Complex Analysis

Chapter VI. The Maximum Modulus Theorem VI.4. Phragmén-Lindelöf Theorem—Proofs of Theorems

John B. Conway

Functions of One Complex Variable I

Second Edition

Deringer

Complex Analysis

2 Theorem VI.4.1. Phragmén-Lindelöf Theorem

3 Corollary VI.4.2

Theorem VI.4.A. Suppose f is an entire function, M > 0, and $0 < \alpha < 1$. Suppose $|f(z)| \le M + |z|^{\alpha}$ for all $z \in \mathbb{C}$. Then f is constant.

Proof. We take n = 1 in Corollary VI.2.13: $f'(a) = \frac{n!}{2\pi i} \int_{\gamma} \frac{f(w)}{(w-a)^2} dw$ where $\gamma(t) = a + re^{it}$ and $0 \le t \le 2\pi$.

Theorem VI.4.A

Theorem VI.4.A. Suppose f is an entire function, M > 0, and $0 < \alpha < 1$. Suppose $|f(z)| \le M + |z|^{\alpha}$ for all $z \in \mathbb{C}$. Then f is constant.

Proof. We take n = 1 in Corollary VI.2.13: $f'(a) = \frac{n!}{2\pi i} \int_{\gamma} \frac{f(w)}{(w-a)^2} dw$ where $\gamma(t) = a + re^{it}$ and $0 \le t \le 2\pi$. We have

$$\begin{aligned} f'(a)| &= \left| \frac{n!}{2\pi i} \int_{\gamma} \frac{f(w)}{(w-a)^2} \, dw \right| \leq \frac{n!}{2\pi} \int_{\gamma} \frac{|f(w)|}{|w-a|^2} \, |dw| \\ &= \left| \frac{n!}{2\pi} \int_{\gamma} \frac{|f(w)|}{r^2} \, |dw| \leq \frac{n!}{2\pi r^2} \int_{\gamma} (M+|z|^{\alpha}) \, |dw| \\ &\leq \left| \frac{n!}{2\pi r^2} \int_{\gamma} (M+(|a|+r)^{\alpha}) \, |dw| \text{ since } |w| \leq |a|+r \\ &= \left| \frac{n!}{2\pi r^2} 2\pi r (M+(|a|+r)^{\alpha}) \right|. \end{aligned}$$

Theorem VI.4.A

Theorem VI.4.A. Suppose f is an entire function, M > 0, and $0 < \alpha < 1$. Suppose $|f(z)| \le M + |z|^{\alpha}$ for all $z \in \mathbb{C}$. Then f is constant.

Proof. We take n = 1 in Corollary VI.2.13: $f'(a) = \frac{n!}{2\pi i} \int_{\gamma} \frac{f(w)}{(w-a)^2} dw$ where $\gamma(t) = a + re^{it}$ and $0 \le t \le 2\pi$. We have

$$\begin{aligned} f'(a)| &= \left| \frac{n!}{2\pi i} \int_{\gamma} \frac{f(w)}{(w-a)^2} dw \right| \leq \frac{n!}{2\pi} \int_{\gamma} \frac{|f(w)|}{|w-a|^2} |dw| \\ &= \frac{n!}{2\pi} \int_{\gamma} \frac{|f(w)|}{r^2} |dw| \leq \frac{n!}{2\pi r^2} \int_{\gamma} (M+|z|^{\alpha}) |dw| \\ &\leq \frac{n!}{2\pi r^2} \int_{\gamma} (M+(|a|+r)^{\alpha}) |dw| \text{ since } |w| \leq |a|+r \\ &= \frac{n!}{2\pi r^2} 2\pi r (M+(|a|+r)^{\alpha}). \end{aligned}$$

Theorem VI.4.A (continued)

Theorem VI.4.A. Suppose f is an entire function, M > 0, and $0 < \alpha < 1$. Suppose $|f(z)| \le M + |z|^{\alpha}$ for all $z \in \mathbb{C}$. Then f is constant.

Proof (continued). ...

$$|f'(a)| \leq \frac{n!}{2\pi r^2} 2\pi r (M + (|a| + r)^{\alpha}).$$

Since this holds for arbitrary r (f is entire), then we see that $r \to \infty$ implies that f'(a) = 0. Also, a is arbitrary, so f'(z) = 0 for all $z \in \mathbb{C}$ and hence f is constant.

Proposition VI.4.1

Theorem VI.4.1. Phragmén-Lindelöf Theorem.

Let G be a simply connected region and let f be an analytic function on G. Suppose there is an analytic function $\phi : G \to \mathbb{C}$ which is nonzero and is bounded on G. If M is a constant and $\partial_{\infty}G = A \cup B$ such that

(a) for every $a \in A$ we have $\limsup_{z \to a} |f(z)| \le M$, and

(b) for every
$$b\in B$$
 and $\eta>$ 0, we have

$$\limsup_{z \to b} |f(z)| |\phi(z)|^{\eta} \le M,$$

$\underline{\text{then}} |f(z)| \leq M \text{ for all } z \in G.$

Proof. Let $|\varphi(z)| \leq \kappa$ for all $z \in G$. Since G is simply connected and φ is nonzero on G, then by Corollary IV.6.17, there is a branch of $\log \varphi(z)$ on G. Hence $g(z) = \exp(\eta \log \varphi(z))$ is an analytic branch of $(\varphi(z))^{\eta}$ for $\eta > 0$, and $|g(z)| = |\varphi(z)|^{\eta}$. Define $F : G \to \mathbb{C}$ as $F(z) = f(z)g(z)\kappa^{-\eta}$. Then F is analytic on G and $|F(z)| \leq |f(z)|$. Now for $a \in \partial_{\infty}G$ for which condition (a) holds, we have $\limsup_{z\to a} |F(z)| \leq \limsup_{z\to\infty} |f(z)| \leq M$.

Proposition VI.4.1

Theorem VI.4.1. Phragmén-Lindelöf Theorem.

Let G be a simply connected region and let f be an analytic function on G. Suppose there is an analytic function $\phi : G \to \mathbb{C}$ which is nonzero and is bounded on G. If M is a constant and $\partial_{\infty}G = A \cup B$ such that

(a) for every
$$a \in A$$
 we have $\limsup_{z \to a} |f(z)| \leq M$, and

(b) for every
$$b \in B$$
 and $\eta > 0$, we have $\limsup_{z \to b} |f(z)| |\phi(z)|^{\eta} \leq M$,

<u>then</u> $|f(z)| \leq M$ for all $z \in G$.

Proof. Let $|\varphi(z)| \leq \kappa$ for all $z \in G$. Since G is simply connected and φ is nonzero on G, then by Corollary IV.6.17, there is a branch of $\log \varphi(z)$ on G. Hence $g(z) = \exp(\eta \log \varphi(z))$ is an analytic branch of $(\varphi(z))^{\eta}$ for $\eta > 0$, and $|g(z)| = |\varphi(z)|^{\eta}$. Define $F : G \to \mathbb{C}$ as $F(z) = f(z)g(z)\kappa^{-\eta}$. Then F is analytic on G and $|F(z)| \leq |f(z)|$. Now for $a \in \partial_{\infty}G$ for which condition (a) holds, we have $\limsup_{z\to a} |F(z)| \leq \limsup_{z\to\infty} |f(z)| \leq M$.

Proposition VI.4.1

Proof. For $b \in \partial_{\infty}G$ for which condition (b) holds, we have

$$\limsup_{z \to b} |F(z)| = \limsup_{z \to b} |f(z)g(z)\kappa^{-\eta}| = \kappa^{-\eta} \limsup_{z \to b} |f(z)||\varphi(z)|^{\eta} \le \kappa^{-\eta}M$$

So *F* satisfies the hypotheses of the Maximum Modulus Theorem—Third Version (Theorem VI.1.4) with *M* of Theorem VI.1.4 replaced with $\max\{M, \kappa^{-\eta}M\}$ here. so, by Theorem VI.1.4, $|f(z)| \leq \max\{M, \kappa^{-\eta}M\}$ for all $z \in G$. So

$$|f(z)| = \kappa^{\eta} \frac{|F(z)|}{|g(z)|} = \frac{\kappa^{\eta}}{|\varphi(z)|^{\eta}} |F(z)| \le \left(\frac{\kappa}{|\varphi(z)|}\right)^{\eta} \max\{M, \kappa^{-\eta}M\}$$

for all $z \in G$ and for all $\eta > 0$. Letting $\eta \to 0^+$ implies $|f(z)| \le M$ for all $z \in G$.

Corollary VI.4.2. Let $a \ge 1/2$ and let $G = \{z \mid |\arg(z)| < \pi/(2a)\}$. Suppose that f is analytic on G and suppose there is a constant M such that $\limsup_{z \to w} |f(z)| \le M$ for all $w \in \partial G$. If there are positive constants P and b < a such that $|f(z)| \le P \exp(|z|^b)$ for all z with |z| sufficiently large, then $|f(z)| \le M$ for all $z \in G$.

Proof. Let 0 < b < c < a and define $\varphi(z) = \exp(-z^c)$ for $z \in G$. If $z = re^{i\theta}$ where $|\theta| < \pi/(2a)$, then $\operatorname{Re}(z^c) = r^c \cos(c\theta)$. So for $z \in G$,

$$|\varphi(z)| = |\exp(-z^c)| = |\exp(\operatorname{Re}(-z^c))| = \exp(-r^c\cos(c\theta))$$

when $z = re^{i\theta}$.

Corollary VI.4.2. Let $a \ge 1/2$ and let $G = \{z \mid |\arg(z)| < \pi/(2a)\}$. Suppose that f is analytic on G and suppose there is a constant M such that $\limsup_{z \to w} |f(z)| \le M$ for all $w \in \partial G$. If there are positive constants P and b < a such that $|f(z)| \le P \exp(|z|^b)$ for all z with |z| sufficiently large, then $|f(z)| \le M$ for all $z \in G$.

Proof. Let 0 < b < c < a and define $\varphi(z) = \exp(-z^c)$ for $z \in G$. If $z = re^{i\theta}$ where $|\theta| < \pi/(2a)$, then $\operatorname{Re}(z^c) = r^c \cos(c\theta)$. So for $z \in G$,

$$|\varphi(z)| = |\exp(-z^c)| = |\exp(\operatorname{Re}(-z^c))| = \exp(-r^c\cos(c\theta))$$

when $z = re^{i\theta}$. Since c < a, $\cos(c\theta) \ge \rho > 0$ for some ρ (since c < aimplies $c\theta < a\theta < a(\pi/(2a)) = \pi/2$ for $z \in G$). So $|\varphi(z)| = |\exp(-z^c)| = \exp(-r^c \cos(c\theta)) \le \exp(-r^c \rho)$ for all $z \in G$, and φ is bounded on G. Also, if $\eta > 0$ and $z = re^{i\theta}$ is sufficiently large, then

Corollary VI.4.2. Let $a \ge 1/2$ and let $G = \{z \mid |\arg(z)| < \pi/(2a)\}$. Suppose that f is analytic on G and suppose there is a constant M such that $\limsup_{z \to w} |f(z)| \le M$ for all $w \in \partial G$. If there are positive constants P and b < a such that $|f(z)| \le P \exp(|z|^b)$ for all z with |z| sufficiently large, then $|f(z)| \le M$ for all $z \in G$.

Proof. Let 0 < b < c < a and define $\varphi(z) = \exp(-z^c)$ for $z \in G$. If $z = re^{i\theta}$ where $|\theta| < \pi/(2a)$, then $\operatorname{Re}(z^c) = r^c \cos(c\theta)$. So for $z \in G$,

$$|\varphi(z)| = |\exp(-z^c)| = |\exp(\operatorname{Re}(-z^c))| = \exp(-r^c\cos(c\theta))$$

when $z = re^{i\theta}$. Since c < a, $\cos(c\theta) \ge \rho > 0$ for some ρ (since c < aimplies $c\theta < a\theta < a(\pi/(2a)) = \pi/2$ for $z \in G$). So $|\varphi(z)| = |\exp(-z^c)| = \exp(-r^c \cos(c\theta)) \le \exp(-r^c \rho)$ for all $z \in G$, and φ is bounded on G. Also, if $\eta > 0$ and $z = re^{i\theta}$ is sufficiently large, then

Corollary VI.4.2 (continued)

Proof (continued).

$$\begin{aligned} |f(z)||\varphi(z)|^{\eta} &\leq P \exp(|z|^{b})|\varphi(z)|^{\eta} \text{ by hypothesis} \\ &\leq P \exp(|z|^{b})(\exp(-r^{c}\rho))^{\eta} \\ &= P \exp(r^{b} - \eta r^{c}\rho) \text{ since } z = re^{i\theta} \end{aligned}$$

(the "sufficiently large" is required of $z = re^{i\theta}$ to get the bound $|f(z)| \leq P \exp(|z|^b)$ for z "sufficiently large" as is hypothesized). But $r^b - \eta r^c \rho = r^c (r^{b-c} - \eta \rho)$. Since b < c, we have b - c < 0 and so $r^{b-c} \to 0^+$ as $r \to +\infty$. so we have $r^b - \eta r^c \rho - r^c (r^{b-c} - \eta \rho) \to -\infty$ as $r \to +\infty$. Now $\limsup_{z \to a} |f(z)| \leq M$ for all $a \in \partial G$ by hypothesis. For $b = \infty$, $\limsup_{z \to \infty} \infty ||f(z)||\varphi(z)|^{\eta} = \lim_{r \to \infty} P \exp(r^b - \eta r^c \rho) = 0 \leq M$.

Corollary VI.4.2 (continued)

Proof (continued).

$$\begin{aligned} |f(z)||\varphi(z)|^{\eta} &\leq P \exp(|z|^{b})|\varphi(z)|^{\eta} \text{ by hypothesis} \\ &\leq P \exp(|z|^{b})(\exp(-r^{c}\rho))^{\eta} \\ &= P \exp(r^{b} - \eta r^{c}\rho) \text{ since } z = re^{i\theta} \end{aligned}$$

(the "sufficiently large" is required of $z = re^{i\theta}$ to get the bound $|f(z)| \leq P \exp(|z|^b)$ for z "sufficiently large" as is hypothesized). But $r^b - \eta r^c \rho = r^c (r^{b-c} - \eta \rho)$. Since b < c, we have b - c < 0 and so $r^{b-c} \to 0^+$ as $r \to +\infty$. so we have $r^b - \eta r^c \rho - r^c (r^{b-c} - \eta \rho) \to -\infty$ as $r \to +\infty$. Now $\limsup_{z\to a} |f(z)| \leq M$ for all $a \in \partial G$ by hypothesis. For $b = \infty$, $\limsup_z \to \infty ||f(z)||\varphi(z)|^{\eta} = \lim_{r\to\infty} P \exp(r^b - \eta r^c \rho) = 0 \leq M$. So f satisfies the hypotheses of the Phragmén-Lindelöf Theorem (as does nonzero, analytic φ), and so $|f(z)| \leq M$ for $z \in G$.

Corollary VI.4.2 (continued)

Proof (continued).

$$\begin{aligned} |f(z)||\varphi(z)|^{\eta} &\leq P \exp(|z|^{b})|\varphi(z)|^{\eta} \text{ by hypothesis} \\ &\leq P \exp(|z|^{b})(\exp(-r^{c}\rho))^{\eta} \\ &= P \exp(r^{b} - \eta r^{c}\rho) \text{ since } z = re^{i\theta} \end{aligned}$$

(the "sufficiently large" is required of $z = re^{i\theta}$ to get the bound $|f(z)| \leq P \exp(|z|^b)$ for z "sufficiently large" as is hypothesized). But $r^b - \eta r^c \rho = r^c (r^{b-c} - \eta \rho)$. Since b < c, we have b - c < 0 and so $r^{b-c} \to 0^+$ as $r \to +\infty$. so we have $r^b - \eta r^c \rho - r^c (r^{b-c} - \eta \rho) \to -\infty$ as $r \to +\infty$. Now $\limsup_{z \to a} |f(z)| \leq M$ for all $a \in \partial G$ by hypothesis. For $b = \infty$, $\limsup_{z \to \infty} ||f(z)||\varphi(z)|^{\eta} = \lim_{r \to \infty} P \exp(r^b - \eta r^c \rho) = 0 \leq M$. So f satisfies the hypotheses of the Phragmén-Lindelöf Theorem (as does nonzero, analytic φ), and so $|f(z)| \leq M$ for $z \in G$.

Corollary VI.4.4. Let $a \ge 1/2$ and let $G = \{z \mid \arg(z) < \pi/(2a)\}$, and suppose that for every $w \in \partial G$, $\limsup_{z \to w} |f(z)| \le M$. Moreover, assume that for every $\delta > 0$ there is a constant P (which may depend on δ) such that $|f(z)| \le P \exp(\delta |z|^a)$ for $z \in G$ and |z| sufficiently large. Then $|f(z)| \le M$ for all $z \in G$.

Proof. Define $F : G \to \mathbb{C}$ as $F(z) = f(z) \exp(-\varepsilon z^1)$ where $\varepsilon > 0$ is fixed. If x > 0 and δ satisfies $0 < \delta < \varepsilon$ then there is a constant P with

$$\begin{aligned} f(x)| &= |f(x) \exp(-\varepsilon x^a)| \\ &\leq P \exp(\delta x^a) \exp(-\varepsilon x^a) \text{ for } x \text{ sufficiently large} \\ &= P \exp((\delta - \varepsilon) x^a). \end{aligned}$$

Corollary VI.4.4. Let $a \ge 1/2$ and let $G = \{z \mid \arg(z) < \pi/(2a)\}$, and suppose that for every $w \in \partial G$, $\limsup_{z \to w} |f(z)| \le M$. Moreover, assume that for every $\delta > 0$ there is a constant P (which may depend on δ) such that $|f(z)| \le P \exp(\delta |z|^a)$ for $z \in G$ and |z| sufficiently large. Then $|f(z)| \le M$ for all $z \in G$.

Proof. Define $F : G \to \mathbb{C}$ as $F(z) = f(z) \exp(-\varepsilon z^1)$ where $\varepsilon > 0$ is fixed. If x > 0 and δ satisfies $0 < \delta < \varepsilon$ then there is a constant P with

$$\begin{aligned} |f(x)| &= |f(x) \exp(-\varepsilon x^a)| \\ &\leq P \exp(\delta x^a) \exp(-\varepsilon x^a) \text{ for } x \text{ sufficiently large} \\ &= P \exp((\delta - \varepsilon) x^a). \end{aligned}$$

But then $|F(x)| \to 0$ as $x \to \infty$ ($x \in \mathbb{R}$). So $M_1 = \sup\{|F(x)| \mid 0 < x < \infty\} < \infty$ (since, say, $|F(x)| \le 1$ for xsufficiently large and then F is continuous on the complement of "sufficiently large" and so has a MAX there).

Corollary VI.4.4. Let $a \ge 1/2$ and let $G = \{z \mid \arg(z) < \pi/(2a)\}$, and suppose that for every $w \in \partial G$, $\limsup_{z \to w} |f(z)| \le M$. Moreover, assume that for every $\delta > 0$ there is a constant P (which may depend on δ) such that $|f(z)| \le P \exp(\delta |z|^a)$ for $z \in G$ and |z| sufficiently large. Then $|f(z)| \le M$ for all $z \in G$.

Proof. Define $F : G \to \mathbb{C}$ as $F(z) = f(z) \exp(-\varepsilon z^1)$ where $\varepsilon > 0$ is fixed. If x > 0 and δ satisfies $0 < \delta < \varepsilon$ then there is a constant P with

$$\begin{aligned} |f(x)| &= |f(x) \exp(-\varepsilon x^a)| \\ &\leq P \exp(\delta x^a) \exp(-\varepsilon x^a) \text{ for } x \text{ sufficiently large} \\ &= P \exp((\delta - \varepsilon) x^a). \end{aligned}$$

But then $|F(x)| \to 0$ as $x \to \infty$ ($x \in \mathbb{R}$). So $M_1 = \sup\{|F(x)| \mid 0 < x < \infty\} < \infty$ (since, say, $|F(x)| \le 1$ for xsufficiently large and then F is continuous on the complement of "sufficiently large" and so has a MAX there).

Corollary VI.4.4 (continued 1)

Proof (continued). Define $M_2 = \max\{M_1, M\}$ and $H_{+} = \{ z \in G \mid 0 < \arg(z) < \pi/(2a) \},\$ $H_{-} = \{z \in G \mid -\pi/(2a) < \arg(z) < 0\}$. Notice that H_{+} and H_{-} are sectors which share the boundary $\{x \mid 0 < x < \infty\}$. For any $w \in \partial H_{-} \cup \partial H_{+}$ with $|\arg(w)| = \pi/(2a)$ we have $\limsup |F(z)| = \limsup |f(z)|| \exp(-\varepsilon z^a)|$ = lim sup $|f(z)| \exp(\operatorname{Re}(-\varepsilon z^a))$ = lim sup $|f(z)| \exp(-\varepsilon r^a \cos(a\theta))$ for $z = re^{i\theta}$ $Z \longrightarrow W$ \leq lim sup |f(z)| since $-\varepsilon r^z \cos(a\theta) < 0$ $Z \longrightarrow W$

because $|z\theta| < \pi/2$

 \leq *M* by hypothesis (i.e., definition of *M*).

Corollary VI.4.4 (continued 1)

Proof (continued). Define $M_2 = \max\{M_1, M\}$ and $H_+ = \{z \in G \mid 0 < \arg(z) < \pi/(2a)\}$, $H_- = \{z \in G \mid -\pi/(2a) < \arg(z) < 0\}$. Notice that H_+ and H_- are sectors which share the boundary $\{x \mid 0 < x < \infty\}$. For any $w \in \partial H_- \cup \partial H_+$ with $|\arg(w)| = \pi/(2a)$ we have

Corollary VI.4.4 (continued 2)

Proof (continued). So for all $w \in \partial H_- \cup \partial H_+$ we have lim $\sup_{z \to w} |f(z)| \leq M_2$. In addition, we claim that the hypothesized condition $|f(z)| \leq P \exp(\delta |z|^a)$ for all $z \in G$ and |z| sufficiently large implies that F satisfies the hypotheses of Corollary VI.4.2. (We have

$$|f(z)| = |f(z)\exp(-\varepsilon z^{a})| \le P\exp(\delta|z|^{a})|\exp(-\varepsilon z^{a})|$$

 $= P \exp(\delta |z|^{a}) \exp(\operatorname{Re}(-\varepsilon z^{a})) = P \exp(\delta |z|^{z} - \varepsilon \operatorname{Re}(z^{a}))$

but this must be less than or equal to $P_1 \exp(|z|^b)$ for positive P_1 and 0 < b < a?)

Corollary VI.4.4 (continued 2)

Proof (continued). So for all $w \in \partial H_- \cup \partial H_+$ we have lim $\sup_{z \to w} |f(z)| \leq M_2$. In addition, we claim that the hypothesized condition $|f(z)| \leq P \exp(\delta |z|^a)$ for all $z \in G$ and |z| sufficiently large implies that F satisfies the hypotheses of Corollary VI.4.2. (We have

$$|f(z)| = |f(z) \exp(-\varepsilon z^a)| \le P \exp(\delta |z|^a) |\exp(-\varepsilon z^a)|$$

$$= P \exp(\delta |z|^{a}) \exp(\operatorname{Re}(-\varepsilon z^{a})) = P \exp(\delta |z|^{z} - \varepsilon \operatorname{Re}(z^{a}))$$

but this must be less than or equal to $P_1 \exp(|z|^b)$ for positive P_1 and 0 < b < a?) So...applying Corollary VI.4.2 to F(z) gives $|F(z)| \le M_2$ for all $z \in H_+ \cup H_-$. So $|f(z)| \le M_2$ for all $z \in G$.

Corollary VI.4.4 (continued 2)

Proof (continued). So for all $w \in \partial H_- \cup \partial H_+$ we have lim $\sup_{z \to w} |f(z)| \leq M_2$. In addition, we claim that the hypothesized condition $|f(z)| \leq P \exp(\delta |z|^a)$ for all $z \in G$ and |z| sufficiently large implies that F satisfies the hypotheses of Corollary VI.4.2. (We have

$$|f(z)| = |f(z) \exp(-\varepsilon z^a)| \le P \exp(\delta |z|^a) |\exp(-\varepsilon z^a)|$$

$$= P \exp(\delta |z|^a) \exp(\operatorname{Re}(-\varepsilon z^a)) = P \exp(\delta |z|^z - \varepsilon \operatorname{Re}(z^a))$$

but this must be less than or equal to $P_1 \exp(|z|^b)$ for positive P_1 and 0 < b < a?) So... applying Corollary VI.4.2 to F(z) gives $|F(z)| \le M_2$ for all $z \in H_+ \cup H_-$. So $|f(z)| \le M_2$ for all $z \in G$.

Corollary VI.4.4 (continued 3)

Proof (continued). We claim that $M_2 = M$. If not, then $M_1 = M_1 > M$.

But then we have that |f(z)| assumes its maximum value in G at some positive real number $x \in G$ because $\lim_{x\to\infty} |F(x)| = 0$ as argued above and

$$\limsup_{x \to 0} |F(x)| = \limsup_{x \to 0} |f(x)| |\exp(-\varepsilon x^a)|$$
$$= \limsup_{x \to 0} |f(x)| \exp(0) = \limsup_{x \to 0} |f(x)| \le M < M_1,$$

so |f| as a continuous function on $(0,\infty)$ must attain its supremum over this set:

Corollary VI.4.4 (continued 3)

Proof (continued). We claim that $M_2 = M$. If not, then $M_1 = M_1 > M$.

But then we have that |f(z)| assumes its maximum value in G at some positive real number $x \in G$ because $\lim_{x\to\infty} |F(x)| = 0$ as argued above and

$$\lim_{x \to 0} \sup_{x \to 0} |F(x)| = \lim_{x \to 0} \sup_{x \to 0} |f(x)| |\exp(-\varepsilon x^a)|$$
$$= \lim_{x \to 0} \sup_{x \to 0} |f(x)| \exp(0) = \lim_{x \to 0} \sup_{x \to 0} |f(x)| \le M < M_1,$$

so |f| as a continuous function on $(0,\infty)$ must attain its supremum over this set:

Corollary VI.4.4 (continued 3)

Proof (continued). We claim that $M_2 = M$. If not, then $M_1 = M_1 > M$.

But then we have that |f(z)| assumes its maximum value in G at some positive real number $x \in G$ because $\lim_{x\to\infty} |F(x)| = 0$ as argued above and

$$\lim_{x \to 0} \sup_{x \to 0} |F(x)| = \lim_{x \to 0} \sup_{x \to 0} |f(x)| |\exp(-\varepsilon x^a)|$$
$$= \lim_{x \to 0} \sup_{x \to 0} |f(x)| \exp(0) = \lim_{x \to 0} \sup_{x \to 0} |f(x)| \le M < M_1,$$

so |f| as a continuous function on $(0,\infty)$ must attain its supremum over this set:

Corollary VI.4.4 (continued 4)

Corollary VI.4.4. Let $a \ge 1/2$ and let $G = \{z \mid \arg(z) < \pi/(2a)\}$, and suppose that for every $w \in \partial G$, $\limsup_{z \to w} |f(z)| \le M$. Moreover, assume that for every $\delta > 0$ there is a constant P (which may depend on δ) such that $|f(z)| \le P \exp(\delta |z|^a)$ for $z \in G$ and |z| sufficiently large. Then $|f(z)| \le M$ for all $z \in G$.

Proof (continued). But then by the Maximum Modulus Theorem—First Version (Theorem VI.1.1), f must be a constant and then $M = M_1 = M_2$. So we have established that $M_2 = M$ and $|F(z)| \le M$ for all $z \in G$. That is,

$$|f(z)| = |F(z) \exp(\varepsilon z^{a})| \text{ by definition of } F$$

$$\leq M \exp(\varepsilon \operatorname{Re}(z^{a}))$$

for all $z \in G$. Since M is independent of ε , we can let arbitrary $\varepsilon \to 0$ and conclude that $|f(z)| \leq M$ for all $z \in G$.

Corollary VI.4.4 (continued 4)

Corollary VI.4.4. Let $a \ge 1/2$ and let $G = \{z \mid \arg(z) < \pi/(2a)\}$, and suppose that for every $w \in \partial G$, $\limsup_{z \to w} |f(z)| \le M$. Moreover, assume that for every $\delta > 0$ there is a constant P (which may depend on δ) such that $|f(z)| \le P \exp(\delta |z|^a)$ for $z \in G$ and |z| sufficiently large. Then $|f(z)| \le M$ for all $z \in G$.

Proof (continued). But then by the Maximum Modulus Theorem—First Version (Theorem VI.1.1), f must be a constant and then $M = M_1 = M_2$. So we have established that $M_2 = M$ and $|F(z)| \le M$ for all $z \in G$. That is,

$$|f(z)| = |F(z) \exp(\varepsilon z^a)|$$
 by definition of F
 $\leq M \exp(\varepsilon \operatorname{Re}(z^a))$

for all $z \in G$. Since M is independent of ε , we can let arbitrary $\varepsilon \to 0$ and conclude that $|f(z)| \leq M$ for all $z \in G$.