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Proposition VI.3.2

Proposition VI.3.2

Proposition VI.3.2. A function f : [a, b] — R is convex if and only if the
set

A={(x,y) | x € [a,b] and f(x) < y}

is convex.
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Proposition VI.3.2

Proposition VI.3.2

Proposition VI.3.2. A function f : [a, b] — R is convex if and only if the
set

A={(x,y) | x € [a,b] and f(x) < y}

is convex.

Proof. Suppose f : [a, b] — R is convex. Let (x1,y1), (x2,y2), € A C R?.
If t € [0, 1] then (by the definition of convex function f)

f(txo+ (1 —t)x1) < tf(x) + (1 —t)f(x1) < tyo + (1 — t)y1

where y; = f(x1) and y» = f(x2).
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Proposition VI.3.2

Proposition VI.3.2. A function f : [a, b] — R is convex if and only if the

set
A={(x,y) | x € [a,b] and f(x) < y}

is convex.

Proof. Suppose f : [a, b] — R is convex. Let (x1,y1), (x2,y2), € A C R?.
If t € [0, 1] then (by the definition of convex function f)

f(txo+ (1 —t)x1) < tf(x) + (1 —t)f(x1) < tyo + (1 — t)y1
where y; = f(x1) and y» = f(x2). Thus
t(x2,y2) + (1 = t)(x1,y1) = (axa + (1 — t)x1, ty2 + (L —t)y1) € A

for t € [0, 1] by the definition of set A. So A is convex.
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Proposition VI.3.2

Proposition VI.3.2 (continued)

Proposition VI.3.2. A function f : [a, b] — R is convex if and only if the
set

A={(x,y) | x € [a,b] and f(x) < y}

is convex.

Proof (continued). Suppose A is a convex set and let x1, x> € [1, b].
Then

(txo + (1 — t)xq, th(x2) + (1 — t)f(x)) € A
for all t € [0,1].
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Proposition VI.3.2 (continued)

Proposition VI.3.2. A function f : [a, b] — R is convex if and only if the

set
A={(x,y) | x € [a,b] and f(x) < y}

is convex.

Proof (continued). Suppose A is a convex set and let x1, x> € [1, b].
Then
(tXQ + (1 — t)Xl, tf(Xz) + (1 - t)f(XQ)) €A

for all t € [0,1]. But the definition of set A implies that
f(txo + (1 —t)x1) < tf(x2) + (1 — t)f(x1).

So f satisfies the definition of convexity, and hence f is convex. Ol
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Proposition VI.3.4

Proposition VI.3.4. A differentiable function f on [a, b] is convex if and
only if f’ is increasing.
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Proposition VI.3.4

Proposition VI.3.4

Proposition VI.3.4. A differentiable function f on [a, b] is convex if and
only if f’ is increasing.

Proof. Suppose f is convex. Let x,y € [a, b] with x < y and suppose
t €[0,1].
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Proposition VI.3.4

Proposition VI.3.4. A differentiable function f on [a, b] is convex if and
only if f’ is increasing.

Proof. Suppose f is convex. Let x,y € [a, b] with x < y and suppose
t € [0,1]. Since 0 < t(x —y) = (1 — t)x + ty — x, the convexity of f
implies that f((1 — t)x + ty) < (1 — t)f(x) + tf(y), and

FA-tx+ty)  A-f)+tly) _ flx)  tfly) = f(x))

tly—x) = t(y — x) oty —x) t(y — x)
” AL~ O+ 1) — F() _ ()~ F(x)
t(y —x) T oy—x
Fxt tly = x)) — F(x) _ Fly) — F(x)
t(y —x) T oy—x
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Proposition VI.3.4

Proposition VI.3.4. A differentiable function f on [a, b] is convex if and
only if f’ is increasing.

Proof. Suppose f is convex. Let x,y € [a, b] with x < y and suppose
t € [0,1]. Since 0 < t(x —y) = (1 — t)x + ty — x, the convexity of f
implies that f((1 — t)x + ty) < (1 — t)f(x) + tf(y), and

FA-tx+ty)  A-f)+tly) _ flx)  tfly) = f(x))

tly —x)  ~ t(y — x) ~tly —x) t(y —x)
” AL~ O+ 1) — F() _ ()~ F(x)
t(y —x) T oy=x
Fix +tly =x)) = f(x) _ fly) = f(x)
t(y —x) T oy—x
Now as t — 0, x + t(y — x) — x and t(y — x) — 0 (and these last two
fly) = f(x)

limits occur at the same rate), so we have f'(x) <
y — X
Complex Analysis August 11, 2017 5/ 16



Proposition VI.3.4 (continued 1)

Proof (continued). Also, 0 > (1 —t)(x—y)=(1—t)x+ty — y, so

F((1— D)x + ty) < (1 — D)F(x) + tF(y) and

(1= Ox+ty) _ (1= 8)F(
I-tx-y) — (-

t
(1 -0f(x) N tf(y) — f(y) + f(y)

a0y @A Dkx—)

” F(L— O+ ) — F(y) _ FG)— F(y)
Q- 0k-y) = x-y
" AL D0 —y) +y) ~ F) _ F(x) — ()
-0k -~ xy
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Proposition VI.3.4 (continued 1)

Proof (continued). Also, 0 > (1 —t)(x —y)=(1—t)x+ty —y, so
f((1—t)x+ty) < (1—t)f(x)+ tf(y) and

(1= Ox+ty) _ (1= 8)F(
I-tx-y) — (-

t
(1 -0f(x) N tf(y) — f(y) + f(y)

(1=t —y) (1=t)(x—-y)
” F(L— O+ ) — F(y) _ FG)— F(y)
QI-x-y) — x-y
" AL D0 —y) +y) ~ F) _ F(x) — ()
(1=t)(x—-y) T ox—y
Nowast— 1, (1—t)(x—y)+y —y, and (1—t)(x—y) — 0 (and these
last two limits occur at the same rate), so we have f'(y) > f(xi:;(y)
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Proposition VI.3.4 (continued 2)

Proof (continued). Combining the above information,

f'(x) < ) =) < f(y), and f’ is increasing on [a, b].
X=Yy
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Proposition VI.3.4 (continued 2)

Proof (continued). Combining the above information,

f'(x) < ) =) < f(y), and f’ is increasing on [a, b].
X=Yy

Now suppose that f’ is increasing and that x < u < y. By the Mean Value
Theorem, there are r,;s where x < r < u < s < y where

f'(r) = f(uL)I:i(x) and f'(s) = f(yj:f(u) Since f' is increasing, then
f'(r) < f'(s) and so f(uL)l : i(x) < f(yj : Z(U) and this holds for any u

where x < u < y.
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Proposition VI.3.4 (continued 2)

Proof (continued). Combining the above information,
f(x) - f
) < )= )
X —_—

Now suppose that f’ is increasing and that x < u < y. By the Mean Value
Theorem, there are r,;s where x < r < u < s < y where
f’(r) _ f(ul)l : i(x) and f/(S) _ f(y) B f(u)

y
() < £/(s) and so = F0)  F) = Fl)
u— X y—u
where x < u < y. In particular, with u = (1 — t)x + ty where t € [0, 1],
then (W) = F(x) __F(y) = F(u)

< f(y), and f’ is increasing on [a, b].

. Since f’ is increasing, then

and this holds for any u

fy—x) D0
(1= t)(f(u) — £(x)) < t(f(y) — f(v)). So
(L= (1 —t)x+ty) = F(x)} < e{f(y) = F((1 = t)x +ty)} or
f((1—t)x + ty) — f(x) + tf(x) < tf(y) or
f((1—t)x+ty) <(1—t)f(x)+tf(y). So f is convex. O
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Lemma VI.3.10

Lemma VI.3.10. Let f and G be as Theorem 3.7 and further suppose
that |f(z)| <1 for z€ OG. Then |f(z)| <1 forz € G.
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Lemma VI.3.10

Lemma VI.3.10

Lemma VI.3.10. Let f and G be as Theorem 3.7 and further suppose
that |f(z)| <1 for z€ OG. Then |f(z)| <1 forz € G.

Proof. Let ¢ > 0. Define g.(z) = (1 +&(z — a)) ™! for a€ G~. The for
z=x+iye G,

g() = ———— < : .
& la+e(z—a) — ]Re(l—f—a(z—a))\ ]Re(a+€(x+/y—a))|
So for z € OG we have that |f(z2)g-(2)| < (1)(1) =

Complex Analysis
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Lemma VI.3.10

Lemma VI.3.10. Let f and G be as Theorem 3.7 and further suppose
that |f(z)| <1 for z€ OG. Then |f(z)| <1 forz € G.

Proof. Let ¢ > 0. Define g.(z) = (1 +&(z — a)) ™! for a€ G~. The for
z=x+iye G,

1 1 1
&) = o) SRl e(z—2)]  Re(atextiy— ) |
So for z € OG we have that |f(z)g-(z)| < (1)(1) = 1. Since f is bounded
by B in G (by the Theorem VI.3.7 hypothesis), we have

f(2)g:(2)| < Bl +e(z - a)| ™ < BlIm(1+e(z - a)| ™"
= B|Im(ez)|™! = Blelm(z2)| % (3.11)
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Lemma VI.3.10

Lemma VI.3.10. Let f and G be as Theorem 3.7 and further suppose
that |f(z)| <1 for z€ OG. Then |f(z)| <1 forz € G.

Proof. Let ¢ > 0. Define g.(z) = (1 +&(z — a)) ™! for a€ G~. The for
z=x+iye G,

1 1 1
&) = o) SRl e(z—2)]  Re(atextiy— ) |
So for z € OG we have that |f(z)g-(z)| < (1)(1) = 1. Since f is bounded
by B in G (by the Theorem VI.3.7 hypothesis), we have

f(2)g:(2)| < Bl +e(z - a)| ™ < BlIm(1+e(z - a)| ™"
= B|Im(ez)|™! = Blelm(z2)| % (3.11)

Soif R={x+1iy|z<x<b,|y| < B/e}, then inequality (3.11) gives for
z€ OR:

f(2)g=(2)| < Blelm(2)| ™ = 6“”'19(2)! - e(tf/s) -t
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Lemma VI.3.10 (continued)

Lemma VI.3.10. Let f and G be as Theorem 3.7 and further suppose
that |[f(z)| <1 for z € 0G. Then |f(z)| <1 forz € G.
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Lemma VI.3.10 (continued)

Lemma VI.3.10. Let f and G be as Theorem 3.7 and further suppose
that |[f(z)| <1 for z € 0G. Then |f(z)| <1 forz € G.

Proof (continued). Then by the Maximum Modulus Theorem—Second
Version (Theorem VI.1.2), |f(z)g:(z)] < 1 for all z € R.
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Lemma VI.3.10 (continued)

Lemma VI.3.10. Let f and G be as Theorem 3.7 and further suppose
that |[f(z)| <1 for z € 0G. Then |f(z)| <1 forz € G.

Proof (continued). Then by the Maximum Modulus Theorem—Second
Version (Theorem VI.1.2), |f(z)g:(z)] <1 for all z € R. Next, for z € G
with [Im(z)| > B/e, inequality (3.11) implies that

B B
|f(Z)g8(Z)’ < 5|Im(z)] < E(B/S) =1

f(2)g:(2)] <1 and [f(z)| <1/|g=(2)| < [1 +&(z - a)|.
Since € > 0 is arbitrary, we have |f(z)| <1 for all z € G. O
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Theorem VI.3.7

Theorem VI.3.7

Theorem VI1.3.7. Let a < b and let G be the vertical strip

{x+ iy | a<x < b}. Suppose f : G= — C is continuous and f is analytic
in G. If we define M : [a,b] — R by

M(x) = sup{|f(x + iy)| | —o00 < y < o0}
and |f(z)| < B for all z € G, then log M(x) is a convex function.
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Theorem VI.3.7
Theorem VI1.3.7. Let a < b and let G be the vertical strip

{x+ iy | a<x < b}. Suppose f : G= — C is continuous and f is analytic
in G. If we define M : [a,b] — R by

M(x) = sup{|f(x + iy)| | —o00 < y < o0}
and |f(z)| < B for all z € G, then log M(x) is a convex function.

Proof. By Exercise VI.3.3(c), f is convex if and only if
flu) = f(x) _ fly) = f(u)

(v ”_)(X() F(9)) < (u— X)(F(y) — F(u)). o
O — 6)F(u) + (0 — )T () < (¥ — a)F(x) + (o - X)), or
(o — x)F(u) < (v — ) () + (u— x)F(y).
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Theorem VI.3.7
Theorem VI1.3.7. Let a < b and let G be the vertical strip

{x+ iy | a<x < b}. Suppose f : G= — C is continuous and f is analytic
in G. If we define M : [a,b] — R by

M(x) = sup{|f(x + iy)| | —o00 < y < o0}
and |f(z)| < B for all z € G, then log M(x) is a convex function.

Proof. By Exercise VI.3.3(c), f is convex if and only if
flu) = f(x) _ fly) = f(u)

(v~ )(F() — ) < (u— X)(F(y) — F(w)), o

(v = ) (u) + (u = x)f(u) < (y = u)f(x) + (u X) (y), or

(v = )F(u) < (v — ) F(x) + (1 — x)f(y). With £(2) = log M(x), we have
(y = x)log M(u) < (y — u) log M(x) + (u = x) log M(y). (%)

Exponentiating both sides gives M(u)Y ™ < M(x)Y~“M(Y)“~* where

z<x<u<y<hb.
Complex Analysis August 11,2017 10/ 16



Theorem VI.3.7 (continued 1)

Proof (continued). So to prove Theorem VII.3.7 we must show that
M(u)P=2 < M(z)P=“M(y)¥~2 for all u € (a, b). Define

g(z) = M(a)(b=2)/(b=a) pp(p)(z=2)/(b=3) Then g is entire and nonzero
(since A* = exp(zlog A), so g is basically an exponential function).
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Theorem VI.3.7 (continued 1)

Proof (continued). So to prove Theorem VII.3.7 we must show that
M(u)P=2 < M(z)P=“M(y)¥~2 for all u € (a, b). Define

g(z) = M(a)(b=2)/(b=a) pp(p)(z=2)/(b=3) Then g is entire and nonzero
(since A7 = exp(zlogA), so g is basically an exponential function). Since
|A%| = ARE() then for z = x + iy we have

g(2)] = M(a) V= m(p)0- =2 (3.12)

(Here, we assume M(a) # 0 and M(b) # 0 without loss of generality, since
if either is O then either f = 0 on the line Re(z) = a or f = 0 on the line
Re(z) = b, and in both cases, by the Maximum Modulus Theorem—Third
Version [Theorem VI.1.4], f =0on G.)
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Theorem VI.3.7 (continued 1)

Proof (continued). So to prove Theorem VII.3.7 we must show that
M(u)P=2 < M(z)P=“M(y)¥~2 for all u € (a, b). Define

g(z) = M(a)(b=2)/(b=a) pp(p)(z=2)/(b=3) Then g is entire and nonzero
(since A7 = exp(zlogA), so g is basically an exponential function). Since
|A%| = ARE() then for z = x + iy we have

g(2)] = M(a) V= m(p)0- =2 (3.12)

(Here, we assume M(a) # 0 and M(b) # 0 without loss of generality, since
if either is O then either f = 0 on the line Re(z) = a or f = 0 on the line
Re(z) = b, and in both cases, by the Maximum Modulus Theorem—Third
Version [Theorem VI.1.4], f =0 on G.) The right hand side of (3.12) is a
continuous function of x for x € [a, b], and since it is an exponential
function it is nonzero. So it attains a minimum (and a maximum) and
|g| 71 is therefore bounded on G~.
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Theorem VI.3.7 (continued 2)

Proof (continued). Also, |g(a+ iy)| = M(a) an d|g(b+ iy)| = M(b), so
for Re(z) = Re(xjy) = x = a, we have

f(z) M(a) 1

g(z)| = M(a)b-a/(b-a) y(p)(a-a)/(b=a) —
and for Re(z) = Re(x + iy) = x = b, we have

f(2)] _ M(b) .

g(z)| = M(a)(b=b)/(b=a) M(a)(b=a)/(b=a) — ™

So for z € 0G™, |f(z)/g(z)| < 1.
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Theorem VI.3.7 (continued 2)

Proof (continued). Also, |g(a+ iy)| = M(a) an d|g(b+ iy)| = M(b), so
for Re(z) = Re(xjy) = x = a, we have

f(z) M(a) 1

g(z)| = M(a)(b-a)/(b=2) M(p)(a-a)/(b-a)
and for Re(z) = Re(x + iy) = x = b, we have

f(2)] _ M(b) .

g(2)| = M(a)b-b)/(b-2) M (a)(b=a)/(b-2) —

So for z € G, |f(z)/g(z)| < 1. Now Lemma VI.3.10 holds and implies
that |f(2)/g(z)] <1 for all z € G, or that |f(2)| < |g(z)] for all z € G.
With z € G, z = ujv (so a < u < b), and from (3.12) we have

|£(2)] < M(u) < M(a)E=)/(b=a)M(b)(=2)/(b=2) — |g(2)|, or

M(u)P=2 < M(a)>=“M(b)"=2 for all u € (a, b). As stated above, this
proves the claim. []
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Corollary VI.3.9

Corollary VI.3.9

Corollary VI.3.9. Let a < b and let G be the vertical strip

{x+iy|a<x<b}. Let f: G- — C be continuous and let f be analytic
on G. Then for all z € G we have

|f(z)| <sup{|f(2)|| z € OG}.
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Corollary VI.3.9

Corollary VI.3.9

Corollary VI.3.9. Let a < b and let G be the vertical strip

{x+iy|a<x<b}. Let f: G- — C be continuous and let f be analytic
on G. Then for all z € G we have

|f(2)] < sup{|f(2)| | z € OG}.
Proof. Since log M(x) is convex by Theorem VI.3.7, then for z € G we

have
M(x) < max{M(a), M(b)} = sup{|f(z)|| z€ 0G }.

OJ
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Theorem VI1.3.13

Theorem VI1.3.13. Hadamard’s Three Circles Theorem.
Let 0 < Ry < Ry < oo and suppose f is analytic and not identically zero
on ann(0; Ry, Ry). If Ry < r < Ry, define

M(r) = max{|f(re’)| | 0 < 6 < 2r}.
Then for Ry <1 <r<rn < Ry and r; # r, we have

log r — log ry

logro — logr
o logr g
logro —logn

log M log M(r2).
°8 (r)_logrz—logrl og M(r)

log M(r1) +

Complex Analysis August 11, 2017 14 / 16



Theorem VI1.3.13

Theorem VI1.3.13. Hadamard’s Three Circles Theorem.
Let 0 < Ry < Ry < oo and suppose f is analytic and not identically zero
on ann(0; Ry, Ry). If Ry < r < Ry, define

M(r) = max{|f(re’)| | 0 < 6 < 2r}.
Then for Ry <1 <r<rn < Ry and r; # r, we have

log r — log ry

|Ogr —|Ogr
< 2—
|Og rp — |Og rn

log M
og M(r) < logro —logn

log M(r1) + log M(r2).

Proof. (This is Exercise VI.3.4.) First, define g(z) = f(e?). since f is
analytic on ann(0; Ry, R2), then g is analytic on the vertical strip

{x+ iy |log R1 < x <logR»}. Since f is continuous on ann(0; Ry, R2),
then f is bounded on the annulus (the annulus is compact). Therefore, g
is bounded on the vertical strip. So g satisfies the hypothesis of Theorem

VI.3.7.
Complex Analysis August 11, 2017 14 / 16



Theorem VI.3.13 (continued 1)

Proof (continued). Now for z = x + iy in the vertical strip, we have e*
in the annulus and

Mg(z) = sup{|g(x+iy)| | —o0 < y < oo} = sup{|f(e*T¥)| | —00 < y < o0}
= max{|f(e*e)| | 0 < 6 < 21} = M¢(€¥).
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Theorem VI.3.13 (continued 1)

Proof (continued). Now for z = x + iy in the vertical strip, we have e*
in the annulus and

Mg(2) = sup{lg(x+iy)| | =00 < y < oo} = sup{|f(e**¥)| | —o0 < y < o0}
= max{|f(e*e)| | 0 < 6 < 21} = M¢(€¥).
Hence, for log R1 < logr < logr <logr < log R» where r; # r», we have
by Theorem VI.3.7 applied to g (actually from equation (x) in the proof of
Theorem VI1.3.7 [see page 136] with x = logri, a=logr, and y = log r»):
(log r» — log r1) log Mg (log r) < (log r» — log r)log Mg(log r1)

+(log r — log r1) log M, (log r2)

or
(log ra — log r1) log M¢(r) < (log ra — log r) log M¢(r1)

= (log r — log r1) log M¢(r2), ...
Complex Analysis August 11, 2017 15/ 16



Theorem VI.3.13 (continued 2)

Theorem VI1.3.13. Hadamard’s Three Circles Theorem.
Let 0 < Ry < Ry < oo and suppose f is analytic and not identically zero
on ann(0; Ry, Ry). If Ry < r < Ry, define

M(r) = max{|f(re”®)| | 0 < 0 < 27}.
Then for Ry <n <r<rmn < Ryand n # rn, we have

logro — log r
< gnr g
logr, —logn

log r — log

log M
og M(r) log rp — log

log M(r1) + log M(r»).
Proof (continued). or

logr» — log r
< g g

log M log M

8 (r)_logrg—logrl og M(r1)
I —1
0BT 981 | oe M(n),

logr, —logn
where M(x) denotes M¢(x). O
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