## Complex Analysis

## Chapter VI. The Maximum Modulus Theorem

VI.3. Convex Functions and Hadamard's Three Circles Theorem—Proofs of Theorems


## Table of contents

(1) Proposition VI.3.2
(2) Proposition VI.3.4
(3) Lemma VI.3.10
(4) Theorem VI.3.7
(5) Corollary VI.3.9
(6) Theorem VI.3.13. Hadamard's Three Circles Theorem

## Proposition VI.3.2

Proposition VI.3.2. A function $f:[a, b] \rightarrow \mathbb{R}$ is convex if and only if the set

$$
A=\{(x, y) \mid x \in[a, b] \text { and } f(x) \leq y\}
$$

is convex.
Proof. Suppose $f:[a, b] \rightarrow \mathbb{R}$ is convex. Let $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \in A \subset \mathbb{R}^{2}$. If $t \in[0,1]$ then (by the definition of convex function $f$ )

$$
f\left(t x_{2}+(1-t) x_{1}\right) \leq t f\left(x_{2}\right)+(1-t) f\left(x_{1}\right) \leq t y_{2}+(1-t) y_{1}
$$

where $y_{1}=f\left(x_{1}\right)$ and $y_{2}=f\left(x_{2}\right)$.

## Proposition VI.3.2

Proposition VI.3.2. A function $f:[a, b] \rightarrow \mathbb{R}$ is convex if and only if the set

$$
A=\{(x, y) \mid x \in[a, b] \text { and } f(x) \leq y\}
$$

is convex.
Proof. Suppose $f:[a, b] \rightarrow \mathbb{R}$ is convex. Let $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \in A \subset \mathbb{R}^{2}$. If $t \in[0,1]$ then (by the definition of convex function $f$ )

$$
f\left(t x_{2}+(1-t) x_{1}\right) \leq t f\left(x_{2}\right)+(1-t) f\left(x_{1}\right) \leq t y_{2}+(1-t) y_{1}
$$

where $y_{1}=f\left(x_{1}\right)$ and $y_{2}=f\left(x_{2}\right)$. Thus

$$
t\left(x_{2}, y_{2}\right)+(1-t)\left(x_{1}, y_{1}\right)=\left(t_{2} x_{2}+(1-t) x_{1}, t y_{2}+(1-t) y_{1}\right) \in A
$$

for $t \in[0,1]$ by the definition of set $A$. So $A$ is convex.

## Proposition VI.3.2

Proposition VI.3.2. A function $f:[a, b] \rightarrow \mathbb{R}$ is convex if and only if the set

$$
A=\{(x, y) \mid x \in[a, b] \text { and } f(x) \leq y\}
$$

is convex.
Proof. Suppose $f:[a, b] \rightarrow \mathbb{R}$ is convex. Let $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \in A \subset \mathbb{R}^{2}$. If $t \in[0,1]$ then (by the definition of convex function $f$ )

$$
f\left(t x_{2}+(1-t) x_{1}\right) \leq t f\left(x_{2}\right)+(1-t) f\left(x_{1}\right) \leq t y_{2}+(1-t) y_{1}
$$

where $y_{1}=f\left(x_{1}\right)$ and $y_{2}=f\left(x_{2}\right)$. Thus

$$
t\left(x_{2}, y_{2}\right)+(1-t)\left(x_{1}, y_{1}\right)=\left(t_{2} x_{2}+(1-t) x_{1}, t y_{2}+(1-t) y_{1}\right) \in A
$$

for $t \in[0,1]$ by the definition of set $A$. So $A$ is convex.

## Proposition VI.3.2 (continued)

Proposition VI.3.2. A function $f:[a, b] \rightarrow \mathbb{R}$ is convex if and only if the set

$$
A=\{(x, y) \mid x \in[a, b] \text { and } f(x) \leq y\}
$$

is convex.

Proof (continued). Suppose $A$ is a convex set and let $x_{1}, x_{2} \in[1, b]$. Then

$$
\left(t x_{2}+(1-t) x_{1}, t f\left(x_{2}\right)+(1-t) f\left(x_{2}\right)\right) \in A
$$

for all $t \in[0,1]$. But the definition of set $A$ implies that

$$
f\left(t x_{2}+(1-t) x_{1}\right) \leq t f\left(x_{2}\right)+(1-t) f\left(x_{1}\right) .
$$

So $f$ satisfies the definition of convexity, and hence $f$ is convex.

## Proposition VI.3.2 (continued)

Proposition VI.3.2. A function $f:[a, b] \rightarrow \mathbb{R}$ is convex if and only if the set

$$
A=\{(x, y) \mid x \in[a, b] \text { and } f(x) \leq y\}
$$

is convex.

Proof (continued). Suppose $A$ is a convex set and let $x_{1}, x_{2} \in[1, b]$. Then

$$
\left(t x_{2}+(1-t) x_{1}, t f\left(x_{2}\right)+(1-t) f\left(x_{2}\right)\right) \in A
$$

for all $t \in[0,1]$. But the definition of set $A$ implies that

$$
f\left(t x_{2}+(1-t) x_{1}\right) \leq t f\left(x_{2}\right)+(1-t) f\left(x_{1}\right) .
$$

So $f$ satisfies the definition of convexity, and hence $f$ is convex.

## Proposition VI.3.4

Proposition VI.3.4. A differentiable function $f$ on $[a, b]$ is convex if and only if $f^{\prime}$ is increasing.

Proof. Suppose $f$ is convex. Let $x, y \in[a, b]$ with $x<y$ and suppose $t \in[0,1]$.

## Proposition VI.3.4

Proposition VI.3.4. A differentiable function $f$ on $[a, b]$ is convex if and only if $f^{\prime}$ is increasing.

Proof. Suppose $f$ is convex. Let $x, y \in[a, b]$ with $x<y$ and suppose $t \in[0,1]$. Since $0<t(x-y)=(1-t) x+t y-x$, the convexity of $f$ implies that $f((1-t) x+t y) \leq(1-t) f(x)+t f(y)$, and

or


## Proposition VI.3.4

Proposition VI.3.4. A differentiable function $f$ on $[a, b]$ is convex if and only if $f^{\prime}$ is increasing.

Proof. Suppose $f$ is convex. Let $x, y \in[a, b]$ with $x<y$ and suppose $t \in[0,1]$. Since $0<t(x-y)=(1-t) x+t y-x$, the convexity of $f$ implies that $f((1-t) x+t y) \leq(1-t) f(x)+t f(y)$, and

$$
\frac{f((1-t) x+t y)}{t(y-x)} \leq \frac{(1-t) f(x)+t f(y)}{t(y-x)}=\frac{f(x)}{t(y-x)}+\frac{t(f(y)-f(x))}{t(y-x)}
$$

or

$$
\frac{f((1-t) x+t y)-f(x)}{t(y-x)} \leq \frac{f(y)-f(x)}{y-x}
$$

or

$$
\frac{f(x+t(y-x))-f(x)}{t(y-x)} \leq \frac{f(y)-f(x)}{y-x}
$$

Now as $t \rightarrow 0, x+t(y-x) \rightarrow x$ and $t(y-x) \rightarrow 0$ (and these last two limits occur at the same rate), so we have $f^{\prime}(x) \leq$

## Proposition VI.3.4

Proposition VI.3.4. A differentiable function $f$ on $[a, b]$ is convex if and only if $f^{\prime}$ is increasing.

Proof. Suppose $f$ is convex. Let $x, y \in[a, b]$ with $x<y$ and suppose $t \in[0,1]$. Since $0<t(x-y)=(1-t) x+t y-x$, the convexity of $f$ implies that $f((1-t) x+t y) \leq(1-t) f(x)+t f(y)$, and

$$
\frac{f((1-t) x+t y)}{t(y-x)} \leq \frac{(1-t) f(x)+t f(y)}{t(y-x)}=\frac{f(x)}{t(y-x)}+\frac{t(f(y)-f(x))}{t(y-x)}
$$

or

$$
\frac{f((1-t) x+t y)-f(x)}{t(y-x)} \leq \frac{f(y)-f(x)}{y-x}
$$

or

$$
\frac{f(x+t(y-x))-f(x)}{t(y-x)} \leq \frac{f(y)-f(x)}{y-x}
$$

Now as $t \rightarrow 0, x+t(y-x) \rightarrow x$ and $t(y-x) \rightarrow 0$ (and these last two limits occur at the same rate), so we have $f^{\prime}(x) \leq \frac{f(y)-f(x)}{y-x}$.

## Proposition VI.3.4 (continued 1)

Proof (continued). Also, $0>(1-t)(x-y)=(1-t) x+t y-y$, so $f((1-t) x+t y) \leq(1-t) f(x)+t f(y)$ and

$$
\begin{aligned}
& \frac{f((1-t) x+t y)}{(1-t)(x-y)} \geq \frac{(1-t) f(x)+t f(y)}{(1-t)(x-y)} \\
& =\frac{(1-t) f(x)}{(1-t)(x-y)}+\frac{t f(y)-f(y)+f(y)}{(1-t)(x-y)}
\end{aligned}
$$

or

$$
\frac{f((1-t) x+t y)-f(y)}{(1-t)(x-y)} \geq \frac{f(x)-f(y)}{x-y}
$$

or

$$
\frac{f((1-t)(x-y)+y)-f(y)}{(1-t)(x-y)} \geq \frac{f(x)-f(y)}{x-y} .
$$

Now as $t \rightarrow 1,(1-t)(x-y)+y \rightarrow y$, and $(1-t)(x-y) \rightarrow 0$ (and these last two limits occur at the same rate), so we have $f^{\prime}(y) \geq$

## Proposition VI.3.4 (continued 1)

Proof (continued). Also, $0>(1-t)(x-y)=(1-t) x+t y-y$, so $f((1-t) x+t y) \leq(1-t) f(x)+t f(y)$ and

$$
\begin{aligned}
& \quad \frac{f((1-t) x+t y)}{(1-t)(x-y)} \geq \frac{(1-t) f(x)+t f(y)}{(1-t)(x-y)} \\
& =\frac{(1-t) f(x)}{(1-t)(x-y)}+\frac{t f(y)-f(y)+f(y)}{(1-t)(x-y)}
\end{aligned}
$$

or

$$
\frac{f((1-t) x+t y)-f(y)}{(1-t)(x-y)} \geq \frac{f(x)-f(y)}{x-y}
$$

or

$$
\frac{f((1-t)(x-y)+y)-f(y)}{(1-t)(x-y)} \geq \frac{f(x)-f(y)}{x-y} .
$$

Now as $t \rightarrow 1,(1-t)(x-y)+y \rightarrow y$, and $(1-t)(x-y) \rightarrow 0$ (and these last two limits occur at the same rate), so we have $f^{\prime}(y) \geq \frac{f(x)-f(y)}{x-y}$.

## Proposition VI.3.4 (continued 2)

Proof (continued). Combining the above information, $f^{\prime}(x) \leq \frac{f(x)-f(y)}{x-y} \leq f(y)$, and $f^{\prime}$ is increasing on $[a, b]$.

Now suppose that $f^{\prime}$ is increasing and that $x<u<y$. By the Mean Value Theorem, there are $r, s$ where $x<r<u<s<y$ where $f^{\prime}(r)=\frac{f(u)-f(x)}{u-x}$ and $f^{\prime}(s)=\frac{f(y)-f(u)}{y-u}$. Since $f^{\prime}$ is increasing, then $f^{\prime}(r) \leq f^{\prime}(s)$ and so $\frac{f(u)-f(x)}{u-x} \leq \frac{f(y)-f(u)}{y-u}$ and this holds for any $u$ where $x<u<y$.

## Proposition VI.3.4 (continued 2)

Proof (continued). Combining the above information, $f^{\prime}(x) \leq \frac{f(x)-f(y)}{x-y} \leq f(y)$, and $f^{\prime}$ is increasing on $[a, b]$. Now suppose that $f^{\prime}$ is increasing and that $x<u<y$. By the Mean Value Theorem, there are $r, s$ where $x<r<u<s<y$ where $f^{\prime}(r)=\frac{f(u)-f(x)}{u-x}$ and $f^{\prime}(s)=\frac{f(y)-f(u)}{y-u}$. Since $f^{\prime}$ is increasing, then $f^{\prime}(r) \leq f^{\prime}(s)$ and so $\frac{f(u)-f(x)}{u-x} \leq \frac{f(y)-f(u)}{y-u}$ and this holds for any $u$ where $\boldsymbol{x}<\boldsymbol{u}<\boldsymbol{y}$. In particular, with $u=(1-t) x+$ ty where $t \in[0,1]$,


## Proposition VI.3.4 (continued 2)

Proof (continued). Combining the above information, $f^{\prime}(x) \leq \frac{f(x)-f(y)}{x-y} \leq f(y)$, and $f^{\prime}$ is increasing on $[a, b]$.

Now suppose that $f^{\prime}$ is increasing and that $x<u<y$. By the Mean Value Theorem, there are $r, s$ where $x<r<u<s<y$ where $f^{\prime}(r)=\frac{f(u)-f(x)}{u-x}$ and $f^{\prime}(s)=\frac{f(y)-f(u)}{y-u}$. Since $f^{\prime}$ is increasing, then $f^{\prime}(r) \leq f^{\prime}(s)$ and so $\frac{f(u)-f(x)}{u-x} \leq \frac{f(y)-f(u)}{y-u}$ and this holds for any $u$ where $x<u<y$. In particular, with $u=(1-t) x+t y$ where $t \in[0,1]$, then $\frac{f(u)-f(x)}{t(y-x)} \leq \frac{f(y)-f(u)}{(t-1)(y-x)}$, or $(1-t)(f(u)-f(x)) \leq t(f(y)-f(u))$. So $(1-t)\{f((1-t) x+t y)-f(x)\} \leq t\{f(y)-f((1-t) x+t y)\}$ or $f((1-t) x+t y)-f(x)+t f(x) \leq t f(y)$ or $f((1-t) x+t y) \leq(1-t) f(x)+t f(y)$. So $f$ is convex.

## Lemma VI.3.10

Lemma VI.3.10. Let $f$ and $G$ be as Theorem 3.7 and further suppose that $|f(z)| \leq 1$ for $z \in \partial G$. Then $|f(z)| \leq 1$ for $z \in G$.

Proof. Let $\varepsilon>0$. Define $g_{\varepsilon}(z)=(1+\varepsilon(z-a))^{-1}$ for $a \in G^{-}$. The for $z=x+i y \in G^{-}$,
$\left|g_{\varepsilon}(z)\right|=\frac{1}{|a+\varepsilon(z-a)|} \leq \frac{1}{|\operatorname{Re}(1+\varepsilon(z-a))|}=\frac{1}{|\operatorname{Re}(a+\varepsilon(x+i y-a))|}$
So for $z \in \partial G$ we have that $\left|f(z) g_{\varepsilon}(z)\right| \leq(1)(1)=1$.

## Lemma VI.3.10

Lemma VI.3.10. Let $f$ and $G$ be as Theorem 3.7 and further suppose that $|f(z)| \leq 1$ for $z \in \partial G$. Then $|f(z)| \leq 1$ for $z \in G$.

Proof. Let $\varepsilon>0$. Define $g_{\varepsilon}(z)=(1+\varepsilon(z-a))^{-1}$ for $a \in G^{-}$. The for $z=x+i y \in G^{-}$,

$$
\left|g_{\varepsilon}(z)\right|=\frac{1}{|a+\varepsilon(z-a)|} \leq \frac{1}{|\operatorname{Re}(1+\varepsilon(z-a))|}=\frac{1}{|\operatorname{Re}(a+\varepsilon(x+i y-a))|}=
$$

So for $z \in \partial G$ we have that $\left|f(z) g_{\varepsilon}(z)\right| \leq(1)(1)=1$. Since $f$ is bounded by $B$ in $G$ (by the Theorem VI.3.7 hypothesis), we have

$$
\begin{gather*}
\left|f(z) g_{\varepsilon}(z)\right| \leq B|1+\varepsilon(z-a)|^{-1} \leq B \mid \operatorname{lm}\left(1+\left.\varepsilon(z-a)\right|^{-1}\right. \\
=B|\operatorname{Im}(\varepsilon z)|^{-1}=B|\varepsilon \operatorname{lm}(z)|^{-1} \tag{3.11}
\end{gather*}
$$

## Lemma VI.3.10

Lemma VI.3.10. Let $f$ and $G$ be as Theorem 3.7 and further suppose that $|f(z)| \leq 1$ for $z \in \partial G$. Then $|f(z)| \leq 1$ for $z \in G$.

Proof. Let $\varepsilon>0$. Define $g_{\varepsilon}(z)=(1+\varepsilon(z-a))^{-1}$ for $a \in G^{-}$. The for $z=x+i y \in G^{-}$,

$$
\left|g_{\varepsilon}(z)\right|=\frac{1}{|a+\varepsilon(z-a)|} \leq \frac{1}{|\operatorname{Re}(1+\varepsilon(z-a))|}=\frac{1}{|\operatorname{Re}(a+\varepsilon(x+i y-a))|}=
$$

So for $z \in \partial G$ we have that $\left|f(z) g_{\varepsilon}(z)\right| \leq(1)(1)=1$. Since $f$ is bounded by $B$ in $G$ (by the Theorem VI.3.7 hypothesis), we have

$$
\begin{gather*}
\left|f(z) g_{\varepsilon}(z)\right| \leq B|1+\varepsilon(z-a)|^{-1} \leq B \mid \operatorname{lm}\left(1+\left.\varepsilon(z-a)\right|^{-1}\right. \\
=B|\operatorname{lm}(\varepsilon z)|^{-1}=B|\varepsilon \operatorname{lm}(z)|^{-1} \tag{3.11}
\end{gather*}
$$

So if $R=\{x+i y|z \leq x \leq b,|y|<B / \varepsilon\}$, then inequality (3.11) gives for $z \in \partial R$ :

$$
\left|f(z) g_{\varepsilon}(z)\right| \leq B|\varepsilon \operatorname{lm}(z)|^{-1}=\frac{B}{\varepsilon|\operatorname{lm}(z)|}=\frac{B}{\varepsilon(B / \varepsilon)}=1 .
$$

## Lemma VI.3.10

Lemma VI.3.10. Let $f$ and $G$ be as Theorem 3.7 and further suppose that $|f(z)| \leq 1$ for $z \in \partial G$. Then $|f(z)| \leq 1$ for $z \in G$.

Proof. Let $\varepsilon>0$. Define $g_{\varepsilon}(z)=(1+\varepsilon(z-a))^{-1}$ for $a \in G^{-}$. The for $z=x+i y \in G^{-}$,

$$
\left|g_{\varepsilon}(z)\right|=\frac{1}{|a+\varepsilon(z-a)|} \leq \frac{1}{|\operatorname{Re}(1+\varepsilon(z-a))|}=\frac{1}{|\operatorname{Re}(a+\varepsilon(x+i y-a))|}=
$$

So for $z \in \partial G$ we have that $\left|f(z) g_{\varepsilon}(z)\right| \leq(1)(1)=1$. Since $f$ is bounded by $B$ in $G$ (by the Theorem VI.3.7 hypothesis), we have

$$
\begin{gather*}
\left|f(z) g_{\varepsilon}(z)\right| \leq B|1+\varepsilon(z-a)|^{-1} \leq B \mid \operatorname{lm}\left(1+\left.\varepsilon(z-a)\right|^{-1}\right. \\
=B|\operatorname{lm}(\varepsilon z)|^{-1}=B|\varepsilon \operatorname{lm}(z)|^{-1} \tag{3.11}
\end{gather*}
$$

So if $R=\{x+i y|z \leq x \leq b,|y|<B / \varepsilon\}$, then inequality (3.11) gives for $z \in \partial R$ :

$$
\left|f(z) g_{\varepsilon}(z)\right| \leq B|\varepsilon \operatorname{lm}(z)|^{-1}=\frac{B}{\varepsilon|\operatorname{lm}(z)|}=\frac{B}{\varepsilon(B / \varepsilon)}=1 .
$$

## Lemma VI.3.10 (continued)

Lemma VI.3.10. Let $f$ and $G$ be as Theorem 3.7 and further suppose that $|f(z)| \leq 1$ for $z \in \partial G$. Then $|f(z)| \leq 1$ for $z \in G$.

Proof (continued). Then by the Maximum Modulus Theorem—Second Version (Theorem VI.1.2), $\left|f(z) g_{\varepsilon}(z)\right| \leq 1$ for all $z \in R$.

## Lemma VI.3.10 (continued)

Lemma VI.3.10. Let $f$ and $G$ be as Theorem 3.7 and further suppose that $|f(z)| \leq 1$ for $z \in \partial G$. Then $|f(z)| \leq 1$ for $z \in G$.

Proof (continued). Then by the Maximum Modulus Theorem—Second Version (Theorem VI.1.2), $\left|f(z) g_{\varepsilon}(z)\right| \leq 1$ for all $z \in R$. Next, for $z \in G$ with $|\operatorname{lm}(z)|>B / \varepsilon$, inequality (3.11) implies that

$$
\left|f(z) g_{\varepsilon}(z)\right| \leq \frac{B}{\varepsilon|\operatorname{Im}(z)|}<\frac{B}{\varepsilon(B / \varepsilon)}=1 .
$$

So for all $z \in G,\left|f(z) g_{\varepsilon}(z)\right| \leq 1$ and $|f(z)| \leq 1 /\left|g_{\varepsilon}(z)\right| \leq|1+\varepsilon(z-a)|$. Since $\varepsilon>0$ is arbitrary, we have $|f(z)| \leq 1$ for all $z \in G$.

## Lemma VI.3.10 (continued)

Lemma VI.3.10. Let $f$ and $G$ be as Theorem 3.7 and further suppose that $|f(z)| \leq 1$ for $z \in \partial G$. Then $|f(z)| \leq 1$ for $z \in G$.

Proof (continued). Then by the Maximum Modulus Theorem—Second Version (Theorem VI.1.2), $\left|f(z) g_{\varepsilon}(z)\right| \leq 1$ for all $z \in R$. Next, for $z \in G$ with $|\operatorname{lm}(z)|>B / \varepsilon$, inequality (3.11) implies that

$$
\left|f(z) g_{\varepsilon}(z)\right| \leq \frac{B}{\varepsilon|\operatorname{Im}(z)|}<\frac{B}{\varepsilon(B / \varepsilon)}=1 .
$$

So for all $z \in G,\left|f(z) g_{\varepsilon}(z)\right| \leq 1$ and $|f(z)| \leq 1 /\left|g_{\varepsilon}(z)\right| \leq|1+\varepsilon(z-a)|$. Since $\varepsilon>0$ is arbitrary, we have $|f(z)| \leq 1$ for all $z \in G$.

## Theorem VI.3.7

Theorem VI.3.7. Let $a<b$ and let $G$ be the vertical strip $\{x+i y \mid a<x<b\}$. Suppose $f: G^{-} \rightarrow \mathbb{C}$ is continuous and $f$ is analytic in $G$. If we define $M:[a, b] \rightarrow \mathbb{R}$ by

$$
M(x)=\sup \{|f(x+i y)| \mid-\infty<y<\infty\}
$$

and $|f(z)|<B$ for all $z \in G$, then $\log M(x)$ is a convex function.
Proof. By Exercise VI.3.3(c), $f$ is convex if and only if
$\underline{f(u)-f(x)} \leq \frac{f(y)-f(u)}{y-u}$
$u-x=y-u$, or
$(y-u)(f(u)-f(x)) \leq(u-x)(f(y)-f(u))$, or
$(y-u) f(u)+(u-x) f(u) \leq(y-u) f(x)+(u-x) f(y)$, or
$(y-x) f(u) \leq(y-u) f(x)+(u-x) f(y)$.

## Theorem VI.3.7

Theorem VI.3.7. Let $a<b$ and let $G$ be the vertical strip $\{x+i y \mid a<x<b\}$. Suppose $f: G^{-} \rightarrow \mathbb{C}$ is continuous and $f$ is analytic in $G$. If we define $M:[a, b] \rightarrow \mathbb{R}$ by

$$
M(x)=\sup \{|f(x+i y)| \mid-\infty<y<\infty\}
$$

and $|f(z)|<B$ for all $z \in G$, then $\log M(x)$ is a convex function.
Proof. By Exercise VI.3.3(c), $f$ is convex if and only if $\frac{f(u)-f(x)}{u-x} \leq \frac{f(y)-f(u)}{y-u}$, or
$(y-u)(f(u)-f(x)) \leq(u-x)(f(y)-f(u))$, or
$(y-u) f(u)+(u-x) f(u) \leq(y-u) f(x)+(u-x) f(y)$, or
$(y-x) f(u) \leq(y-u) f(x)+(u-x) f(y)$. With $f(z)=\log M(x)$, we have
$(y-x) \log M(u) \leq(y-u) \log M(x)+(u-x) \log M(y)$.
Exponentiating both sides gives $M(u)^{y-x} \leq M(x)^{y-u} M(Y)^{u-x}$ where

## Theorem VI.3.7

Theorem VI.3.7. Let $a<b$ and let $G$ be the vertical strip $\{x+i y \mid a<x<b\}$. Suppose $f: G^{-} \rightarrow \mathbb{C}$ is continuous and $f$ is analytic in $G$. If we define $M:[a, b] \rightarrow \mathbb{R}$ by

$$
M(x)=\sup \{|f(x+i y)| \mid-\infty<y<\infty\}
$$

and $|f(z)|<B$ for all $z \in G$, then $\log M(x)$ is a convex function.
Proof. By Exercise VI.3.3(c), $f$ is convex if and only if
$\frac{f(u)-f(x)}{u-x} \leq \frac{f(y)-f(u)}{y-u}$, or
$(y-u)(f(u)-f(x)) \leq(u-x)(f(y)-f(u))$, or
$(y-u) f(u)+(u-x) f(u) \leq(y-u) f(x)+(u-x) f(y)$, or
$(y-x) f(u) \leq(y-u) f(x)+(u-x) f(y)$. With $f(z)=\log M(x)$, we have

$$
\begin{equation*}
(y-x) \log M(u) \leq(y-u) \log M(x)+(u-x) \log M(y) . \tag{*}
\end{equation*}
$$

Exponentiating both sides gives $M(u)^{y-x} \leq M(x)^{y-u} M(Y)^{u-x}$ where $z \leq x<u<y \leq b$.

## Theorem VI.3.7 (continued 1)

Proof (continued). So to prove Theorem VII. 3.7 we must show that $M(u)^{b-a} \leq M(z)^{b-u} M(y)^{u-a}$ for all $u \in(a, b)$. Define $g(z)=M(a)^{(b-z) /(b-a)} M(b)^{(z-a) /(b-a)}$. Then $g$ is entire and nonzero (since $A^{z}=\exp (z \log A)$, so $g$ is basically an exponential function). Since $\left|A^{z}\right|=A^{\operatorname{Re}(z)}$, then for $z=x+i y$ we have

$$
\begin{equation*}
|g(z)|=M(a)^{(b-x) /(b-a)} M(b)^{(x-a) /(b-a)} . \tag{3.12}
\end{equation*}
$$

(Here, we assume $M(a) \neq 0$ and $M(b) \neq 0$ without loss of generality, since if either is 0 then either $f \equiv 0$ on the line $\operatorname{Re}(z)=a$ or $f \equiv 0$ on the line $\operatorname{Re}(z)=b$, and in both cases, by the Maximum Modulus Theorem-Third Version [Theorem VI.1.4], $f \equiv 0$ on G.)

## Theorem VI.3.7 (continued 1)

Proof (continued). So to prove Theorem VII. 3.7 we must show that $M(u)^{b-a} \leq M(z)^{b-u} M(y)^{u-a}$ for all $u \in(a, b)$. Define $g(z)=M(a)^{(b-z) /(b-a)} M(b)^{(z-a) /(b-a)}$. Then $g$ is entire and nonzero (since $A^{z}=\exp (z \log A)$, so $g$ is basically an exponential function). Since $\left|A^{z}\right|=A^{\operatorname{Re}(z)}$, then for $z=x+i y$ we have

$$
\begin{equation*}
|g(z)|=M(a)^{(b-x) /(b-a)} M(b)^{(x-a) /(b-a)} . \tag{3.12}
\end{equation*}
$$

(Here, we assume $M(a) \neq 0$ and $M(b) \neq 0$ without loss of generality, since if either is 0 then either $f \equiv 0$ on the line $\operatorname{Re}(z)=a$ or $f \equiv 0$ on the line $\operatorname{Re}(z)=b$, and in both cases, by the Maximum Modulus Theorem-Third Version [Theorem VI.1.4], $f \equiv 0$ on G.) The right hand side of (3.12) is a continuous function of $x$ for $x \in[a, b]$, and since it is an exponential function it is nonzero. So it attains a minimum (and a maximum) and $|g|^{-1}$ is therefore bounded on $G^{-}$

## Theorem VI.3.7 (continued 1)

Proof (continued). So to prove Theorem VII. 3.7 we must show that $M(u)^{b-a} \leq M(z)^{b-u} M(y)^{u-a}$ for all $u \in(a, b)$. Define $g(z)=M(a)^{(b-z) /(b-a)} M(b)^{(z-a) /(b-a)}$. Then $g$ is entire and nonzero (since $A^{z}=\exp (z \log A)$, so $g$ is basically an exponential function). Since $\left|A^{z}\right|=A^{\operatorname{Re}(z)}$, then for $z=x+i y$ we have

$$
\begin{equation*}
|g(z)|=M(a)^{(b-x) /(b-a)} M(b)^{(x-a) /(b-a)} . \tag{3.12}
\end{equation*}
$$

(Here, we assume $M(a) \neq 0$ and $M(b) \neq 0$ without loss of generality, since if either is 0 then either $f \equiv 0$ on the line $\operatorname{Re}(z)=a$ or $f \equiv 0$ on the line $\operatorname{Re}(z)=b$, and in both cases, by the Maximum Modulus Theorem-Third Version [Theorem VI.1.4], $f \equiv 0$ on G.) The right hand side of (3.12) is a continuous function of $x$ for $x \in[a, b]$, and since it is an exponential function it is nonzero. So it attains a minimum (and a maximum) and $|g|^{-1}$ is therefore bounded on $G^{-}$.

## Theorem VI.3.7 (continued 2)

Proof (continued). Also, $|g(a+i y)|=M(a)$ an $\mathrm{d}|g(b+i y)|=M(b)$, so for $\operatorname{Re}(z)=\operatorname{Re}\left(x_{i} y\right)=x=a$, we have

$$
\left|\frac{f(z)}{g(z)}\right| \leq \frac{M(a)}{M(a)^{(b-a) /(b-a)} M(b)^{(a-a) /(b-a)}}=1
$$

and for $\operatorname{Re}(z)=\operatorname{Re}(x+i y)=x=b$, we have

$$
\left|\frac{f(z)}{g(z)}\right| \leq \frac{M(b)}{M(a)^{(b-b) /(b-a)} M(a)^{(b-a) /(b-a)}}=1 .
$$

So for $z \in \partial G^{-},|f(z) / g(z)| \leq 1$. Now Lemma VI.3.10 holds and implies that $|f(z) / g(z)| \leq 1$ for all $z \in G$, or that $|f(z)| \leq|g(z)|$ for all $z \in G$. With $z \in G, z=u_{i} v$ (so $a<u<b$ ), and from (3.12) we have $|f(z)| \leq M(u) \leq M(a)^{(b-u) /(b-a)} M(b)^{(u-a) /(b-a)}=|g(z)|$, or $M(u)^{b-a} \leq M(a)^{b-u} M(b)^{u-a}$ for all $u \in(a, b)$. As stated above, this proves the claim.

## Theorem VI.3.7 (continued 2)

Proof (continued). Also, $|g(a+i y)|=M(a)$ an $\mathrm{d}|g(b+i y)|=M(b)$, so for $\operatorname{Re}(z)=\operatorname{Re}\left(x_{i} y\right)=x=a$, we have

$$
\left|\frac{f(z)}{g(z)}\right| \leq \frac{M(a)}{M(a)^{(b-a) /(b-a)} M(b)^{(a-a) /(b-a)}}=1
$$

and for $\operatorname{Re}(z)=\operatorname{Re}(x+i y)=x=b$, we have

$$
\left|\frac{f(z)}{g(z)}\right| \leq \frac{M(b)}{M(a)^{(b-b) /(b-a)} M(a)^{(b-a) /(b-a)}}=1 .
$$

So for $z \in \partial G^{-},|f(z) / g(z)| \leq 1$. Now Lemma VI.3.10 holds and implies that $|f(z) / g(z)| \leq 1$ for all $z \in G$, or that $|f(z)| \leq|g(z)|$ for all $z \in G$.
With $z \in G, z=u_{i} v$ (so $a<u<b$ ), and from (3.12) we have $|f(z)| \leq M(u) \leq M(a)^{(b-u) /(b-a)} M(b)^{(u-a) /(b-a)}=|g(z)|$, or $M(u)^{b-a} \leq M(a)^{b-u} M(b)^{u-a}$ for all $u \in(a, b)$. As stated above, this proves the claim.

## Corollary VI.3.9

Corollary VI.3.9. Let $a<b$ and let $G$ be the vertical strip $\{x+i y \mid a<x<b\}$. Let $f: G^{-} \rightarrow \mathbb{C}$ be continuous and let $f$ be analytic on $G$. Then for all $z \in G$ we have

$$
|f(z)|<\sup \{|f(z)| \mid z \in \partial G\} .
$$

Proof. Since $\log M(x)$ is convex by Theorem VI.3.7, then for $z \in G$ we have

$$
M(x) \leq \max \{M(a), M(b)\}=\sup \left\{|f(z)| \mid z \in \partial G^{-}\right\} .
$$

## Corollary VI.3.9

Corollary VI.3.9. Let $a<b$ and let $G$ be the vertical strip $\{x+i y \mid a<x<b\}$. Let $f: G^{-} \rightarrow \mathbb{C}$ be continuous and let $f$ be analytic on $G$. Then for all $z \in G$ we have

$$
|f(z)|<\sup \{|f(z)| \mid z \in \partial G\} .
$$

Proof. Since $\log M(x)$ is convex by Theorem VI.3.7, then for $z \in G$ we have

$$
M(x) \leq \max \{M(a), M(b)\}=\sup \left\{|f(z)| \mid z \in \partial G^{-}\right\} .
$$

## Theorem VI.3.13

Theorem VI.3.13. Hadamard's Three Circles Theorem.
Let $0<R_{1}<R_{2}<\infty$ and suppose $f$ is analytic and not identically zero on ann( $0 ; R_{1}, R_{2}$ ). If $R_{1}<r<R_{2}$, define

$$
M(r)=\max \left\{\left|f\left(r e^{i \theta}\right)\right| \mid 0 \leq \theta \leq 2 \pi\right\} .
$$

Then for $R_{1}<r_{1} \leq r \leq r_{2}<R_{2}$ and $r_{1} \neq r_{2}$, we have

$$
\log M(r) \leq \frac{\log r_{2}-\log r}{\log r_{2}-\log r_{1}} \log M\left(r_{1}\right)+\frac{\log r-\log r_{1}}{\log r_{2}-\log r_{1}} \log M\left(r_{2}\right) .
$$

Proof. (This is Exercise VI.3.4.) First, define $g(z)=f\left(e^{z}\right)$. since $f$ is analytic on ann $\left(0 ; R_{1}, R_{2}\right)$, then $g$ is analytic on the vertical strip $\left\{x+\right.$ iy $\left.\mid \log R_{1} \leq x \leq \log R_{2}\right\}$. Since $f$ is continuous on ann $\left(0 ; R_{1}, R_{2}\right)$, then $f$ is bounded on the annulus (the annulus is compact). Therefore, $g$ is bounded on the vertical strip. So $g$ satisfies the hypothesis of Theorem VI.3.7.

## Theorem VI.3.13

## Theorem VI.3.13. Hadamard's Three Circles Theorem.

Let $0<R_{1}<R_{2}<\infty$ and suppose $f$ is analytic and not identically zero on ann( $0 ; R_{1}, R_{2}$ ). If $R_{1}<r<R_{2}$, define

$$
M(r)=\max \left\{\left|f\left(r e^{i \theta}\right)\right| \mid 0 \leq \theta \leq 2 \pi\right\} .
$$

Then for $R_{1}<r_{1} \leq r \leq r_{2}<R_{2}$ and $r_{1} \neq r_{2}$, we have

$$
\log M(r) \leq \frac{\log r_{2}-\log r}{\log r_{2}-\log r_{1}} \log M\left(r_{1}\right)+\frac{\log r-\log r_{1}}{\log r_{2}-\log r_{1}} \log M\left(r_{2}\right) .
$$

Proof. (This is Exercise VI.3.4.) First, define $g(z)=f\left(e^{z}\right)$. since $f$ is analytic on ann $\left(0 ; R_{1}, R_{2}\right)$, then $g$ is analytic on the vertical strip $\left\{x+i y \mid \log R_{1} \leq x \leq \log R_{2}\right\}$. Since $f$ is continuous on ann $\left(0 ; R_{1}, R_{2}\right)$, then $f$ is bounded on the annulus (the annulus is compact). Therefore, $g$ is bounded on the vertical strip. So $g$ satisfies the hypothesis of Theorem VI.3.7.

## Theorem VI.3.13 (continued 1)

Proof (continued). Now for $z=x+i y$ in the vertical strip, we have $e^{z}$ in the annulus and

$$
\begin{gathered}
M_{g}(z)=\sup \{|g(x+i y)| \mid-\infty<y<\infty\}=\sup \left\{\left|f\left(e^{x+i y}\right)\right| \mid-\infty<y<\infty\right\} \\
=\max \left\{\left|f\left(e^{x} e^{i \theta}\right)\right| \mid 0 \leq \theta \leq 2 \pi\right\}=M_{f}\left(e^{x}\right)
\end{gathered}
$$

Hence, for $\log R_{1}<\log r_{1} \leq \log r \leq \log r_{2}<\log R_{2}$ where $r_{1} \neq r_{2}$, we have by Theorem VI.3.7 applied to $g$ (actually from equation (*) in the proof of Theorem VI.3.7 [see page 136] with $x=\log r_{1}, a=\log r$, and $\left.y=\log r_{2}\right)$ :

$$
\begin{gathered}
\left(\log r_{2}-\log r_{1}\right) \log M_{g}(\log r) \leq\left(\log r_{2}-\log r\right) \log M_{g}\left(\log r_{1}\right) \\
+\left(\log r-\log r_{1}\right) \log M_{g}\left(\log r_{2}\right)
\end{gathered}
$$

or

$$
\begin{gathered}
\left(\log r_{2}-\log r_{1}\right) \log M_{f}(r) \leq\left(\log r_{2}-\log r\right) \log M_{f}\left(r_{1}\right) \\
=\left(\log r-\log r_{1}\right) \log M_{f}\left(r_{2}\right), \ldots
\end{gathered}
$$

## Theorem VI.3.13 (continued 1)

Proof (continued). Now for $z=x+i y$ in the vertical strip, we have $e^{z}$ in the annulus and

$$
\begin{gathered}
M_{g}(z)=\sup \{|g(x+i y)| \mid-\infty<y<\infty\}=\sup \left\{\left|f\left(e^{x+i y}\right)\right| \mid-\infty<y<\infty\right\} \\
=\max \left\{\left|f\left(e^{x} e^{i \theta}\right)\right| \mid 0 \leq \theta \leq 2 \pi\right\}=M_{f}\left(e^{x}\right)
\end{gathered}
$$

Hence, for $\log R_{1}<\log r_{1} \leq \log r \leq \log r_{2}<\log R_{2}$ where $r_{1} \neq r_{2}$, we have by Theorem VI.3.7 applied to $g$ (actually from equation (*) in the proof of Theorem VI.3.7 [see page 136] with $x=\log r_{1}, a=\log r$, and $y=\log r_{2}$ ):

$$
\begin{gathered}
\left(\log r_{2}-\log r_{1}\right) \log M_{g}(\log r) \leq\left(\log r_{2}-\log r\right) \log M_{g}\left(\log r_{1}\right) \\
+\left(\log r-\log r_{1}\right) \log M_{g}\left(\log r_{2}\right)
\end{gathered}
$$

or

$$
\begin{gathered}
\left(\log r_{2}-\log r_{1}\right) \log M_{f}(r) \leq\left(\log r_{2}-\log r\right) \log M_{f}\left(r_{1}\right) \\
=\left(\log r-\log r_{1}\right) \log M_{f}\left(r_{2}\right), \ldots
\end{gathered}
$$

## Theorem VI.3.13 (continued 2)

Theorem VI.3.13. Hadamard's Three Circles Theorem.
Let $0<R_{1}<R_{2}<\infty$ and suppose $f$ is analytic and not identically zero on ann( $0 ; R_{1}, R_{2}$ ). If $R_{1}<r<R_{2}$, define

$$
M(r)=\max \left\{\left|f\left(r e^{i \theta}\right)\right| \mid 0 \leq \theta \leq 2 \pi\right\}
$$

Then for $R_{1}<r_{1} \leq r \leq r_{2}<R_{2}$ and $r_{1} \neq r_{2}$, we have

$$
\log M(r) \leq \frac{\log r_{2}-\log r}{\log r_{2}-\log r_{1}} \log M\left(r_{1}\right)+\frac{\log r-\log r_{1}}{\log r_{2}-\log r_{1}} \log M\left(r_{2}\right)
$$

Proof (continued). or

$$
\begin{gathered}
\log M(r) \leq \frac{\log r_{2}-\log r}{\log r_{2}-\log r_{1}} \log M\left(r_{1}\right) \\
+\frac{\log r-\log r_{1}}{\log r_{2}-\log r_{1}} \log M\left(r_{2}\right)
\end{gathered}
$$

where $M(x)$ denotes $M_{f}(x)$.

