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Theorem VI.4.A

Theorem VI.4.A. Suppose f is an entire function, M > 0, and
0 < a < 1. Suppose |f(z)| < M + |z|* for all z € C. Then f is constant.
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Theorem VI.4.A

Theorem VI.4.A. Suppose f is an entire function, M > 0, and
0 < a < 1. Suppose |f(z)| < M + |z|* for all z € C. Then f is constant.

! f
Proof. We take n =1 in Corollary VI.2.13: f'(a) = 2,7/ ((We),)z dw
mi ), (w—

where v(t) = a+ ret and 0 < t < 2m.
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Theorem VI.4.A

Theorem VI.4.A. Suppose f is an entire function, M > 0, and
0 < a < 1. Suppose |f(z)| < M + |z|* for all z € C. Then f is constant.

! f
Proof. We take n =1 in Corollary VI.2.13: f'(a) = —2,7 /( (W;)z dw
i Sy (W —

where v(t) = a+ re’t and 0 < t < 2. We have
| f( nl
- e
()l 27i ‘ T Jy
f
- 5[5 ‘\d <505 [m
gl

< 27”/7(M+(a + r)%) |dw| since |w| < |a| + r

IdWI

+12[%) |dw|

|
= sos2mr(M+ (|l +1)”).
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Theorem VI.4.A (continued)

Theorem VI.4.A. Suppose f is an entire function, M > 0, and
0 < a < 1. Suppose |f(z)] < M+ |z|* for all z € C. Then f is constant.

Proof (continued). ...
n! o
F1(a)] < 5oz2mr(M + (Ja] + 1)),

Since this holds for arbitrary r (f is entire), then we see that r — oo
implies that ’(a) = 0. Also, a is arbitrary, so f'(z) =0 for all z € C and
hence f is constant. O]
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Theorem VI1.4.1. Phragmén-Lindel6f Theorem

Proposition VI.4.1

Theorem VI1.4.1. Phragmén-Lindelof Theorem.
Let G be a simply connected region and let f be an analytic function on
G. Suppose there is an analytic function ¢ : G — C which is nonzero and
is bounded on G. If M is a constant and 9,,G = AU B such that

(a) for every a € A we have limsup,_,, |f(z)] < M, and

(b) for every b € B and > 0, we have

limsup,_, [f(2)[|6(2)|" < M,

then |f(z)] < M for all z € G.
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Theorem VI1.4.1. Phragmén-Lindel6f Theorem

Proposition VI.4.1

Theorem VI1.4.1. Phragmén-Lindelof Theorem.

Let G be a simply connected region and let f be an analytic function on
G. Suppose there is an analytic function ¢ : G — C which is nonzero and
is bounded on G. If M is a constant and 9,,G = AU B such that

(a) for every a € A we have limsup,_,, |f(z)] < M, and
(b) for every b € B and > 0, we have
limsup,_.,, [f(2)[|¢(2)]" < M,
then |f(z)] < M for all z € G.

Proof. Let |p(z)| < k for all z € G. Since G is simply connected and ¢ is
nonzero on G, then by Corollary IV.6.17, there is a branch of log ¢(z) on
G. Hence g(z) = exp(nlog ¢(z)) is an analytic branch of (¢(z))" for

n >0, and |g(z)| = |¢(2)|". Define F: G — C as F(z) = f(z)g(z)x".
Then F is analytic on G and |F(z)| < |f(z)|. Now for a € 05 G for which
condition (a) holds, we have limsup,_,, |F(z)| < limsup,_ . |f(z)] < M.
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Theorem VI1.4.1. Phragmén-Lindel6f Theorem

Proposition VI.4.1

Proof. For b € 05 G for which condition (b) holds, we have

lim sup |F(2)| = limsup |f(2)g(z)x™"| = k™" lim sup |f(2)||¢(2)" < k7M.
z—b z— z—b

So F satisfies the hypotheses of the Maximum Modulus Theorem—T hird

Version (Theorem VI.1.4) with M of Theorem VI.1.4 replaced with

max{M, k~"M} here. so, by Theorem VI.1.4, |f(z)| < max{M,x~"M} for

all ze G. So

—m”“:(z)': ll z R 77max K-
=" = Tem! T )§<|90(Z)|> M. n7M}

for all z € G and for all n > 0. Letting n — 0T implies |f(z)| < M for all
zeG. O
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Corollary VI1.4.2

Corollary V1.4.2

Corollary V1.4.2. Let a>1/2 and let G = {z | |arg(z)| < 7/(2a)}.
Suppose that f is analytic on G and suppose there is a constant M such
that limsup,_,,, |f(z)| < M for all w € 9G. If there are positive constants

P and b < a such that |f(z)| < Pexp(|z|?) for all z with |z| sufficiently
large, then |f(z)] < M for all z € G.
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Corollary V1.4.2

Corollary V1.4.2. Let a>1/2 and let G = {z | |arg(z)| < 7/(2a)}.
Suppose that f is analytic on G and suppose there is a constant M such
that limsup,_,,, |f(z)| < M for all w € 9G. If there are positive constants
P and b < a such that |f(z)| < Pexp(|z|?) for all z with |z| sufficiently
large, then |f(z)| < M for all z € G.

Proof. Let 0 < b < ¢ < a and define p(z) = exp(—z€) for z € G. If
z = re'® where |0 < 7/(2a), then Re(z€) = r¢ cos(cf). So for z € G,

p(2)] = |exp(=2°)| = [exp(Re(—z°))| = exp(—r* cos(cf))

when z = re?,
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Corollary V1.4.2

Corollary V1.4.2. Let a>1/2 and let G = {z | |arg(z)| < 7/(2a)}.
Suppose that f is analytic on G and suppose there is a constant M such
that limsup,_,,, |f(z)| < M for all w € 9G. If there are positive constants
P and b < a such that |f(z)| < Pexp(|z|?) for all z with |z| sufficiently
large, then |f(z)| < M for all z € G.

Proof. Let 0 < b < ¢ < a and define p(z) = exp(—z€) for z € G. If
z = re'® where |0 < 7/(2a), then Re(z€) = r¢ cos(cf). So for z € G,
|p(2)] = [exp(—2°)| = | exp(Re(—2°))| = exp(—r* cos(ch))

when z = re’®. Since ¢ < a, cos(c) > p > 0 for some p (since ¢ < a
implies ¢ < af < a(n/(2a)) = w/2 for z € G). So

lo(z)| = | exp(—z°)| = exp(—r€ cos(ch)) < exp(—rcp) for all z € G, and
¢ is bounded on G. Also, if n > 0 and z = re'? is sufficiently large, then
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Corollary V1.4.2 (continued)

Proof (continued).

£ (2)l[e(2)]" P exp(|z|”)|¢(2)|" by hypothesis
P exp(|z|°)(exp(—rp))"

= Pexp(r® —nrp) since z = re'

IN A

0

(the “sufficiently large” is required of z = re? to get the bound
|f(z)| < Pexp(|z|?) for z “sufficiently large” as is hypothesized).
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Corollary V1.4.2 (continued)

Proof (continued).

£ (2)l[e(2)]" P exp(|z|”)|¢(2)|" by hypothesis
P exp(|z|°)(exp(—rp))"

= Pexp(r® —nrp) since z = re'

IN A

0

(the “sufficiently large” is required of z = re? to get the bound

1f(z)| < Pexp(|z|?) for z “sufficiently large” as is hypothesized). But

rb —nrép = re(r’=¢ —np). Since b < ¢, we have b — ¢ < 0 and so

rb=¢ — 0% as r — +00. so we have r® —nrép — ré(r®=¢ — np) — —o0 as
r — +o00. Now limsup,_,,|f(z)| < M for all a € G by hypothesis. For
b= oo, limsup, — oo| |f(2)||p(2)|" = lim,—.oc P exp(r® —nrep) =0 < M.
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Corollary V1.4.2 (continued)

Proof (continued).

£ (2)l[e(2)]" P exp(|z|”)|¢(2)|" by hypothesis
P exp(|z|°)(exp(—rp))"

= Pexp(r® —nrp) since z = re'

IN A

0

(the “sufficiently large” is required of z = re? to get the bound

1f(z)| < Pexp(|z|?) for z “sufficiently large” as is hypothesized). But

rb —nrép = re(r’=¢ —np). Since b < ¢, we have b — ¢ < 0 and so

rb=¢ — 0% as r — +00. so we have r® —nrép — ré(r®=¢ — np) — —o0 as
r — +o00. Now limsup,_,,|f(z)| < M for all a € G by hypothesis. For
b= oo, limsup, — oo| |f(2)||p(2)|" = lim,—.oc P exp(r® —nrep) =0 < M.
So f satisfies the hypotheses of the Phragmén-Lindel6f Theorem (as does
nonzero, analytic ¢), and so |f(z)| < M for z € G. O
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Corollary VI.4.4

Corollary VI1.4.4

Corollary V1.4.4. Let a>1/2 and let G = {z | arg(z) < 7/(2a)}, and
suppose that for every w € 9G, limsup,_,, |f(z)| < M. Moreover, assume
that for every § > 0 there is a constant P (which may depend on ¢) such

that |f(z)| < Pexp(d|z]?) for z € G and |z| sufficiently large. Then
|f(z)] < M forall z € G.
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Corollary VI.4.4

Corollary VI1.4.4

Corollary V1.4.4. Let a>1/2 and let G = {z | arg(z) < 7/(2a)}, and
suppose that for every w € 9G, limsup,_,, |f(z)| < M. Moreover, assume
that for every § > 0 there is a constant P (which may depend on ¢) such

that |f(z)| < Pexp(d|z]?) for z € G and |z| sufficiently large. Then
|f(z)] < M forall z € G.

Proof. Define F: G — C as F(z) = f(z) exp(—cz') where £ > 0 is fixed.
If x > 0 and ¢ satisfies 0 < § < ¢ then there is a constant P with
FOIl = [f(x) exp(—ex?)]
< Pexp(0x?) exp(—ex?) for x sufficiently large
= Pexp((0 —e)x?).

Complex Analysis

September 22, 2017 9 /13



Corollary VI1.4.4

Corollary V1.4.4. Let a>1/2 and let G = {z | arg(z) < 7/(2a)}, and
suppose that for every w € 9G, limsup,_,, |f(z)| < M. Moreover, assume
that for every § > 0 there is a constant P (which may depend on ¢) such
that |f(z)| < Pexp(d|z]?) for z € G and |z| sufficiently large. Then

|f(z)] < M forall z € G.

Proof. Define F: G — C as F(z) = f(z) exp(—cz') where £ > 0 is fixed.
If x > 0 and ¢ satisfies 0 < § < € then there is a constant P with

FOIl = [f(x) exp(—ex?)]
< Pexp(0x?) exp(—ex?) for x sufficiently large
= Pexp((0 —e)x?).

But then |F(x)| — 0 as x — oo (x € R). So
My = sup{|F(x)| | 0 < x < oo} < oo (since, say, |F(x)| <1 for x
sufficiently large and then F is continuous on the complement of
“sufficiently large” and so has a MAX there).
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Corollary VI1.4.4 (continued 1)
Proof (continued). Define M, = max{M;, M} and
Hi ={ze G|0<arg(z) <m/(2a)},

H_={ze G| —n/(2a) < arg(z) < 0}. Notice that H; and H_ are
sectors which share the boundary {x | 0 < x < c0}.
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Corollary VI.4.4 (continued 1)

Proof (continued). Define M, = max{M;, M} and

Hi ={ze G|0<arg(z

) <7/(2a)},

H_={ze G| —n/(2a) < arg(z) < 0}. Notice that H; and H_ are
sectors which share the boundary {x | 0 < x < co}. For any
w € OH_ U OHy with |arg(w)| = 7/(2a) we have

lim sup |F(z)] =

zZ—W

Iimzsiev|f z)|| exp(—ez?)|
)| exp(Re (—&2z?))
)

lim sup |f(z
| exp(—er? cos(ah)) for z = re'

Z—W

0

Z—W

(

(
lim sup |f(z
lim sup |f(z)| since —er®cos(af) < 0

z—W

because |z0| < 7/2
M by hypothesis (i.e., definition of M).
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Corollary VI.4.4 (continued 2)

Proof (continued). So for all w € OH_ U OH, we have

limsup,_,,, |f(z)] < Ms. In addition, we claim that the hypothesized
condition |f(z)| < Pexp(d|z|?) for all z € G and |z| sufficiently large
implies that F satisfies the hypotheses of Corollary V1.4.2.
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Corollary VI.4.4 (continued 2)

Proof (continued). So for all w € OH_ U OH, we have

limsup,_,,, |f(z)] < Ms. In addition, we claim that the hypothesized
condition |f(z)| < Pexp(d|z|?) for all z € G and |z| sufficiently large
implies that F satisfies the hypotheses of Corollary VI.4.2. (We have

f(2)] = [f(2) exp(—e27)| < Pexp(d]2|7)[ exp(—c2)]

= Pexp(d|z]?) exp(Re(—ez?) = Pexp(d|z|* — eRe(z?))

but this must be less than or equal to P; exp(|z|?) for positive P; and
0< b<a?)
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Corollary VI.4.4 (continued 2)

Proof (continued). So for all w € OH_ U OH, we have

limsup,_,,, |f(z)] < Ms. In addition, we claim that the hypothesized
condition |f(z)| < Pexp(d|z|?) for all z € G and |z| sufficiently large
implies that F satisfies the hypotheses of Corollary VI.4.2. (We have

f(2)] = [f(2) exp(—e27)| < Pexp(d]2|7)[ exp(—c2)]

= Pexp(d|z]?) exp(Re(—ez?) = Pexp(d|z|* — eRe(z?))

but this must be less than or equal to P; exp(|z|?) for positive P; and
0 < b < a?) So...applying Corollary VI.4.2 to F(z) gives |F(z)| < M for
all ze HL UH_. So |f(2)| < M, for all z € G.
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Corollary VI1.4.4 (continued 3)

Proof (continued). We claim that My = M. If not, then M; = M; > M.
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Corollary VI1.4.4 (continued 3)

Proof (continued). We claim that My = M. If not, then M; = M; > M.

But then we have that |f(z)| assumes its maximum value in G at some
positive real number x € G because limy_.o |F(x)| = 0 as argued above
and
lim sup |F(x)| = lim sup |f(x)]|| exp(—ex?)|
x—0 x—0
= lim sup |f(x)|exp(0) = lim sup |f(x)| < M < My,
x—0 x—0
so |f| as a continuous function on (0, c0) must attain its supremum over
this set:

y=1f()l
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Corollary VI1.4.4 (continued 3)

Proof (continued). We claim that My = M. If not, then M; = M; > M.

But then we have that |f(z)| assumes its maximum value in G at some
positive real number x € G because limy_.o |F(x)| = 0 as argued above
and
lim sup |F(x)| = lim sup |f(x)]|| exp(—ex?)|
x—0 x—0
= lim sup |f(x)|exp(0) = lim sup |f(x)| < M < My,
x—0 x—0
so |f| as a continuous function on (0, c0) must attain its supremum over
this set:

y=1f()l
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Corollary VI1.4.4 (continued 4)

Corollary V1.4.4. Let a>1/2 and let G = {z | arg(z) < 7/(2a)}, and
suppose that for every w € 9G, limsup,_,, |f(z)| < M. Moreover, assume
that for every § > 0 there is a constant P (which may depend on ¢) such
that |f(z)| < Pexp(d|z]?) for z € G and |z| sufficiently large. Then

|f(z)] < M forall z € G.

Proof (continued). But then by the Maximum Modulus Theorem—First
Version (Theorem VI.1.1), f must be a constant and then M = My = M,.
So we have established that M, = M and |F(z)| < M for all z € G.
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Corollary VI1.4.4 (continued 4)

Corollary V1.4.4. Let a>1/2 and let G = {z | arg(z) < 7/(2a)}, and
suppose that for every w € 9G, limsup,_,, |f(z)| < M. Moreover, assume
that for every § > 0 there is a constant P (which may depend on ¢) such
that |f(z)| < Pexp(d|z]?) for z € G and |z| sufficiently large. Then

|f(z)] < M forall z € G.

Proof (continued). But then by the Maximum Modulus Theorem—First
Version (Theorem VI.1.1), f must be a constant and then M = My = M,.
So we have established that M, = M and |F(z)| < M for all z € G. That
is,

|f(2)] |F(z) exp(ez?)| by definition of F

< Mexp(cRe(z?))

for all z € G. Since M is independent of &, we can let arbitrary ¢ — 0 and
conclude that |f(z)] < M for all z € G. O
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