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Proposition VI.3.2

Proposition VI.3.2

Proposition VI.3.2. A function f : [a, b] → R is convex if and only if the
set

A = {(x , y) | x ∈ [a, b] and f (x) ≤ y}

is convex.

Proof. Suppose f : [a, b] → R is convex. Let (x1, y1), (x2, y2),∈ A ⊂ R2.
If t ∈ [0, 1] then (by the definition of convex function f )

f (tx2 + (1− t)x1) ≤ tf (x2) + (1− t)f (x1) ≤ ty2 + (1− t)y1

where y1 = f (x1) and y2 = f (x2).

Thus

t(x2, y2) + (1− t)(x1, y1) = (t2x2 + (1− t)x1, ty2 + (1− t)y1) ∈ A

for t ∈ [0, 1] by the definition of set A. So A is convex.

() Complex Analysis August 11, 2017 3 / 16



Proposition VI.3.2

Proposition VI.3.2

Proposition VI.3.2. A function f : [a, b] → R is convex if and only if the
set

A = {(x , y) | x ∈ [a, b] and f (x) ≤ y}

is convex.

Proof. Suppose f : [a, b] → R is convex. Let (x1, y1), (x2, y2),∈ A ⊂ R2.
If t ∈ [0, 1] then (by the definition of convex function f )

f (tx2 + (1− t)x1) ≤ tf (x2) + (1− t)f (x1) ≤ ty2 + (1− t)y1

where y1 = f (x1) and y2 = f (x2). Thus

t(x2, y2) + (1− t)(x1, y1) = (t2x2 + (1− t)x1, ty2 + (1− t)y1) ∈ A

for t ∈ [0, 1] by the definition of set A. So A is convex.

() Complex Analysis August 11, 2017 3 / 16



Proposition VI.3.2

Proposition VI.3.2

Proposition VI.3.2. A function f : [a, b] → R is convex if and only if the
set

A = {(x , y) | x ∈ [a, b] and f (x) ≤ y}

is convex.

Proof. Suppose f : [a, b] → R is convex. Let (x1, y1), (x2, y2),∈ A ⊂ R2.
If t ∈ [0, 1] then (by the definition of convex function f )

f (tx2 + (1− t)x1) ≤ tf (x2) + (1− t)f (x1) ≤ ty2 + (1− t)y1

where y1 = f (x1) and y2 = f (x2). Thus

t(x2, y2) + (1− t)(x1, y1) = (t2x2 + (1− t)x1, ty2 + (1− t)y1) ∈ A

for t ∈ [0, 1] by the definition of set A. So A is convex.

() Complex Analysis August 11, 2017 3 / 16



Proposition VI.3.2

Proposition VI.3.2 (continued)

Proposition VI.3.2. A function f : [a, b] → R is convex if and only if the
set

A = {(x , y) | x ∈ [a, b] and f (x) ≤ y}

is convex.

Proof (continued). Suppose A is a convex set and let x1, x2 ∈ [1, b].
Then

(tx2 + (1− t)x1, tf (x2) + (1− t)f (x2)) ∈ A

for all t ∈ [0, 1]. But the definition of set A implies that

f (tx2 + (1− t)x1) ≤ tf (x2) + (1− t)f (x1).

So f satisfies the definition of convexity, and hence f is convex.
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Proposition VI.3.4

Proposition VI.3.4

Proposition VI.3.4. A differentiable function f on [a, b] is convex if and
only if f ′ is increasing.

Proof. Suppose f is convex. Let x , y ∈ [a, b] with x < y and suppose
t ∈ [0, 1].

Since 0 < t(x − y) = (1− t)x + ty − x , the convexity of f
implies that f ((1− t)x + ty) ≤ (1− t)f (x) + tf (y), and

f ((1− t)x + ty)

t(y − x)
≤ (1− t)f (x) + tf (y)

t(y − x)
=

f (x)

t(y − x)
+

t(f (y)− f (x))

t(y − x)
,

or
f ((1− t)x + ty)− f (x)

t(y − x)
≤ f (y)− f (x)

y − x
,

or
f (x + t(y − x))− f (x)

t(y − x)
≤ f (y)− f (x)

y − x
.

Now as t → 0, x + t(y − x) → x and t(y − x) → 0 (and these last two

limits occur at the same rate), so we have f ′(x) ≤ f (y)− f (x)

y − x
.
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Proposition VI.3.4

Proposition VI.3.4 (continued 1)

Proof (continued). Also, 0 > (1− t)(x − y) = (1− t)x + ty − y , so
f ((1− t)x + ty) ≤ (1− t)f (x) + tf (y) and

f ((1− t)x + ty)

(1− t)(x − y)
≥ (1− t)f (x) + tf (y)

(1− t)(x − y)

=
(1− t)f (x)

(1− t)(x − y)
+

tf (y)− f (y) + f (y)

(1− t)(x − y)
,

or
f ((1− t)x + ty)− f (y)

(1− t)(x − y)
≥ f (x)− f (y)

x − y
,

or
f ((1− t)(x − y) + y)− f (y)

(1− t)(x − y)
≥ f (x)− f (y)

x − y
.

Now as t → 1, (1− t)(x − y) + y → y , and (1− t)(x − y) → 0 (and these

last two limits occur at the same rate), so we have f ′(y) ≥ f (x)− f (y)

x − y
.
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Proposition VI.3.4

Proposition VI.3.4 (continued 2)

Proof (continued). Combining the above information,

f ′(x) ≤ f (x)− f (y)

x − y
≤ f (y), and f ′ is increasing on [a, b].

Now suppose that f ′ is increasing and that x < u < y . By the Mean Value
Theorem, there are r , s where x < r < u < s < y where

f ′(r) =
f (u)− f (x)

u − x
and f ′(s) =

f (y)− f (u)

y − u
. Since f ′ is increasing, then

f ′(r) ≤ f ′(s) and so
f (u)− f (x)

u − x
≤ f (y)− f (u)

y − u
and this holds for any u

where x < u < y .

In particular, with u = (1− t)x + ty where t ∈ [0, 1],

then
f (u)− f (x)

t(y − x)
≤ f (y)− f (u)

(t − 1)(y − x)
, or

(1− t)(f (u)− f (x)) ≤ t(f (y)− f (u)). So
(1− t){f ((1− t)x + ty)− f (x)} ≤ t{f (y)− f ((1− t)x + ty)} or
f ((1− t)x + ty)− f (x) + tf (x) ≤ tf (y) or
f ((1− t)x + ty) ≤ (1− t)f (x) + tf (y). So f is convex.
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Lemma VI.3.10

Lemma VI.3.10

Lemma VI.3.10. Let f and G be as Theorem 3.7 and further suppose
that |f (z)| ≤ 1 for z ∈ ∂G . Then |f (z)| ≤ 1 for z ∈ G .

Proof. Let ε > 0. Define gε(z) = (1 + ε(z − a))−1 for a ∈ G−. The for
z = x + iy ∈ G−,

|gε(z)| = 1

|a + ε(z − a)|
≤ 1

|Re(1 + ε(z − a))|
=

1

|Re(a + ε(x + iy − a))|
=

1

|Re(1 + ε(x − a))|
≤ 1.

So for z ∈ ∂G we have that |f (z)gε(z)| ≤ (1)(1) = 1.

Since f is bounded
by B in G (by the Theorem VI.3.7 hypothesis), we have

|f (z)gε(z)| ≤ B|1 + ε(z − a)|−1 ≤ B|Im(1 + ε(z − a)|−1

= B|Im(εz)|−1 = B|εIm(z)|−1. (3.11)

So if R = {x + iy | z ≤ x ≤ b, |y | < B/ε}, then inequality (3.11) gives for
z ∈ ∂R:

|f (z)gε(z)| ≤ B|εIm(z)|−1 =
B

ε|Im(z)|
=

B

ε(B/ε)
= 1.
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Lemma VI.3.10

Lemma VI.3.10 (continued)

Lemma VI.3.10. Let f and G be as Theorem 3.7 and further suppose
that |f (z)| ≤ 1 for z ∈ ∂G . Then |f (z)| ≤ 1 for z ∈ G .

Proof (continued). Then by the Maximum Modulus Theorem—Second
Version (Theorem VI.1.2), |f (z)gε(z)| ≤ 1 for all z ∈ R.

Next, for z ∈ G
with |Im(z)| > B/ε, inequality (3.11) implies that

|f (z)gε(z)| ≤ B

ε|Im(z)|
<

B

ε(B/ε)
= 1.

So for all z ∈ G , |f (z)gε(z)| ≤ 1 and |f (z)| ≤ 1/|gε(z)| ≤ |1 + ε(z − a)|.
Since ε > 0 is arbitrary, we have |f (z)| ≤ 1 for all z ∈ G .
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Theorem VI.3.7

Theorem VI.3.7

Theorem VI.3.7. Let a < b and let G be the vertical strip
{x + iy | a < x < b}. Suppose f : G− → C is continuous and f is analytic
in G . If we define M : [a, b] → R by

M(x) = sup{|f (x + iy)| | −∞ < y < ∞}

and |f (z)| < B for all z ∈ G , then log M(x) is a convex function.

Proof. By Exercise VI.3.3(c), f is convex if and only if
f (u)− f (x)

u − x
≤ f (y)− f (u)

y − u
, or

(y − u)(f (u)− f (x)) ≤ (u − x)(f (y)− f (u)), or
(y − u)f (u) + (u − x)f (u) ≤ (y − u)f (x) + (u − x)f (y), or
(y − x)f (u) ≤ (y − u)f (x) + (u − x)f (y).

With f (z) = log M(x), we have

(y − x) log M(u) ≤ (y − u) log M(x) + (u − x) log M(y). (∗)

Exponentiating both sides gives M(u)y−x ≤ M(x)y−uM(Y )u−x where
z ≤ x < u < y ≤ b.
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Proof. By Exercise VI.3.3(c), f is convex if and only if
f (u)− f (x)

u − x
≤ f (y)− f (u)

y − u
, or

(y − u)(f (u)− f (x)) ≤ (u − x)(f (y)− f (u)), or
(y − u)f (u) + (u − x)f (u) ≤ (y − u)f (x) + (u − x)f (y), or
(y − x)f (u) ≤ (y − u)f (x) + (u − x)f (y). With f (z) = log M(x), we have

(y − x) log M(u) ≤ (y − u) log M(x) + (u − x) log M(y). (∗)

Exponentiating both sides gives M(u)y−x ≤ M(x)y−uM(Y )u−x where
z ≤ x < u < y ≤ b.
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Theorem VI.3.7

Theorem VI.3.7 (continued 1)

Proof (continued). So to prove Theorem VII.3.7 we must show that
M(u)b−a ≤ M(z)b−uM(y)u−a for all u ∈ (a, b). Define
g(z) = M(a)(b−z)/(b−a)M(b)(z−a)/(b−a). Then g is entire and nonzero
(since Az = exp(z log A), so g is basically an exponential function). Since

|Az | = ARe(z), then for z = x + iy we have

|g(z)| = M(a)(b−x)/(b−a)M(b)(x−a)/(b−a). (3.12)

(Here, we assume M(a) 6= 0 and M(b) 6= 0 without loss of generality, since
if either is 0 then either f ≡ 0 on the line Re(z) = a or f ≡ 0 on the line
Re(z) = b, and in both cases, by the Maximum Modulus Theorem—Third
Version [Theorem VI.1.4], f ≡ 0 on G .)

The right hand side of (3.12) is a
continuous function of x for x ∈ [a, b], and since it is an exponential
function it is nonzero. So it attains a minimum (and a maximum) and
|g |−1 is therefore bounded on G−.
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Theorem VI.3.7

Theorem VI.3.7 (continued 2)

Proof (continued). Also, |g(a + iy)| = M(a) an d|g(b + iy)| = M(b), so
for Re(z) = Re(xiy) = x = a, we have∣∣∣∣ f (z)

g(z)

∣∣∣∣ ≤ M(a)

M(a)(b−a)/(b−a)M(b)(a−a)/(b−a)
= 1

and for Re(z) = Re(x + iy) = x = b, we have∣∣∣∣ f (z)

g(z)

∣∣∣∣ ≤ M(b)

M(a)(b−b)/(b−a)M(a)(b−a)/(b−a)
= 1.

So for z ∈ ∂G−, |f (z)/g(z)| ≤ 1. Now Lemma VI.3.10 holds and implies
that |f (z)/g(z)| ≤ 1 for all z ∈ G , or that |f (z)| ≤ |g(z)| for all z ∈ G .
With z ∈ G , z = uiv (so a < u < b), and from (3.12) we have
|f (z)| ≤ M(u) ≤ M(a)(b−u)/(b−a)M(b)(u−a)/(b−a) = |g(z)|, or
M(u)b−a ≤ M(a)b−uM(b)u−a for all u ∈ (a, b). As stated above, this
proves the claim.
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Corollary VI.3.9

Corollary VI.3.9

Corollary VI.3.9. Let a < b and let G be the vertical strip
{x + iy | a < x < b}. Let f : G− → C be continuous and let f be analytic
on G . Then for all z ∈ G we have

|f (z)| < sup{|f (z)| | z ∈ ∂G}.

Proof. Since log M(x) is convex by Theorem VI.3.7, then for z ∈ G we
have

M(x) ≤ max{M(a),M(b)} = sup{|f (z)| | z ∈ ∂G−}.
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Theorem VI.3.13. Hadamard’s Three Circles Theorem

Theorem VI.3.13

Theorem VI.3.13. Hadamard’s Three Circles Theorem.
Let 0 < R1 < R2 < ∞ and suppose f is analytic and not identically zero
on ann(0;R1,R2). If R1 < r < R2, define

M(r) = max{|f (re iθ)| | 0 ≤ θ ≤ 2π}.

Then for R1 < r1 ≤ r ≤ r2 < R2 and r1 6= r2, we have

log M(r) ≤ log r2 − log r

log r2 − log r1
log M(r1) +

log r − log r1
log r2 − log r1

log M(r2).

Proof. (This is Exercise VI.3.4.) First, define g(z) = f (ez). since f is
analytic on ann(0; R1,R2), then g is analytic on the vertical strip
{x + iy | log R1 ≤ x ≤ log R2}. Since f is continuous on ann(0; R1,R2),
then f is bounded on the annulus (the annulus is compact). Therefore, g
is bounded on the vertical strip. So g satisfies the hypothesis of Theorem
VI.3.7.
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Theorem VI.3.13. Hadamard’s Three Circles Theorem

Theorem VI.3.13 (continued 1)

Proof (continued). Now for z = x + iy in the vertical strip, we have ez

in the annulus and

Mg (z) = sup{|g(x+iy)| | −∞ < y < ∞} = sup{|f (ex+iy )| | −∞ < y < ∞}

= max{|f (exe iθ)| | 0 ≤ θ ≤ 2π} = Mf (e
x).

Hence, for log R1 < log r1 ≤ log r ≤ log r2 < log R2 where r1 6= r2, we have
by Theorem VI.3.7 applied to g (actually from equation (∗) in the proof of
Theorem VI.3.7 [see page 136] with x = log r1, a = log r , and y = log r2):

(log r2 − log r1) log Mg (log r) ≤ (log r2 − log r) log Mg (log r1)

+(log r − log r1) log Mg (log r2)

or
(log r2 − log r1) log Mf (r) ≤ (log r2 − log r) log Mf (r1)

= (log r − log r1) log Mf (r2), . . .
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Theorem VI.3.13. Hadamard’s Three Circles Theorem

Theorem VI.3.13 (continued 2)

Theorem VI.3.13. Hadamard’s Three Circles Theorem.
Let 0 < R1 < R2 < ∞ and suppose f is analytic and not identically zero
on ann(0;R1,R2). If R1 < r < R2, define

M(r) = max{|f (re iθ)| | 0 ≤ θ ≤ 2π}.

Then for R1 < r1 ≤ r ≤ r2 < R2 and r1 6= r2, we have

log M(r) ≤ log r2 − log r

log r2 − log r1
log M(r1) +

log r − log r1
log r2 − log r1

log M(r2).

Proof (continued). or

log M(r) ≤ log r2 − log r

log r2 − log r1
log M(r1)

+
log r − log r1
log r2 − log r1

log M(r2),

where M(x) denotes Mf (x).
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