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Theorem VI.4.A

Theorem VI.4.A

Theorem VI.4.A. Suppose f is an entire function, M > 0, and
0 < α < 1. Suppose |f (z)| ≤ M + |z |α for all z ∈ C. Then f is constant.

Proof. We take n = 1 in Corollary VI.2.13: f ′(a) =
n!

2πi

∫
γ

f (w)

(w − a)2
dw

where γ(t) = a + re it and 0 ≤ t ≤ 2π.

We have

|f ′(a)| =

∣∣∣∣ n!

2πi

∫
γ

f (w)

(w − a)2
dw

∣∣∣∣ ≤ n!

2π

∫
γ

|f (w)|
|w − a|2

|dw |

=
n!

2π

∫
γ

|f (w)|
r2

|dw | ≤ n!

2πr2

∫
γ
(M + |z |α) |dw |

≤ n!

2πr2

∫
γ
(M + (|a|+ r)α) |dw | since |w | ≤ |a|+ r

=
n!

2πr2
2πr(M + (|a|+ r)α).
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Theorem VI.4.A

Theorem VI.4.A (continued)

Theorem VI.4.A. Suppose f is an entire function, M > 0, and
0 < α < 1. Suppose |f (z)| ≤ M + |z |α for all z ∈ C. Then f is constant.

Proof (continued). . . .

|f ′(a)| ≤ n!

2πr2
2πr(M + (|a|+ r)α).

Since this holds for arbitrary r (f is entire), then we see that r →∞
implies that f ′(a) = 0. Also, a is arbitrary, so f ′(z) = 0 for all z ∈ C and
hence f is constant.
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Theorem VI.4.1. Phragmén-Lindelöf Theorem

Proposition VI.4.1

Theorem VI.4.1. Phragmén-Lindelöf Theorem.
Let G be a simply connected region and let f be an analytic function on
G . Suppose there is an analytic function φ : G → C which is nonzero and
is bounded on G . If M is a constant and ∂∞G = A ∪ B such that

(a) for every a ∈ A we have lim supz→a |f (z)| ≤ M, and

(b) for every b ∈ B and η > 0, we have
lim supz→b |f (z)||φ(z)|η ≤ M,

then |f (z)| ≤ M for all z ∈ G .

Proof. Let |ϕ(z)| ≤ κ for all z ∈ G . Since G is simply connected and ϕ is
nonzero on G , then by Corollary IV.6.17, there is a branch of log ϕ(z) on
G . Hence g(z) = exp(η log ϕ(z)) is an analytic branch of (ϕ(z))η for
η > 0, and |g(z)| = |ϕ(z)|η. Define F : G → C as F (z) = f (z)g(z)κ−η.
Then F is analytic on G and |F (z)| ≤ |f (z)|. Now for a ∈ ∂∞G for which
condition (a) holds, we have lim supz→a |F (z)| ≤ lim supz→∞ |f (z)| ≤ M.
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Theorem VI.4.1. Phragmén-Lindelöf Theorem

Proposition VI.4.1

Proof. For b ∈ ∂∞G for which condition (b) holds, we have

lim sup
z→b

|F (z)| = lim sup
z→b

|f (z)g(z)κ−η| = κ−η lim sup
z→b

|f (z)||ϕ(z)|η ≤ κ−ηM.

So F satisfies the hypotheses of the Maximum Modulus Theorem—Third
Version (Theorem VI.1.4) with M of Theorem VI.1.4 replaced with
max{M, κ−ηM} here. so, by Theorem VI.1.4, |f (z)| ≤ max{M, κ−ηM} for
all z ∈ G . So

|f (z)| = κη |F (z)|
|g(z)|

=
κη

|ϕ(z)|η
|F (z)| ≤

(
κ

|ϕ(z)|

)η

max{M, κ−ηM}

for all z ∈ G and for all η > 0. Letting η → 0+ implies |f (z)| ≤ M for all
z ∈ G .
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Corollary VI.4.2

Corollary VI.4.2

Corollary VI.4.2. Let a ≥ 1/2 and let G = {z | |arg(z)| < π/(2a)}.
Suppose that f is analytic on G and suppose there is a constant M such
that lim supz→w |f (z)| ≤ M for all w ∈ ∂G . If there are positive constants
P and b < a such that |f (z)| ≤ P exp(|z |b) for all z with |z | sufficiently
large, then |f (z)| ≤ M for all z ∈ G .

Proof. Let 0 < b < c < a and define ϕ(z) = exp(−zc) for z ∈ G . If
z = re iθ where |θ| < π/(2a), then Re(zc) = r c cos(cθ). So for z ∈ G ,

|ϕ(z)| = | exp(−zc)| = | exp(Re(−zc))| = exp(−r c cos(cθ))

when z = re iθ.

Since c < a, cos(cθ) ≥ ρ > 0 for some ρ (since c < a
implies cθ < aθ < a(π/(2a)) = π/2 for z ∈ G ). So
|ϕ(z)| = | exp(−zc)| = exp(−r c cos(cθ)) ≤ exp(−r cρ) for all z ∈ G , and
ϕ is bounded on G . Also, if η > 0 and z = re iθ is sufficiently large, then
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Corollary VI.4.2

Corollary VI.4.2 (continued)

Proof (continued).

|f (z)||ϕ(z)|η ≤ P exp(|z |b)|ϕ(z)|η by hypothesis

≤ P exp(|z |b)(exp(−r cρ))η

= P exp(rb − ηr cρ) since z = re iθ

(the “sufficiently large” is required of z = re iθ to get the bound
|f (z)| ≤ P exp(|z |b) for z “sufficiently large” as is hypothesized). But
rb − ηr cρ = r c(rb−c − ηρ). Since b < c , we have b − c < 0 and so
rb−c → 0+ as r → +∞. so we have rb − ηr cρ− r c(rb−c − ηρ) → −∞ as
r → +∞. Now lim supz→a |f (z)| ≤ M for all a ∈ ∂G by hypothesis. For
b = ∞, lim supz →∞||f (z)||ϕ(z)|η = limr→∞ P exp(rb − ηr cρ) = 0 ≤ M.

So f satisfies the hypotheses of the Phragmén-Lindelöf Theorem (as does
nonzero, analytic ϕ), and so |f (z)| ≤ M for z ∈ G .
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Corollary VI.4.4

Corollary VI.4.4

Corollary VI.4.4. Let a ≥ 1/2 and let G = {z | arg(z) < π/(2a)}, and
suppose that for every w ∈ ∂G , lim supz→w |f (z)| ≤ M. Moreover, assume
that for every δ > 0 there is a constant P (which may depend on δ) such
that |f (z)| ≤ P exp(δ|z |a) for z ∈ G and |z | sufficiently large. Then
|f (z)| ≤ M for all z ∈ G .

Proof. Define F : G → C as F (z) = f (z) exp(−εz1) where ε > 0 is fixed.
If x > 0 and δ satisfies 0 < δ < ε then there is a constant P with

|f (x)| = |f (x) exp(−εxa)|
≤ P exp(δxa) exp(−εxa) for x sufficiently large

= P exp((δ − ε)xa).

But then |F (x)| → 0 as x →∞ (x ∈ R). So
M1 = sup{|F (x)| | 0 < x < ∞} < ∞ (since, say, |F (x)| ≤ 1 for x
sufficiently large and then F is continuous on the complement of
“sufficiently large” and so has a MAX there).
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Corollary VI.4.4

Corollary VI.4.4 (continued 1)

Proof (continued). Define M2 = max{M1,M} and
H+ = {z ∈ G | 0 < arg(z) < π/(2a)},
H− = {z ∈ G | −π/(2a) < arg(z) < 0}. Notice that H+ and H− are
sectors which share the boundary {x | 0 < x < ∞}. For any
w ∈ ∂H− ∪ ∂H+ with |arg(w)| = π/(2a) we have

lim sup
z→w

|F (z)| = lim sup
z→w

|f (z)|| exp(−εza)|

= lim sup
z→w

|f (z)| exp(Re (−εza))

= lim sup
z→w

|f (z)| exp(−εra cos(aθ)) for z = re iθ

≤ lim sup
z→w

|f (z)| since − εr z cos(aθ) < 0

because |zθ| < π/2

≤ M by hypothesis (i.e., definition of M).
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Corollary VI.4.4

Corollary VI.4.4 (continued 2)

Proof (continued). So for all w ∈ ∂H− ∪ ∂H+ we have
lim supz→w |f (z)| ≤ M2. In addition, we claim that the hypothesized
condition |f (z)| ≤ P exp(δ|z |a) for all z ∈ G and |z | sufficiently large
implies that F satisfies the hypotheses of Corollary VI.4.2. (We have

|f (z)| = |f (z) exp(−εza)| ≤ P exp(δ|z |a)| exp(−εza)|

= P exp(δ|z |a) exp(Re(−εza) = P exp(δ|z |z − εRe(za))

but this must be less than or equal to P1 exp(|z |b) for positive P1 and
0 < b < a?)

So. . . applying Corollary VI.4.2 to F (z) gives |F (z)| ≤ M2 for
all z ∈ H+ ∪ H−. So |f (z)| ≤ M2 for all z ∈ G .
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Corollary VI.4.4

Corollary VI.4.4 (continued 3)

Proof (continued). We claim that M2 = M. If not, then M1 = M1 > M.

But then we have that |f (z)| assumes its maximum value in G at some
positive real number x ∈ G because limx→∞ |F (x)| = 0 as argued above
and

lim sup
x→0

|F (x)| = lim sup
x→0

|f (x)|| exp(−εxa)|

= lim sup
x→0

|f (x)| exp(0) = lim sup
x→0

|f (x)| ≤ M < M1,

so |f | as a continuous function on (0,∞) must attain its supremum over
this set:
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Corollary VI.4.4

Corollary VI.4.4 (continued 4)

Corollary VI.4.4. Let a ≥ 1/2 and let G = {z | arg(z) < π/(2a)}, and
suppose that for every w ∈ ∂G , lim supz→w |f (z)| ≤ M. Moreover, assume
that for every δ > 0 there is a constant P (which may depend on δ) such
that |f (z)| ≤ P exp(δ|z |a) for z ∈ G and |z | sufficiently large. Then
|f (z)| ≤ M for all z ∈ G .

Proof (continued). But then by the Maximum Modulus Theorem—First
Version (Theorem VI.1.1), f must be a constant and then M = M1 = M2.
So we have established that M2 = M and |F (z)| ≤ M for all z ∈ G . That
is,

|f (z)| = |F (z) exp(εza)| by definition of F

≤ M exp(εRe(za))

for all z ∈ G . Since M is independent of ε, we can let arbitrary ε → 0 and
conclude that |f (z)| ≤ M for all z ∈ G .
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Corollary VI.4.4

Corollary VI.4.4 (continued 4)

Corollary VI.4.4. Let a ≥ 1/2 and let G = {z | arg(z) < π/(2a)}, and
suppose that for every w ∈ ∂G , lim supz→w |f (z)| ≤ M. Moreover, assume
that for every δ > 0 there is a constant P (which may depend on δ) such
that |f (z)| ≤ P exp(δ|z |a) for z ∈ G and |z | sufficiently large. Then
|f (z)| ≤ M for all z ∈ G .

Proof (continued). But then by the Maximum Modulus Theorem—First
Version (Theorem VI.1.1), f must be a constant and then M = M1 = M2.
So we have established that M2 = M and |F (z)| ≤ M for all z ∈ G . That
is,

|f (z)| = |F (z) exp(εza)| by definition of F

≤ M exp(εRe(za))

for all z ∈ G . Since M is independent of ε, we can let arbitrary ε → 0 and
conclude that |f (z)| ≤ M for all z ∈ G .
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