic map of D onto itself and suppose $f(a)=0$. Then there is a complex c where $|c|=1$ such that $f=c \varphi_{a}$.

Proof (continued). So by the second conclusion in Lemma VI.2.A, we have that

$$
\begin{aligned}
f(z) & =\varphi_{-\alpha}\left(c \varphi_{a}(z)\right)=\varphi_{0}\left(c \varphi_{a}(z)\right) \text { since } \alpha=f(a)=0 \\
& =c \varphi_{a}(z) \text { since } \varphi_{0}(z)=z
\end{aligned}
$$

where $c \in \mathbb{R},|c|=1$.

Generalized Schwarz's Lemma 1

Generalized Schwarz's Lemma 1.

If f is analytic on $\bar{D}\{z||z| \leq 1\}$, with
(a) $|f(z)| \leq M$ for $z \in \bar{D}$, and
(b) $f(a)=0$ where $|a|<1$.

Then for $z \in \bar{D}$:

$$
|f(z)| \leq M\left|\frac{z-a}{a-\bar{a} z}\right|=M\left|\varphi_{a}(z)\right| .
$$

Proof. Define $g(z)=f \circ \varphi_{a}^{-1}(z)=f \circ \varphi_{-a}(z)=f((z+a) /(1+\bar{a} z))$. We know that for $z \in D$ we have $|g(z)|=|f((z-a) /(1-\bar{a} z))| \leq M$ and $g(0)=f(a)=0$.

Generalized Schwarz's Lemma 1

Generalized Schwarz's Lemma 1.

If f is analytic on $\bar{D}\{z||z| \leq 1\}$, with
(a) $|f(z)| \leq M$ for $z \in \bar{D}$, and
(b) $f(a)=0$ where $|a|<1$.

Then for $z \in \bar{D}$:

$$
|f(z)| \leq M\left|\frac{z-a}{a-\bar{a} z}\right|=M\left|\varphi_{a}(z)\right| .
$$

Proof. Define $g(z)=f \circ \varphi_{a}^{-1}(z)=f \circ \varphi_{-a}(z)=f((z+a) /(1+\bar{a} z))$. We know that for $z \in D$ we have $|g(z)|=|f((z-a) /(1-\bar{a} z))| \leq M$ and $g(0)=f(a)=0$. So the function $g(z) / M$ satisfies the hypotheses of Schwarz's Lemma and we have that $|g(z)| / M \leq|z|$ for $z \in \bar{D}$, or $|g(z)| \leq M|z|$ or $|f((z-a) /(1-\bar{a} z))| \leq M|z|$.

Generalized Schwarz's Lemma 1

Generalized Schwarz's Lemma 1.

If f is analytic on $\bar{D}\{z||z| \leq 1\}$, with
(a) $|f(z)| \leq M$ for $z \in \bar{D}$, and
(b) $f(a)=0$ where $|a|<1$.

Then for $z \in \bar{D}$:

$$
|f(z)| \leq M\left|\frac{z-a}{a-\bar{a} z}\right|=M\left|\varphi_{a}(z)\right| .
$$

Proof. Define $g(z)=f \circ \varphi_{a}^{-1}(z)=f \circ \varphi_{-a}(z)=f((z+a) /(1+\bar{a} z))$. We know that for $z \in D$ we have $|g(z)|=|f((z-a) /(1-\bar{a} z))| \leq M$ and $g(0)=f(a)=0$. So the function $g(z) / M$ satisfies the hypotheses of Schwarz's Lemma and we have that $|g(z)| / M \leq|z|$ for $z \in \bar{D}$, or $|g(z)| \leq M|z|$ or $|f((z-a) /(1-\bar{a} z))| \leq M|z|$. Replacing z with $\varphi_{a}(z)$ to get

$$
|f(z)| \leq M\left|\varphi_{a}(z)\right|=M\left|\frac{z-a}{1-\bar{a} z}\right|
$$

Generalized Schwarz's Lemma 1

Generalized Schwarz's Lemma 1.

If f is analytic on $\bar{D}\{z||z| \leq 1\}$, with
(a) $|f(z)| \leq M$ for $z \in \bar{D}$, and
(b) $f(a)=0$ where $|a|<1$.

Then for $z \in \bar{D}$:

$$
|f(z)| \leq M\left|\frac{z-a}{a-\bar{a} z}\right|=M\left|\varphi_{a}(z)\right| .
$$

Proof. Define $g(z)=f \circ \varphi_{a}^{-1}(z)=f \circ \varphi_{-a}(z)=f((z+a) /(1+\bar{a} z))$. We know that for $z \in D$ we have $|g(z)|=|f((z-a) /(1-\bar{a} z))| \leq M$ and $g(0)=f(a)=0$. So the function $g(z) / M$ satisfies the hypotheses of Schwarz's Lemma and we have that $|g(z)| / M \leq|z|$ for $z \in \bar{D}$, or $|g(z)| \leq M|z|$ or $|f((z-a) /(1-\bar{a} z))| \leq M|z|$. Replacing z with $\varphi_{a}(z)$ to get

$$
|f(z)| \leq M\left|\varphi_{a}(z)\right|=M\left|\frac{z-a}{1-\bar{a} z}\right| .
$$

