Complex Analysis

Chapter VI. The Maximum Modulus Theorem VI.3. Convex Functions and Hadamard's Three Circles Theorem—Proofs of Theorems

John B. Conway

Functions of One Complex Variable I

Second Edition

Deringer

- Proposition VI.3.2
- 2 Proposition VI.3.4
- 3 Lemma VI.3.10
- 4 Theorem VI.3.7
- 5 Corollary VI.3.9

6 Theorem VI.3.13. Hadamard's Three Circles Theorem

Proposition VI.3.2. A function $f : [a, b] \to \mathbb{R}$ is convex if and only if the set

$$A = \{(x, y) \mid x \in [a, b] \text{ and } f(x) \le y\}$$

is convex.

Proof. Suppose $f : [a, b] \to \mathbb{R}$ is convex. Let $(x_1, y_1), (x_2, y_2), \in A \subset \mathbb{R}^2$. If $t \in [0, 1]$ then (by the definition of convex function f)

$$f(tx_2 + (1-t)x_1) \le tf(x_2) + (1-t)f(x_1) \le ty_2 + (1-t)y_1$$

where $y_1 = f(x_1)$ and $y_2 = f(x_2)$.

Proposition VI.3.2. A function $f : [a, b] \to \mathbb{R}$ is convex if and only if the set

$$A = \{(x, y) \mid x \in [a, b] \text{ and } f(x) \le y\}$$

is convex.

Proof. Suppose $f : [a, b] \to \mathbb{R}$ is convex. Let $(x_1, y_1), (x_2, y_2), \in A \subset \mathbb{R}^2$. If $t \in [0, 1]$ then (by the definition of convex function f)

$$f(tx_2 + (1-t)x_1) \le tf(x_2) + (1-t)f(x_1) \le ty_2 + (1-t)y_1$$

where $y_1 = f(x_1)$ and $y_2 = f(x_2)$. Thus

 $t(x_2, y_2) + (1-t)(x_1, y_1) = (t_2x_2 + (1-t)x_1, ty_2 + (1-t)y_1) \in A$

for $t \in [0, 1]$ by the definition of set A. So A is convex.

Proposition VI.3.2. A function $f : [a, b] \to \mathbb{R}$ is convex if and only if the set

$$A = \{(x, y) \mid x \in [a, b] \text{ and } f(x) \le y\}$$

is convex.

Proof. Suppose $f : [a, b] \to \mathbb{R}$ is convex. Let $(x_1, y_1), (x_2, y_2), \in A \subset \mathbb{R}^2$. If $t \in [0, 1]$ then (by the definition of convex function f)

$$f(tx_2 + (1 - t)x_1) \le tf(x_2) + (1 - t)f(x_1) \le ty_2 + (1 - t)y_1$$

where $y_1 = f(x_1)$ and $y_2 = f(x_2)$. Thus

$$t(x_2,y_2) + (1-t)(x_1,y_1) = (t_2x_2 + (1-t)x_1, ty_2 + (1-t)y_1) \in A$$

for $t \in [0,1]$ by the definition of set A. So A is convex.

Proposition VI.3.2 (continued)

Proposition VI.3.2. A function $f : [a, b] \to \mathbb{R}$ is convex if and only if the set

$$A = \{(x, y) \mid x \in [a, b] \text{ and } f(x) \leq y\}$$

is convex.

Proof (continued). Suppose A is a convex set and let $x_1, x_2 \in [1, b]$. Then

$$(tx_2 + (1 - t)x_1, tf(x_2) + (1 - t)f(x_2)) \in A$$

for all $t \in [0, 1]$. But the definition of set A implies that

$$f(tx_2 + (1-t)x_1) \le tf(x_2) + (1-t)f(x_1).$$

So f satisfies the definition of convexity, and hence f is convex.

Proposition VI.3.2 (continued)

Proposition VI.3.2. A function $f : [a, b] \to \mathbb{R}$ is convex if and only if the set

$$A = \{(x, y) \mid x \in [a, b] \text{ and } f(x) \le y\}$$

is convex.

Proof (continued). Suppose A is a convex set and let $x_1, x_2 \in [1, b]$. Then

$$(tx_2 + (1 - t)x_1, tf(x_2) + (1 - t)f(x_2)) \in A$$

for all $t \in [0, 1]$. But the definition of set A implies that

$$f(tx_2 + (1-t)x_1) \leq tf(x_2) + (1-t)f(x_1).$$

So f satisfies the definition of convexity, and hence f is convex.

Proposition VI.3.4. A differentiable function f on [a, b] is convex if and only if f' is increasing.

Proof. Suppose f is convex. Let $x, y \in [a, b]$ with x < y and suppose $t \in [0, 1]$.

Proposition VI.3.4. A differentiable function f on [a, b] is convex if and only if f' is increasing.

Proof. Suppose *f* is convex. Let $x, y \in [a, b]$ with x < y and suppose $t \in [0, 1]$. Since 0 < t(x - y) = (1 - t)x + ty - x, the convexity of *f* implies that $f((1 - t)x + ty) \le (1 - t)f(x) + tf(y)$, and

$$\frac{f((1-t)x+ty)}{t(y-x)} \le \frac{(1-t)f(x)+tf(y)}{t(y-x)} = \frac{f(x)}{t(y-x)} + \frac{t(f(y)-f(x))}{t(y-x)},$$

or

$$\frac{f((1-t)x+ty)-f(x)}{t(y-x)} \le \frac{f(y)-f(x)}{y-x},$$

or

$$\frac{f(x + t(y - x)) - f(x)}{t(y - x)} \le \frac{f(y) - f(x)}{y - x}$$

Proposition VI.3.4. A differentiable function f on [a, b] is convex if and only if f' is increasing.

Proof. Suppose f is convex. Let $x, y \in [a, b]$ with x < y and suppose $t \in [0,1]$. Since 0 < t(x-y) = (1-t)x + ty - x, the convexity of f implies that f((1-t)x + ty) < (1-t)f(x) + tf(y), and $\frac{f((1-t)x+ty)}{t(y-x)} \leq \frac{(1-t)f(x)+tf(y)}{t(y-x)} = \frac{f(x)}{t(y-x)} + \frac{t(f(y)-f(x))}{t(y-x)},$ or $\frac{f((1-t)x+ty)-f(x)}{t(y-x)} \le \frac{f(y)-f(x)}{y-x},$ or $\frac{f(x+t(y-x))-f(x)}{t(y-x)} \leq \frac{f(y)-f(x)}{y-x}.$ Now as $t \to 0$, $x + t(y - x) \to x$ and $t(y - x) \to 0$ (and these last two limits occur at the same rate), so we have $f'(x) \leq \frac{f(y) - f(x)}{x}$.

Proposition VI.3.4. A differentiable function f on [a, b] is convex if and only if f' is increasing.

Proof. Suppose f is convex. Let $x, y \in [a, b]$ with x < y and suppose $t \in [0, 1]$. Since 0 < t(x - y) = (1 - t)x + ty - x, the convexity of f implies that f((1-t)x + ty) < (1-t)f(x) + tf(y), and $\frac{f((1-t)x+ty)}{t(y-x)} \le \frac{(1-t)f(x)+tf(y)}{t(y-x)} = \frac{f(x)}{t(y-x)} + \frac{t(f(y)-f(x))}{t(y-x)},$ or $\frac{f((1-t)x+ty)-f(x)}{t(y-x)} \le \frac{f(y)-f(x)}{y-x},$ or $\frac{f(x+t(y-x))-f(x)}{t(y-x)} \leq \frac{f(y)-f(x)}{y-x}.$ Now as $t \to 0$, $x + t(y - x) \to x$ and $t(y - x) \to 0$ (and these last two limits occur at the same rate), so we have $f'(x) \leq \frac{f(y) - f(x)}{y - x}$.

Proposition VI.3.4 (continued 1)

Proof (continued). Also,
$$0 > (1 - t)(x - y) = (1 - t)x + ty - y$$
, so
 $f((1 - t)x + ty) \le (1 - t)f(x) + tf(y)$ and
 $\frac{f((1 - t)x + ty)}{(1 - t)(x - y)} \ge \frac{(1 - t)f(x) + tf(y)}{(1 - t)(x - y)}$
 $= \frac{(1 - t)f(x)}{(1 - t)(x - y)} + \frac{tf(y) - f(y) + f(y)}{(1 - t)(x - y)},$
or
 $\frac{f((1 - t)x + ty) - f(y)}{(1 - t)(x - y)} \ge \frac{f(x) - f(y)}{x - y},$
or
 $\frac{f((1 - t)(x - y) + y) - f(y)}{(1 - t)(x - y)} \ge \frac{f(x) - f(y)}{x - y}.$
Now as $t \to 1$, $(1 - t)(x - y) + y \to y$, and $(1 - t)(x - y) \to 0$ (and these
last two limits occur at the same rate), so we have $f'(y) \ge \frac{f(x) - f(y)}{x - y}.$

Proposition VI.3.4 (continued 1)

Proof (continued). Also,
$$0 > (1 - t)(x - y) = (1 - t)x + ty - y$$
, so
 $f((1 - t)x + ty) \le (1 - t)f(x) + tf(y)$ and
 $\frac{f((1 - t)x + ty)}{(1 - t)(x - y)} \ge \frac{(1 - t)f(x) + tf(y)}{(1 - t)(x - y)}$
 $= \frac{(1 - t)f(x)}{(1 - t)(x - y)} + \frac{tf(y) - f(y) + f(y)}{(1 - t)(x - y)},$
or
 $\frac{f((1 - t)x + ty) - f(y)}{(1 - t)(x - y)} \ge \frac{f(x) - f(y)}{x - y},$
or
 $\frac{f((1 - t)(x - y) + y) - f(y)}{(1 - t)(x - y)} \ge \frac{f(x) - f(y)}{x - y}.$
Now as $t \to 1$, $(1 - t)(x - y) + y \to y$, and $(1 - t)(x - y) \to 0$ (and these
last two limits occur at the same rate), so we have $f'(y) \ge \frac{f(x) - f(y)}{x - y}.$

Proposition VI.3.4 (continued 2)

Proof (continued). Combining the above information, $f'(x) \leq \frac{f(x) - f(y)}{x - y} \leq f(y)$, and f' is increasing on [a, b].

Now suppose that f' is increasing and that x < u < y. By the Mean Value Theorem, there are r, s where x < r < u < s < y where $f'(r) = \frac{f(u) - f(x)}{u - x}$ and $f'(s) = \frac{f(y) - f(u)}{y - u}$. Since f' is increasing, then $f'(r) \le f'(s)$ and so $\frac{f(u) - f(x)}{u - x} \le \frac{f(y) - f(u)}{y - u}$ and this holds for any u where x < u < y.

Proposition VI.3.4 (continued 2)

Proof (continued). Combining the above information, $f'(x) \leq \frac{f(x) - f(y)}{x - y} \leq f(y)$, and f' is increasing on [a, b].

Now suppose that f' is increasing and that x < u < y. By the Mean Value Theorem, there are r, s where x < r < u < s < y where $f'(r) = \frac{f(u) - f(x)}{u - x}$ and $f'(s) = \frac{f(y) - f(u)}{v - u}$. Since f' is increasing, then $f'(r) \leq f'(s)$ and so $\frac{f(u) - f(x)}{u - x} \leq \frac{f(y) - f(u)}{v - u}$ and this holds for any uwhere x < u < y. In particular, with u = (1 - t)x + ty where $t \in [0, 1]$, then $\frac{f(u) - f(x)}{t(v-x)} \le \frac{f(y) - f(u)}{(t-1)(v-x)}$, or (1-t)(f(u) - f(x)) < t(f(y) - f(u)). So $(1-t){f((1-t)x+ty) - f(x)} \le t{f(y) - f((1-t)x+ty)}$ or f((1-t)x + ty) - f(x) + tf(x) < tf(y) or $f((1-t)x+ty) \leq (1-t)f(x) + tf(y)$. So f is convex.

Proposition VI.3.4 (continued 2)

Proof (continued). Combining the above information, $f'(x) \leq \frac{f(x) - f(y)}{x - y} \leq f(y)$, and f' is increasing on [a, b].

Now suppose that f' is increasing and that x < u < y. By the Mean Value Theorem, there are r, s where x < r < u < s < y where $f'(r) = \frac{f(u) - f(x)}{u - x}$ and $f'(s) = \frac{f(y) - f(u)}{v - u}$. Since f' is increasing, then $f'(r) \leq f'(s)$ and so $\frac{f(u) - f(x)}{u - x} \leq \frac{f(y) - f(u)}{v - u}$ and this holds for any uwhere x < u < y. In particular, with u = (1 - t)x + ty where $t \in [0, 1]$, then $\frac{f(u) - f(x)}{t(v-x)} \le \frac{f(y) - f(u)}{(t-1)(v-x)}$, or $(1-t)(f(u) - f(x)) \le t(f(y) - f(u))$. So $(1-t){f((1-t)x+ty)-f(x)} \le t{f(y)-f((1-t)x+ty)}$ or f((1-t)x + ty) - f(x) + tf(x) < tf(y) or $f((1-t)x+ty) \leq (1-t)f(x) + tf(y)$. So f is convex.

Lemma VI.3.10. Let f and G be as Theorem 3.7 and further suppose that $|f(z)| \le 1$ for $z \in \partial G$. Then $|f(z)| \le 1$ for $z \in G$.

Proof. Let $\varepsilon > 0$. Define $g_{\varepsilon}(z) = (1 + \varepsilon(z - a))^{-1}$ for $a \in G^-$. The for $z = x + iy \in G^-$,

$$|g_{\varepsilon}(z)| = \frac{1}{|a + \varepsilon(z - a)|} \le \frac{1}{|\operatorname{Re}(1 + \varepsilon(z - a))|} = \frac{1}{|\operatorname{Re}(a + \varepsilon(x + iy - a))|} = \frac{1}{|a - \varepsilon(x - a)|}$$

Complex Analysis

So for $z \in \partial G$ we have that $|f(z)g_{\varepsilon}(z)| \leq (1)(1) = 1$.

Lemma VI.3.10. Let f and G be as Theorem 3.7 and further suppose that $|f(z)| \le 1$ for $z \in \partial G$. Then $|f(z)| \le 1$ for $z \in G$.

Proof. Let $\varepsilon > 0$. Define $g_{\varepsilon}(z) = (1 + \varepsilon(z - a))^{-1}$ for $a \in G^-$. The for $z = x + iy \in G^-$,

$$|g_{\varepsilon}(z)| = \frac{1}{|a + \varepsilon(z - a)|} \le \frac{1}{|\operatorname{Re}(1 + \varepsilon(z - a))|} = \frac{1}{|\operatorname{Re}(a + \varepsilon(x + iy - a))|} = \frac{1}{|a - \varepsilon(x - a)|}$$

So for $z \in \partial G$ we have that $|f(z)g_{\varepsilon}(z)| \leq (1)(1) = 1$. Since f is bounded by B in G (by the Theorem VI.3.7 hypothesis), we have

$$|f(z)g_{\varepsilon}(z)| \le B|1 + \varepsilon(z-a)|^{-1} \le B|\operatorname{Im}(1 + \varepsilon(z-a)|^{-1})$$
$$= B|\operatorname{Im}(\varepsilon z)|^{-1} = B|\varepsilon\operatorname{Im}(z)|^{-1}.$$
(3.11)

Lemma VI.3.10. Let f and G be as Theorem 3.7 and further suppose that $|f(z)| \le 1$ for $z \in \partial G$. Then $|f(z)| \le 1$ for $z \in G$.

Proof. Let $\varepsilon > 0$. Define $g_{\varepsilon}(z) = (1 + \varepsilon(z - a))^{-1}$ for $a \in G^-$. The for $z = x + iy \in G^-$,

$$|g_{\varepsilon}(z)| = \frac{1}{|a + \varepsilon(z - a)|} \leq \frac{1}{|\mathsf{Re}(1 + \varepsilon(z - a))|} = \frac{1}{|\mathsf{Re}(a + \varepsilon(x + iy - a))|}$$

So for $z \in \partial G$ we have that $|f(z)g_{\varepsilon}(z)| \leq (1)(1) = 1$. Since f is bounded by B in G (by the Theorem VI.3.7 hypothesis), we have

$$|f(z)g_{\varepsilon}(z)| \leq B|1 + \varepsilon(z-a)|^{-1} \leq B|\operatorname{Im}(1 + \varepsilon(z-a)|^{-1})$$

= $B|\operatorname{Im}(\varepsilon z)|^{-1} = B|\varepsilon\operatorname{Im}(z)|^{-1}.$ (3.11)

So if $R = \{x + iy \mid z \le x \le b, |y| < B/\varepsilon\}$, then inequality (3.11) gives for $z \in \partial R$:

$$|f(z)g_{\varepsilon}(z)| \leq B|\varepsilon \operatorname{Im}(z)|^{-1} = \frac{B}{\varepsilon|\operatorname{Im}(z)|} = \frac{B}{\varepsilon(B/\varepsilon)} = 1.$$

Lemma VI.3.10. Let f and G be as Theorem 3.7 and further suppose that $|f(z)| \le 1$ for $z \in \partial G$. Then $|f(z)| \le 1$ for $z \in G$.

Proof. Let $\varepsilon > 0$. Define $g_{\varepsilon}(z) = (1 + \varepsilon(z - a))^{-1}$ for $a \in G^-$. The for $z = x + iy \in G^-$,

$$|g_{\varepsilon}(z)| = \frac{1}{|a + \varepsilon(z - a)|} \leq \frac{1}{|\mathsf{Re}(1 + \varepsilon(z - a))|} = \frac{1}{|\mathsf{Re}(a + \varepsilon(x + iy - a))|}$$

So for $z \in \partial G$ we have that $|f(z)g_{\varepsilon}(z)| \leq (1)(1) = 1$. Since f is bounded by B in G (by the Theorem VI.3.7 hypothesis), we have

$$|f(z)g_{\varepsilon}(z)| \leq B|1 + \varepsilon(z-a)|^{-1} \leq B|\operatorname{Im}(1 + \varepsilon(z-a)|^{-1})$$
$$= B|\operatorname{Im}(\varepsilon z)|^{-1} = B|\varepsilon\operatorname{Im}(z)|^{-1}. \quad (3.11)$$

So if $R = \{x + iy \mid z \le x \le b, |y| < B/\varepsilon\}$, then inequality (3.11) gives for $z \in \partial R$:

$$|f(z)g_{arepsilon}(z)|\leq B|arepsilon {
m Im}(z)|^{-1}=rac{B}{arepsilon|{
m Im}(z)|}=rac{B}{arepsilon(B/arepsilon)}=1.$$

Lemma VI.3.10 (continued)

Lemma VI.3.10. Let f and G be as Theorem 3.7 and further suppose that $|f(z)| \le 1$ for $z \in \partial G$. Then $|f(z)| \le 1$ for $z \in G$.

Proof (continued). Then by the Maximum Modulus Theorem—Second Version (Theorem VI.1.2), $|f(z)g_{\varepsilon}(z)| \leq 1$ for all $z \in R$.

Lemma VI.3.10 (continued)

Lemma VI.3.10. Let f and G be as Theorem 3.7 and further suppose that $|f(z)| \le 1$ for $z \in \partial G$. Then $|f(z)| \le 1$ for $z \in G$.

Proof (continued). Then by the Maximum Modulus Theorem—Second Version (Theorem VI.1.2), $|f(z)g_{\varepsilon}(z)| \leq 1$ for all $z \in R$. Next, for $z \in G$ with $|\text{Im}(z)| > B/\varepsilon$, inequality (3.11) implies that

$$|f(z)g_{\varepsilon}(z)| \leq \frac{B}{\varepsilon |\operatorname{Im}(z)|} < \frac{B}{\varepsilon (B/\varepsilon)} = 1.$$

So for all $z \in G$, $|f(z)g_{\varepsilon}(z)| \leq 1$ and $|f(z)| \leq 1/|g_{\varepsilon}(z)| \leq |1 + \varepsilon(z - a)|$. Since $\varepsilon > 0$ is arbitrary, we have $|f(z)| \leq 1$ for all $z \in G$.

9 / 16

Lemma VI.3.10 (continued)

Lemma VI.3.10. Let f and G be as Theorem 3.7 and further suppose that $|f(z)| \le 1$ for $z \in \partial G$. Then $|f(z)| \le 1$ for $z \in G$.

Proof (continued). Then by the Maximum Modulus Theorem—Second Version (Theorem VI.1.2), $|f(z)g_{\varepsilon}(z)| \leq 1$ for all $z \in R$. Next, for $z \in G$ with $|\text{Im}(z)| > B/\varepsilon$, inequality (3.11) implies that

$$|f(z)g_{arepsilon}(z)|\leq rac{B}{arepsilon |{\sf Im}(z)|}<rac{B}{arepsilon(B/arepsilon)}=1.$$

So for all $z \in G$, $|f(z)g_{\varepsilon}(z)| \leq 1$ and $|f(z)| \leq 1/|g_{\varepsilon}(z)| \leq |1 + \varepsilon(z - a)|$. Since $\varepsilon > 0$ is arbitrary, we have $|f(z)| \leq 1$ for all $z \in G$.

Theorem VI.3.7

Theorem VI.3.7. Let a < b and let G be the vertical strip $\{x + iy \mid a < x < b\}$. Suppose $f : G^- \to \mathbb{C}$ is continuous and f is analytic in G. If we define $M : [a, b] \to \mathbb{R}$ by

$$M(x) = \sup\{|f(x+iy)| \mid -\infty < y < \infty\}$$

and |f(z)| < B for all $z \in G$, then $\log M(x)$ is a convex function.

Proof. By Exercise VI.3.3(c), *f* is convex if and only if

$$\frac{f(u) - f(x)}{u - x} \le \frac{f(y) - f(u)}{y - u}, \text{ or}$$

$$(y - u)(f(u) - f(x)) \le (u - x)(f(y) - f(u)), \text{ or}$$

$$(y - u)f(u) + (u - x)f(u) \le (y - u)f(x) + (u - x)f(y), \text{ or}$$

$$(y - x)f(u) \le (y - u)f(x) + (u - x)f(y).$$

Theorem VI.3.7

Theorem VI.3.7. Let a < b and let G be the vertical strip $\{x + iy \mid a < x < b\}$. Suppose $f : G^- \to \mathbb{C}$ is continuous and f is analytic in G. If we define $M : [a, b] \to \mathbb{R}$ by

$$M(x) = \sup\{|f(x+iy)| \mid -\infty < y < \infty\}$$

and |f(z)| < B for all $z \in G$, then $\log M(x)$ is a convex function.

Proof. By Exercise VI.3.3(c), f is convex if and only if

$$\frac{f(u) - f(x)}{u - x} \leq \frac{f(y) - f(u)}{y - u}, \text{ or}$$

$$(y - u)(f(u) - f(x)) \leq (u - x)(f(y) - f(u)), \text{ or}$$

$$(y - u)f(u) + (u - x)f(u) \leq (y - u)f(x) + (u - x)f(y), \text{ or}$$

$$(y - x)f(u) \leq (y - u)f(x) + (u - x)f(y). \text{ With } f(z) = \log M(x), \text{ we have}$$

$$(y - x) \log M(u) \leq (y - u) \log M(x) + (u - x) \log M(y). \quad (*)$$
Exponentiating both sides gives $M(u)^{y - x} \leq M(x)^{y - u}M(Y)^{u - x}$ where
 $z \leq x < u < y \leq b.$

Theorem VI.3.7

Theorem VI.3.7. Let a < b and let G be the vertical strip $\{x + iy \mid a < x < b\}$. Suppose $f : G^- \to \mathbb{C}$ is continuous and f is analytic in G. If we define $M : [a, b] \to \mathbb{R}$ by

$$M(x) = \sup\{|f(x+iy)| \mid -\infty < y < \infty\}$$

and |f(z)| < B for all $z \in G$, then $\log M(x)$ is a convex function.

Proof. By Exercise VI.3.3(c), *f* is convex if and only if

$$\frac{f(u) - f(x)}{u - x} \le \frac{f(y) - f(u)}{y - u}, \text{ or} \\
(y - u)(f(u) - f(x)) \le (u - x)(f(y) - f(u)), \text{ or} \\
(y - u)f(u) + (u - x)f(u) \le (y - u)f(x) + (u - x)f(y), \text{ or} \\
(y - x)f(u) \le (y - u)f(x) + (u - x)f(y). \text{ With } f(z) = \log M(x), \text{ we have} \\
(y - x)\log M(u) \le (y - u)\log M(x) + (u - x)\log M(y). \quad (*)$$
Exponentiating both sides gives $M(u)^{y - x} \le M(x)^{y - u}M(Y)^{u - x}$ where $z \le x \le u \le y \le b.$

Theorem VI.3.7 (continued 1)

Proof (continued). So to prove Theorem VII.3.7 we must show that $M(u)^{b-a} \leq M(z)^{b-u}M(y)^{u-a}$ for all $u \in (a, b)$. Define $g(z) = M(a)^{(b-z)/(b-a)}M(b)^{(z-a)/(b-a)}$. Then g is entire and nonzero (since $A^z = \exp(z \log A)$, so g is basically an exponential function). Since $|A^z| = A^{\operatorname{Re}(z)}$, then for z = x + iy we have

$$|g(z)| = M(a)^{(b-x)/(b-a)}M(b)^{(x-a)/(b-a)}.$$
 (3.12)

(Here, we assume $M(a) \neq 0$ and $M(b) \neq 0$ without loss of generality, since if either is 0 then either $f \equiv 0$ on the line $\operatorname{Re}(z) = a$ or $f \equiv 0$ on the line $\operatorname{Re}(z) = b$, and in both cases, by the Maximum Modulus Theorem—Third Version [Theorem VI.1.4], $f \equiv 0$ on G.)

Theorem VI.3.7 (continued 1)

Proof (continued). So to prove Theorem VII.3.7 we must show that $M(u)^{b-a} \leq M(z)^{b-u}M(y)^{u-a}$ for all $u \in (a, b)$. Define $g(z) = M(a)^{(b-z)/(b-a)}M(b)^{(z-a)/(b-a)}$. Then g is entire and nonzero (since $A^z = \exp(z \log A)$, so g is basically an exponential function). Since $|A^z| = A^{\operatorname{Re}(z)}$, then for z = x + iy we have

$$|g(z)| = M(a)^{(b-x)/(b-a)}M(b)^{(x-a)/(b-a)}.$$
 (3.12)

(Here, we assume $M(a) \neq 0$ and $M(b) \neq 0$ without loss of generality, since if either is 0 then either $f \equiv 0$ on the line $\operatorname{Re}(z) = a$ or $f \equiv 0$ on the line $\operatorname{Re}(z) = b$, and in both cases, by the Maximum Modulus Theorem—Third Version [Theorem VI.1.4], $f \equiv 0$ on G.) The right hand side of (3.12) is a continuous function of x for $x \in [a, b]$, and since it is an exponential function it is nonzero. So it attains a minimum (and a maximum) and $|g|^{-1}$ is therefore bounded on G^{-} .

Theorem VI.3.7 (continued 1)

Proof (continued). So to prove Theorem VII.3.7 we must show that $M(u)^{b-a} \leq M(z)^{b-u}M(y)^{u-a}$ for all $u \in (a, b)$. Define $g(z) = M(a)^{(b-z)/(b-a)}M(b)^{(z-a)/(b-a)}$. Then g is entire and nonzero (since $A^z = \exp(z \log A)$, so g is basically an exponential function). Since $|A^z| = A^{\operatorname{Re}(z)}$, then for z = x + iy we have

$$|g(z)| = M(a)^{(b-x)/(b-a)}M(b)^{(x-a)/(b-a)}.$$
 (3.12)

(Here, we assume $M(a) \neq 0$ and $M(b) \neq 0$ without loss of generality, since if either is 0 then either $f \equiv 0$ on the line $\operatorname{Re}(z) = a$ or $f \equiv 0$ on the line $\operatorname{Re}(z) = b$, and in both cases, by the Maximum Modulus Theorem—Third Version [Theorem VI.1.4], $f \equiv 0$ on G.) The right hand side of (3.12) is a continuous function of x for $x \in [a, b]$, and since it is an exponential function it is nonzero. So it attains a minimum (and a maximum) and $|g|^{-1}$ is therefore bounded on G^{-} .

Theorem VI.3.7 (continued 2)

Proof (continued). Also, |g(a + iy)| = M(a) an d|g(b + iy)| = M(b), so for $\text{Re}(z) = \text{Re}(x_iy) = x = a$, we have

$$\left|rac{f(z)}{g(z)}
ight|\leq rac{M(a)}{M(a)^{(b-a)/(b-a)}M(b)^{(a-a)/(b-a)}}=1$$

and for $\operatorname{Re}(z) = \operatorname{Re}(x + iy) = x = b$, we have

$$\left| \frac{f(z)}{g(z)} \right| \le \frac{M(b)}{M(a)^{(b-b)/(b-a)}M(a)^{(b-a)/(b-a)}} = 1$$

So for $z \in \partial G^-$, $|f(z)/g(z)| \leq 1$. Now Lemma VI.3.10 holds and implies that $|f(z)/g(z)| \leq 1$ for all $z \in G$, or that $|f(z)| \leq |g(z)|$ for all $z \in G$. With $z \in G$, $z = u_i v$ (so a < u < b), and from (3.12) we have $|f(z)| \leq M(u) \leq M(a)^{(b-u)/(b-a)} M(b)^{(u-a)/(b-a)} = |g(z)|$, or $M(u)^{b-a} \leq M(a)^{b-u} M(b)^{u-a}$ for all $u \in (a, b)$. As stated above, this proves the claim.

- ()

Theorem VI.3.7 (continued 2)

Proof (continued). Also, |g(a + iy)| = M(a) an d|g(b + iy)| = M(b), so for $\text{Re}(z) = \text{Re}(x_iy) = x = a$, we have

$$\left|rac{f(z)}{g(z)}
ight|\leq rac{M(a)}{M(a)^{(b-a)/(b-a)}M(b)^{(a-a)/(b-a)}}=1$$

and for $\operatorname{Re}(z) = \operatorname{Re}(x + iy) = x = b$, we have

$$\left| \frac{f(z)}{g(z)} \right| \le \frac{M(b)}{M(a)^{(b-b)/(b-a)}M(a)^{(b-a)/(b-a)}} = 1.$$

So for $z \in \partial G^-$, $|f(z)/g(z)| \leq 1$. Now Lemma VI.3.10 holds and implies that $|f(z)/g(z)| \leq 1$ for all $z \in G$, or that $|f(z)| \leq |g(z)|$ for all $z \in G$. With $z \in G$, $z = u_i v$ (so a < u < b), and from (3.12) we have $|f(z)| \leq M(u) \leq M(a)^{(b-u)/(b-a)}M(b)^{(u-a)/(b-a)} = |g(z)|$, or $M(u)^{b-a} \leq M(a)^{b-u}M(b)^{u-a}$ for all $u \in (a, b)$. As stated above, this proves the claim.

Corollary VI.3.9

Corollary VI.3.9. Let a < b and let G be the vertical strip $\{x + iy \mid a < x < b\}$. Let $f : G^- \to \mathbb{C}$ be continuous and let f be analytic on G. Then for all $z \in G$ we have

$$|f(z)| < \sup\{|f(z)| \mid z \in \partial G\}.$$

Proof. Since $\log M(x)$ is convex by Theorem VI.3.7, then for $z \in G$ we have

 $M(x) \leq \max\{M(a), M(b)\} = \sup\{|f(z)| \mid z \in \partial G^-\}.$

Corollary VI.3.9. Let a < b and let G be the vertical strip $\{x + iy \mid a < x < b\}$. Let $f : G^- \to \mathbb{C}$ be continuous and let f be analytic on G. Then for all $z \in G$ we have

$$|f(z)| < \sup\{|f(z)| \mid z \in \partial G\}.$$

Proof. Since log M(x) is convex by Theorem VI.3.7, then for $z \in G$ we have

$$M(x) \leq \max\{M(a), M(b)\} = \sup\{|f(z)| \mid z \in \partial G^-\}.$$

Theorem VI.3.13. Hadamard's Three Circles Theorem.

Let $0 < R_1 < R_2 < \infty$ and suppose f is analytic and not identically zero on ann(0; R_1, R_2). If $R_1 < r < R_2$, define

$$M(r) = \max\{|f(re^{i\theta})| \mid 0 \le \theta \le 2\pi\}.$$

Then for $R_1 < r_1 \le r \le r_2 < R_2$ and $r_1 \ne r_2$, we have

$$\log M(r) \leq \frac{\log r_2 - \log r}{\log r_2 - \log r_1} \log M(r_1) + \frac{\log r - \log r_1}{\log r_2 - \log r_1} \log M(r_2).$$

Proof. (This is Exercise VI.3.4.) First, define $g(z) = f(e^z)$. since f is analytic on ann(0; R_1, R_2), then g is analytic on the vertical strip $\{x + iy \mid \log R_1 \leq x \leq \log R_2\}$. Since f is continuous on ann(0; R_1, R_2), then f is bounded on the annulus (the annulus is compact). Therefore, g is bounded on the vertical strip. So g satisfies the hypothesis of Theorem VI.3.7.

Theorem VI.3.13. Hadamard's Three Circles Theorem.

Let $0 < R_1 < R_2 < \infty$ and suppose f is analytic and not identically zero on ann(0; R_1, R_2). If $R_1 < r < R_2$, define

$$M(r) = \max\{|f(re^{i\theta})| \mid 0 \le \theta \le 2\pi\}.$$

Then for $R_1 < r_1 \le r \le r_2 < R_2$ and $r_1 \ne r_2$, we have

$$\log M(r) \leq \frac{\log r_2 - \log r}{\log r_2 - \log r_1} \log M(r_1) + \frac{\log r - \log r_1}{\log r_2 - \log r_1} \log M(r_2).$$

Proof. (This is Exercise VI.3.4.) First, define $g(z) = f(e^z)$. since f is analytic on ann(0; R_1, R_2), then g is analytic on the vertical strip $\{x + iy \mid \log R_1 \leq x \leq \log R_2\}$. Since f is continuous on ann(0; R_1, R_2), then f is bounded on the annulus (the annulus is compact). Therefore, g is bounded on the vertical strip. So g satisfies the hypothesis of Theorem VI.3.7.

Theorem VI.3.13 (continued 1)

Proof (continued). Now for z = x + iy in the vertical strip, we have e^z in the annulus and

$$egin{aligned} M_g(z) &= \sup\{|g(x+iy)| \mid -\infty < y < \infty\} = \sup\{|f(e^{x+iy})| \mid -\infty < y < \infty\} \ &= \max\{|f(e^x e^{i heta})| \mid 0 \le heta \le 2\pi\} = M_f(e^x). \end{aligned}$$

Hence, for $\log R_1 < \log r_1 \le \log r \le \log r_2 < \log R_2$ where $r_1 \ne r_2$, we have by Theorem VI.3.7 applied to g (actually from equation (*) in the proof of Theorem VI.3.7 [see page 136] with $x = \log r_1$, $a = \log r$, and $y = \log r_2$):

$$(\log r_2 - \log r_1) \log M_g(\log r) \le (\log r_2 - \log r) \log M_g(\log r_1)$$

$$+(\log r - \log r_1)\log M_g(\log r_2)$$

or

$$(\log r_2 - \log r_1) \log M_f(r) \le (\log r_2 - \log r) \log M_f(r_1)$$

= $(\log r - \log r_1) \log M_f(r_2), \dots$

Theorem VI.3.13 (continued 1)

Proof (continued). Now for z = x + iy in the vertical strip, we have e^z in the annulus and

$$\begin{split} M_g(z) &= \sup\{|g(x+iy)| \mid -\infty < y < \infty\} = \sup\{|f(e^{x+iy})| \mid -\infty < y < \infty\} \\ &= \max\{|f(e^x e^{i\theta})| \mid 0 \le \theta \le 2\pi\} = M_f(e^x). \end{split}$$

Hence, for $\log R_1 < \log r_1 \le \log r \le \log r_2 < \log R_2$ where $r_1 \ne r_2$, we have by Theorem VI.3.7 applied to g (actually from equation (*) in the proof of Theorem VI.3.7 [see page 136] with $x = \log r_1$, $a = \log r$, and $y = \log r_2$):

$$\begin{aligned} (\log r_2 - \log r_1) \log M_g(\log r) &\leq (\log r_2 - \log r) \log M_g(\log r_1) \\ + (\log r - \log r_1) \log M_g(\log r_2) \end{aligned}$$

or

$$(\log r_2 - \log r_1) \log M_f(r) \le (\log r_2 - \log r) \log M_f(r_1)$$

= $(\log r - \log r_1) \log M_f(r_2), \dots$

Theorem VI.3.13 (continued 2)

Theorem VI.3.13. Hadamard's Three Circles Theorem. Let $0 < R_1 < R_2 < \infty$ and suppose f is analytic and not identically zero on ann $(0; R_1, R_2)$. If $R_1 < r < R_2$, define

$$M(r) = \max\{|f(re^{i\theta})| \mid 0 \le \theta \le 2\pi\}.$$

Then for $R_1 < r_1 \leq r \leq r_2 < R_2$ and $r_1 \neq r_2$, we have

$$\log M(r) \leq \frac{\log r_2 - \log r}{\log r_2 - \log r_1} \log M(r_1) + \frac{\log r - \log r_1}{\log r_2 - \log r_1} \log M(r_2).$$

Proof (continued). or

$$\log M(r) \leq \frac{\log r_2 - \log r}{\log r_2 - \log r_1} \log M(r_1) + \frac{\log r - \log r_1}{\log r_2 - \log r_1} \log M(r_2),$$

where M(x) denotes $M_f(x)$.